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A formula is obtained for the velocity of a certain element of a linear vortex in a Bose gas and in helium I1 in 
terms of the contribution made to the wave function by the remaining elements of the same wave vortex and 
of other perturbations of the ground state of the medium. It is shown that, besides the Magnus force, the 
vortex is acted upon by a force proportional to the condensatedensity gradient and directed opposite to the 
gradient. A generalization is possible to linear vortex singularities of relativistic fields that do not describe any 
condensed medium at all. 

PACS numbers: 67.40.V~ 

1. In the hydrodynamics of a classical ideal incom- 
pressible liquid, the velocity of a free (unpinned) vor- 
tex is equal to the velocity of the liquid a t  the vortex 
point less i ts  own (unpinned) contribution-the vortex 
is dragged by the stream. It is natural to assume that 
in more complicated cases, for example quantum li- 
quids, it is also possible to establish a general law for 
the vortex velocity in terms of the characteristic states 
of the liquid, minus the contribution of the vortex itself 
(more accurately of that vortex element whose velocity 
is being determined). We confirm this assumption in 
Sec. 2, using a s  the example a degenerate weakly inter- 
acting Fermi gas. In Secs. 3 and 4 we consider vortex 
motion in helium 11, in Sec. 5 we present some con- 

subject to the boundary condition f, (m) = 1. We have 
used here the cylindrical coordinates r, 0 ,  and z, with 
the z axis aligned with the vortex; n is the number of 
circulation quanta. As r- 0 we have 

f,+const r'"'. (3 

A natural generalization of the function J,, is the wave 
function Jt that describes an isolated straight vortex 
moving uniformly (perpendicularly to itself) in an in- 
finite medium that is immobile at infinity: 

and in Sece we describe vortex singu- v1 O,, is the vortex velocity. Using the definition (4) 
larities of complex scalar fields that do not necessarily and (2), we easily verify that the function J: satis- 
describe the density and velocity distribution in some fies the following equation2) : 
condensed medium. 

The determination of the motion of the vortex in quan- 2 i 5  + A$.+$.- 1g.l9~=-2ivvrp.. a* (5) 
tized liquids is considered in the present article a s  a 
particular case of a more general problem of defining 
the motion of the singularity of a certain field by the 
equation of this field. It is appropriate to mention in 
this connection that in investigations devoted to the 
derivation of the law of particle motion from the equa- 
tions of a gravitational field, Einstein referred to Helm- 
holtz's theory of vortex motion a s  an example of a field 
specifying the motion of its own singularity. 

2. A vortex in a degenerate weakly interacting Bose 
gas was first considered by ~itaevski;, '  who used the 
Gross- ~ i t aevsk i r  equation2" for the condensate wave 
function a. Jle-'/2. We write this equation in the di- 
mensionless form1' 

2i a$lat+~$+$- I $ IZ$=O. (1 

The function J ,  is complex, J,=f exp(icp), and its modu- 
lus describes the density of the condensate (f =n/no), 
and the phase its flow velocity (v=Vcp). 

Equation (1) has a solution that describes an isolated 
straight vortex line in an infinite mediumi: 

$ L = ~ L  e x p ( i ~ ~ ) ,  

where cp, = na, and fL (r) is the solution of the equation 

" L  

We consider now a state of the medium such that it 
contains a vortex filament (a linear vortex singularitys?, 
but the filament is not generally speaking a straight line 
and (or) there a r e  other factors that cause a difference be- 
tween Jl and qL. Examples a r e  other singularities that 
a r e  spatially separated from the considered vortex, 
boundary surfaces, flow at infinity, and others. We 
chose a certain vortex-filament element (sometimes 
called for brevity a vortex point o r  simply a vortex), 
and choose a reference frame in which the z axis is di- 
rected along this element and the origin coincides with 
it. Without loss of generality we can express J ,  in the 
form 

q=g.i/r=exp(ln f.+ln f +in a,+iq), (6 
where J ,  has by definition no singularity in the con- 
sidered vortex point and is a solution of Eq. (1) from 
which the contribution of this point is separated (multi- 
plicatively for Jl and Gditively from the complex phase 
lnf + icp; we note that J ,  is not a solution in the absence 
of the vortex). 

Substituting expression (6) in Eq. (1) and taking (5) 
into account, we obtain 
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We investigate this equation in the vicinity of the vortex 
point. Using the property (3) of the function f, and the 
absence of singularities of the function J ,  at  r = r,, we 
can easily verify that when the left-hand side of (7) is 
expanded in powers of r, the principal terms stem from 
the first member of the series. The real part of the ex- 
pansion is 

and the imaginary part 

where k i s  the unit vector of the z axis, and the dots 
stand for terms proportional to r, raised to a power not 
lower than In 1 ,  while the subscript 0 means that the 
expression in the curly brackets is calculated a t  the 
point r, = 0. 

We stipulate that expression (6) be a regular solution 
of Eq. (7) in the vicinity of the vortex point, i.e., that 
Eqs. (7a) and (7b) be satisfied regardless of the direc- 
tion of r,. This calls for the vanishing of the expres- 
sions in the curly brackets, which i s  equivalent to an 
equation that determines the vortex velocity 

If A ~ = O  at the vortex point, then G=O and formula 
(8) goes over into the expression v = b  known from 
classical hydrodynamics of an ideal incompressible 
liquid. At [kx VG], =o, in contrast to the case of an 
incompressible liquid, v# 0 and the vortex velocity i s  
v = - (n/ In 1 )k x G perpendicular to the condensate-den- 
sity gradient. 

The physical meaning of formula (8) i s  clearer if it 
i s  expressed in the form 

n[k~v-@I-lnlG=O, (8a) 

which can be intepreted a s  the vanishing of the sum of 
the forces acting on the vortex point, namely the Mag- 
nus force4' and the force proportional to In IG. The 
existence of the last force, directed opposite to the 
condensate-density gradient (from which the contribu- 
tion of the considered vortex element is  excluded), is 
physically due to the fact that the vortexwhosepresence 
generates f produces a small perturba_tion of the state 
of the medium in the region of small f. 

3. We consider now the motion of vortices in super- 
fluid he1i;m 11. We use for this purpose the Ginzburg- 
Pitaevskii equation3 

(v-iv.)'$+$-I$I"=O. (9) 

The wave function J ,  describes here the density of the 
superfluid component and i ts  velocity: 

p, is  the equilibrium value of p,. Equation (9) i s  
written in the following units: (p,,/m)i/2 for the wave 
function (m is the helium-atom mass), the coherence 
length 5 for the distances, and ii/m[ for the velocity. 

In contrast to the time-dependent equation (I), ex- 

pression (9) i s  a balance equation and i s  valid only in 
the absence of dissipative processes. The vortex 
velocity should therefore coincide with the velocity of 
the normal component a t  the vortex point: v = vno. At 
the same time, Eq. (9) can be subjected to the pro- 
cedure employed in Sec. 2 to investigate Eq. (1) in the 
vicinity of a vortex point. It is  easy to verify that the 
result of the requirement that Eq. (9) be regular in the 
vicinity of such a point i s  an equation of the type (8) for 
v,,. Thus, equilibrium (nondissipative) motion of the 
vortex in helium I1 takes place a t  a velocity 

v = (u.., v,,~)~ = Q) --Ik[kxGl 
In1 

Actually, however, the velocity of the normal compo- 
nent is  set by the boundary conditions and generally 
speaking does not coincide with the right-hand side of 
(10). In those cases when this equation does not hold, 
the balance equation (9) i s  not satisfied and the vortex 
motion i s  not in equilibrium. It is  in equilibrium only 
for a restricted number of boundary conditions, and 
furthermore if the vortices a re  located at points where 
the normal flow velocity coincides with the equilibrium 
vortex velocity determined by Eq. (10). 

4. The nonequilibrium motion of the vortex can be 
determined by the time-dependent equation for the J ,  
f ~ n c t i o n . ~  The requirement that this equation be regular 
in the vicinity of the vortex point leads to the formula 

v=@ -~[~XGI-A(G+;[~X@-V~~] Inl n l 

where A i s  a coefficient connected in a known manner 
with the relaxation time of the order parameter J,. From 
the point of view from the requirement that the sum of 
the forces acting on the vortex be zero, Eq. (11) can be 
supplemented, in comparison with formula (8a), by dis- 
sipative forces and can be rewritten in the form 

n[kXv-@I-JnlG 

+A(n[kXGI-InI[k~[kxv.,-@]])=O. ( l la)  
Let us compare it with an equation having an identical 
meaning, derived for vortex dynamics in helium I1 by 
Hall and Vinen (see, e.g., Rsfs. 5-7). The forces pro- 
portional to the gradient of f (i.e., to the gradient of p, 
with the contribution of the vortex itself subtracted) do 
not appear in the formulas of Hall and Vinen, This is  
natural, since they assume the vortex to be placed in a 
liquid of constant density (in many cases, if the vortex 
is not close to a solid surface o r  to another vortex, this 
assumption is fully justified). The last term of ( l l a )  
corresponds to the a mutual-friction force component 
(with coefficient B) directed along (v,, - v,),, where the 
subscript 1 denotes the projection on the (x ,  y )  plane 
(perpendicular to the vortex): 

5. We consider now several concrete examples. In 
view of the nonlinearity of Eqs. (1) and (9) it is quite 
difficult to obtain for them complete solutions corre- 
sponding to the complicated boundary conditions, and 
we confine ourselves to examples in which the form of 
the function J, is approximately determined in the vi- 
cinity of the considered vortex. In all cases the vortex 
in question i s  assumed straight and having a positive 
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circulation: n > 0. 

Example 1. Near the vortex there is a similar one 
with negative circulation n, = - n. Assume that a t  the 
considered instant of the vortex is at  the origin and the 
antivortex at the point y =- b. If b el  (i.e., the distance 
between the vortices is less  than the coherence length), 
then 

i6af=(ro) exp ( - i m ) ,  
y+b r:= (z-vt)'+(y+b)',  a.-arc tg- 
2-vt ' 

and the function f,(r,) at x = vt and y = O  is determined 
by formula (3). The vortex velocity calculated from 
formulas (8) or  (19) is directed along the x axis and is 
equal to 

vcn/b+n/b=2n/b ( b c l ) .  

In dimensional notation, this quantity equals r / r b  (I' 
=2nnkZ/m is the circulation), o r  double the velocity of 
a vortex pair in a classical ideal incompressible liquid. 
If b >> 1, then G << Q, and v =n/b, just as in an incom- 
pressible liquid. 

Example 2. Halfway between two vortices arranged 
a s  in the preceding example, is placed a solidboundary- 
the plane y = - b/2 (the antivortex is then a reflection of 
the vortex). Then 

- y+b/2 
$=thT f L  (re) exp (-ina,).  

If the vortex is close to the surface, then the first  fac- 
tor is approximately equal to the argument of the hyper- 
bolic tangent, and the remaining factors a r e  those de- 
termined in the preceding example. The vortex velocity 
is again directed along x and is equal to 

where a =  b/2 is the distance from the vortex to the 
wall. The vortex can be at equilibrium if: 1) v, 
= (n + l)/a at a distance a from the wall, o r  2) a coun- 
tercurrent of the superfluid component flows at a ve- 
locity v,(a) = - (n + l)/a, while the normal component 
is immobile. It is clear that even at an arbitrarily 
large normal-component flow one can find a sufficiently 
small a such that v, < (n + l)/a and no equilibrium flow 
of the vortex along the solid surface is possible. 

Example 3. The vortices a r e  arranged in the same 
manner a s  in example 1, but their circulations a r e  
equal, n, =n. The vortex velocity calculated by formu- 
las (8) o r  (10) is then 

i.e., as b - 0 the vortex velocity decreases to zero. In 
a classical ideal incompressible liquid, closely located 
identical vortices rotate about a common center with 
velocity n/b (if b >> 1 then we have also in our case v 
=-n/b, since G<<Q,). 

6. 1f we change to a reference frame in which the vor- 
tex is immobile, then formula (8) can be rewritten'in 
the form of the equalities 

The condition for the regularity of the solution $=J,,$ 
of Eq. (1) in the vicinity of the vortex point consists 

therefore of conditions of the Cauchy-Riemann type, 
which must be satisfied at the vortex point itself: the 
complex phase of the nonsingular part of the solution $ 
must have at this point the analytic properties of the 
complex phase of the function rh ' ehO,  to which tends 
as r- 0. According to (3) we have a t  n > 0 

In f,+icp,+nln(z+iy) +const, \ 

and at  n <O we get 

The conditions (12) a r e  correspondingly the analyticity 
conditions a t  the vortex point, of the function lnf+ i ;  
at  n > 0 and of the function 4 + i ln j at  n <O. 

Obviously, an investigation of the vicinity of the vor- 
tex similar to that carried out in Sec. 2, is possible 
also for the equations for physically different fields, 
including those for which neither the field functions, 
nor their gradients, nor the expressions associated 
with them have the meaning of the velocity of a certain 
medium. It is easy to verify that for a field of any 
physical nature it is necessary here to satisfy Eqs. (12) 
(which a r e  valid in the reference frame in which the 
vortex is immobile), if the following conditions a r e  
satisfied: 

a )  the field is described by a scalar wave function J ,  
=f exp(icp); 

b) the equation has a solution JI, that describes an im- 
mobile straight vortex and has the property (3); 

c) the field equation contains the term AJ, and contains 
no other terms of the same o r  lower order in r than the 
principal terms separated from A$. 

Consider a vortex in a certain field described by a 
Lorentz- invariant equation possessing the properties 
a), b) and c). In a certain reference frame, arbitrarily 
called "immobile," the conditions (12), generally 
speaking, a r e  not satisfied. We obtain a ("moving") refer - 
ence frame in which they a r e  satisfied: 

The velocity of this ("primed") reference frame is in 
fact the vortex velocity. It can therefore be determined 
from the system of equations: 

I nl (G.+vG,) =n(l-vZ)"(D,, 

(l-~~)"lnlG,=-n((D,+v@~). 
Here 

G,= (aln f la t ) , ,  ( D l -  ( a W t ) . ,  

v is the vortex velocity. It is directed along the x axis, 
but the direction of this axis relative to the (specified) 
gradients A@ and A] is unknown. The conditions (13) 
a r e  the system of equations for the determination of the 
value of v and of the direction of the x axis (i.e., of the 
direction of v). 

We plan to deal with vortex motion in relativistic 
fields elsewhere. We note only that, as can be shown 
with the aid of (13), the relative velocity of two identical 
straight vortices tends to zero as they approach each 
other, and the velocity of a vortex-antivortex pair tends 
to that of light. 
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 he following units are  used: ti/(2rngno)"2 for distances, 
ti /2gno for time, and n9I2 for the wave function, where m is 
the mass of the atom and no is the equilibrium density of the 
condensate. The constant g characterizes the interaction 
between the particles and is assumed to be small enough to 
make the coherence length 5 larger than the interatomic 
distances. 

2 ) ~ h e  function #, is not a solution of Eq. (I),  except a t  v = 0, 
inasmuch a s  in a medium that is  immobile a t  infinity a 
straight vortex, being the only perturbation of its ground 
state, is immobile (see below). 

3 ) ~ t  is defined a s  the line the circuit around which (around each 
of its elements) changes the phase by 2m(n =*I, *2,. . . ). In 
the immediate vicinity of such a line we have @ OC#,.  

4 ) ~ t  is possible to separate in the gradient of the phase @ the 
various contributions (of the flux, of another vortex, of a 
reflected vortex, of other elements of the considered vortex, 
etc.) and resolve the Magnus force into several forces (in- 
teraction with external flux, interaction with another vortex, 
interaction with the wall-image force, interaction with other 

elements of the same vortex-rectifying force acting on a 
bent vortex). 
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A phenomenological analysis is presented of resonant absorption of light by excitons with spatial dispersion 
taken into account. It is shown that the form of the absorption line contour and its characteristics change 
drastically when the damping constant goes through a certain critical value. Analytic formulas are obtained 
for the absorption coefficient, for the integral absorption, for 
and for the equivalent line width at damping-constant values 

PACS numbers: 71.35. + z, 78.20.Dj 

1. INTRODUCTION pendence on T in a wide tempera ture  interval.  In addi- 

Light absorption by excitons h a s  been the subject of a 
considerable number of e ~ p e r i m e n t a l " ~  ( see  also the  
re fe rences  in  these  papers )  and theoretical6-lo s tudies .  
It h a s  been establ ished that a change i n  the sample  
tempera ture  is accompanied by a change in the absorp-  
tion-line shape and the  line p a r a m e t e r s  such as the  
half-width, maximum of the line, and integral absorp-  
tion. One of the distinguishing fea tures  of the observed 
s p e c t r a  is the d e c r e a s e  of the integral absorption with 
temperature.  T h e r e  is still no complete theoret ical  
explanation of all the fea tures  of the absorption spec- 
tra, although it is clear that the  experimentally ob- 
se rved  changes are connected with the dependence of 
the phenomenological damping constant v on the t e m -  
pera ture  and on the frequency. ' The  role played by 
spat ial  dispersion i n  the d e c r e a s e  of the integral  ab-  
sorpt ion with decreas ing  tempera ture  was recently 
considered in Refs. 9 and 10. 

We repor t  h e r e  a detailed quantitative investigation 
of the dependence of the  absorption line shape and of 
the line p a r a m e t e r s  on v i n  a c r y s t a l  model i n  which 
spat ial  dispersion is taken into account. We confine 
ourselves h e r e  to a macroscopic solution of the  prob-  
l e m  and assume v t o  be  an independent variable;  th i s  
assumption is justified because v h a s  a monotonic d e -  

tion, to revea l  the role played in absorption by spat ial  
dispersion 'in p u r e  form," we assume v to be  constant 
o v e r  the  e n t i r e  range of f requencies  to interest to us. 
Effects  connected with the frequency dependence of v 
are discussed briefly at the end of the  article. 

2. ABSORPTION COEFFICIENT 

We consider  an isotropic  nongyrotropic crystal whose 
d ie lec t r ic  constant in  the vicinity of an isolated exciton 
absorption line can be  represen ted  in the  f o r m  

where c o  is the  contribution made to the dielectr ic  
constant by o ther  resonances,  # is the oscillator 
s trength,  w, is the natural  frequency of the mechanical 
exciton at K= 0, P=tiw,/m$c2, and m,* is the effective 
m a s s  of the exciton. Let  the c rys ta l  be  a plane-paral- 
lel plate  of thickness  d. At normal  incidence of the 
light on the  face  of the plate t h e r e  will  propagate inside 
the  plate ,  at a given frequency w, two waves with re- 
fract ive indices  2,=nl + i Ul and 2,=n, + iu , .  The 
complete fo rmula  f o r  the amplitude t ransmission coef- 
ficient of the plate, with allowance for  the  multiple re- 
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