
Electron-hole liquid in thin semiconductor films 
E. A. Andryushin, L. V. Keldysh, V. A. Sanina, and A. P. Silin 

P. N. Lebedev Physics Institute. Academy of Sciences of the USSR, Moscow 
(Submitted 2 April 1980) 
Zh. Eksp. Teor. Fiz. 79,1509-1517 (October 1980) 

The dependence of the ground-state energy of an electron-hole liquid on the camer density is calculated using 
an expression obtained earlier for the Coulomb interaction of charges in a thin high-permittivity 
semiwnductor film surrounded by two insulator layers. The possibility of experimental detection of the 
investigated effects and the nature of the one-particle spectrum of excitations in the liquid are discussed. 

PACS numbers: 71.35. + z 

Calculations of the properties and behavior of an a,--eii21pe2 (5) 
electron-hole liquid (EHL) in a two-dimensional sys- 
tem have been reported in several earlier papers.'d is the radius of an exciton in the bulk of the film. Here, 

These calculations a r e  made on the assumption that e and R are,  respectively, the electron charge and the 

electrons and holes bound to form an EHL move along Planck constant, and p is the reduced effective mass of 

an ideal plane and that the Coulomb interaction between an electron and a hole. It follows from Eq. (4) that the 
separation between the size-quantized energy levels is them is governed by just one permittivity E. This mod- 
proportional to h2/pdZ, which is considerably greater el  is best approximated experimentally by thin semi- 
than the interaction energy (2). Therefore, we shall conductor films. 
assume that the motion of carr iers  in such a film is 

However, the permittivity of semiconductors is fair- two-dimensional. The interaction energy (2) is also 
ly high, E -10-100, whereas the permittivity of the independent of the position of the charges along the z 
media surrounding such a film (this is usually an insu- axis. 
lating substrate in vacuum) is of the order of unity. 

Formation of a bound state of an electron and a hole When the distances between the charges in the film is 
(i. e., the formation of an exciton) in such a film is ad, where d is the film thickness, the field created in 
considered in Refs. 4 and 5 and i t  is shown that i f  the 

the surrounding medium by the charges begins to play a 
inequality (4) and the condition 

significant role in the interaction between them. 
 heref fore, in the case of films of small thickness d aotIa<d (6) 
the interaction between charges in a film becomes a r e  satisfied, the radii of the ground and first  excited 
considerably stronger than in a homogeneous medium states of an exciton lie in the intermediate range of 
with the same permittivity E. This alters the depen- distances p, where the approximation (2a) for V is 
dence of the interaction energy on the distance? valid. Characteristic scales of the distances and en- 

We shall assume that a film occupies the space -d/2 ergies in this problem a r e  the quantities 
e z c d/2. The substrate occupying the half-space z 

%='I2 
<-d/2 is a homogeneous medium of permittivity &I, 

(7) 
E.=eVled. 

whereas the half-space z > d/2 is a medium of permit- 
(8) 

tivity ~ 2 .  Let p be the distance between point charges The binding energy of an exciton is given by the formu- 
e' and e N  in the film plane (x,  y) and 6 = (&I + Q ) / ~ E  be la 
a small parameter 

(1) 6ai. 
(9) 

Then, a s  shown in Refs. 3-5, if p>>d, the interaction 
energy V(p) is described by 

where C =0.577 is the Euler constant. In the momen- 
tum space (q2 = + 9:) the Fourier transform of Eq. (2) 
is 

We shall consider the case of sufficiently small thick- 
nesses d, namely 

daao, (4) 
where 

We shall consider the formation of an EHL in a film 
satisfying the conditions (I), (4), and (6). The Schra- 
dinger equation for the many-body problem is 

We shall adopt a model in which the electron spectrum 
is static and isotropic. Here, m, and mh a r e  the effec- 
tive masses of electrons and holes assumed (for sim- 
plicity) to be equal me = m, = 2 p; N is the number of 
electron-hole pairs; i and j a r e  the indices labeling 
electrons and holes, respectively; V,,, is a two-dimen- 
sional gradient along the coordinates of the particle 
under consideration; J ,  is the complete wave function 
of the system which depends on the coordinates of all  
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the particles; Velq is the Coulomb interaction described 
by Eq. (2), where p is the relative distance in the (x ,  y) 
plane between the particles el and e2. Employing the 
units 4 and Ex of Eqs. (7) and (81, we obtain the dimen- 
sionless ~chr6dinger equation 

Here, 5, are  the dimensionless radius vectors to the 
particles and 5,1,2 are  the dimensionless relative dis- 
tances between them. . 

Equation (11) is free of the parameters of the prob- 
lem, so that the main contribution to the binding energy 
of an EHL and of any finite many-particle complex is 
the large, because of Eq. (6), quantity ln(4d/b2ao), 
which also follows for an exciton from Eq. (9). In com- 
paring the binding energies of an exciton and of an EHL 
we must carry out calculations in the following order in 
respect of the parameters. This applies only if the 
average distance between particles in an EHL (or in 
other many-particle complexes) satisfies the condition 

In calculating the characteristics of an EHL in the 
isotropic model it is not clear a pm'om' whether the 
spectrum of one-particle excitations is metallic or 
insulating. 

It is known6* that at absolute zero a system of this 
kind is unstable if a gap forms on the Fermi surface. 
However, the magnitude of this gap decreases exponen- 
tially on increase in the carrier density. We shall 
assume that at densities 

n0: ax-', (14) 

where n is the surface density of carriers in the film, 
we can ignore the influence of thegap and assume that 
the initial unperturbed state is a Fermi gas of free 
electrons and holes. The momentum of the Fermi sys- 
tem is 

p,= (2nh)". (15) 

We shall introduce the dimensionless average distance 
between the particles 

r.= (nnaZ2) -%. (16) 
The condition (13) can be rewritten a s  the condition for 
Y ,: 

(d/a.)"<r.< (d/a,8')", (1 7) 

which ensures a fairly wide range of validity of our cal- 
culations [this follows from Eqs. (4) and (6)]. The 
ground-state energy then usually splits into three con- 
tributions (for details of the methods of calculation of 
the EHL energy see Refs. 9 and 10). Tk kinetic ener- 
gy is 

E,,,, =2E$raZ. (18) 
The exchange energy is 

The exchange energy includes the same large logarithm 
a s  the binding energy of an exciton given by Eq. (9) and, 
because of Eq. (121, it represent the main part of the 
interaction energy. The third term in the total energy 
is the correlation energy E,, , which is small com- 
pared with the exchange energy in the range r,-l; 
since in this case the Coulomb interaction (3) is effec- 
tively screened, the main contribution to E ,  cor- 
responds to the transferred momenta q -PF - a;' >> d"6. 
Therefore, in calculating E,, we can replace (3) with 
the following expressions: 

~ ( q )  =4ne'e ,, /sdq2, (20) 

and ( E .,, ( - E, << ( E,,, ] . The binding energy of an 
EHL, f ~ . ,  I ,  represents the minimum of E = Ek, + E,, 
+ E,,,, considered a s  a function of n or  Y, and differs 
only by a numerical factor (in units of Ex) from the bind- 
ing energy of an exciton given by Eq. (9). 

We shall calculate the correlation energy employing 
the ~ozi'eres-Pines method (see Refs. 9 and 101, in 
which E,,, is represented by an integral of the trans- 
f err  ed momentum 

The function I(q) is calculated within the limits of large 
and small q and the results a r e  joined in the range of 
intermediate values of q: 

where I is measured in units of Ex and q is measured 
in units of pF. The expansion of XI is obtained in the 
random phase approximation, whereas I2 is the main 
contribution to the sum of the direct and exchange vacu- 
um diagrams of the second order. The form of the 
function appropriate to our problem is shown in Fig. 1. 
We shall joint the results using two variantes. In the 
first variant, the function I(q) is split into a sum of 
two functions: 

I=I'(Q)+I" ( q ) ,  (23) 

FIG. 1. Expansion of the function I ( q )  for high and low values 
of the momenta in the case when r,=2. Curves 1 and 2 corres- 
pond to the first and second joining variants. Here, I (q )  is in 
units of Ex and q is in units of pp.  
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where 

In the second variant we join by drawing a straight line 
from the maximum of the curve Il to the point q =2 on 
the curve Iz.  In both cases the integral (21) can be cal- 
culated analytically. We thus obtain the ground-state 
energy a s  a function of r,. The minimum of this func- 
tion determines the binding energy and the equilibrium 
density of an EHL. The functions I(q) obtained for both 
joining variants a r e  similar and the results depend 
weakly on the nature of the joining: 

where in the first  variant we have w,,, = 1.68 and r:",,, 
= 1.8, whereas in the second variant we have w,,, = 1.70 
and YZ,, =2.3. The corresponding quantity which oc- 
curs in the binding energy of an exciton is w,, =2.20. 
Consequently, an EHL is preferred for energy reasons 
to an exciton gas, and the difference between the bind- 
ing energies is 

lEmin 1 -Eazc=0.5Es. (2 5) 
For example, in the case of a GaAs film of thickness 
d=30 A this difference is 4 9 . 5  meV, i. e., =40%E,,. 
It should be noted that Eqs. (24) and (25) represent only 
estimates of the binding energy of an EHL, because 
they a r e  obtained for an isotropic dispersion law of 
electrons and holes. Allowance for the anisotropy of 
the dispersion law reduces the kinetic energy and in- 
creases the binding energy of an EHL a s  well a s  i t s  
equilibrium density? 

A shortcoming of the above calculations of the ground- 
state energy of an EHL is the fact that the energy does 
not reduce to the binding energy of an exciton when the 
densities of electrons and holes tend to zero. This 
shows that the electron-hole correlations of the mul- 
tiple scattering type a r e  not properly allowed for. In 
the isotropic case and for low densities a system of 
electrons and holes is clearly better described if the 
zeroth approximation is a free gas of correlated elec- 
tron-hole pairs ( e x c i t o n ~ ) . ~ ~ - ~ ~  In this case we can 
again obtain the dependence of the ground-state energy 
on the density E(n). The minimum of this energy cor- 
responds to an EHL whose spectrum of one-particle 
excitations is of the insulating type. We shall assume 
that the equilibrium density of an insulating EHL is 
such that the average distance satisfies the conditions 
(13) and (171, s o  that we can use the Coulomb potential 
in the form given by Eq. (2a). 

Canonical transformation of the Hamiltonian (10) 
allowing for coherent pairing of electrons and holes 
gives expressions differing from the corresponding 
results in Refs. 11-13 only by the nature of the Cou- 
lomb interaction. The ground-state energy considered 
in the Hartree-Fock approximation is 

x ('/ ,  sin 2qp sin 2cpp*+ sin2 9, sin"p.). (2 6) 
The energy U is a functional of qp. The function cp, is 
found from the conditions of minimum energy and sta- 

bility of the ground state. This function r,~, satisfies 
the normalization condition 

d'p .n=2 j - sina cp, 
(2nI2 

and in the limit n-0 i t  is related to  the wave function of 
the ground state of an exciton $o(p) in the momentum 
representation: 

(n1.2) "90 (PI ==sin cp,, (28) 
so that in the limit n40  the energy ~ / n  reduces to the 
energy of the ground state of an exciton. In the simp- 
lest case if we select $o(p) to be the Fourier transform 
of the simplest wave function bO(p) = e-OP, 

% ( P )  = ( 8 n ) " a A l +  (paJal*, (2 9) 
we can obtain the ground-state energy of an exciton in 
the form of Eq. (9) but with a somewhat less satisfac- 
tory value w = 2.31, and the slope of the curve E(n) 
considered in this approximation is 

For  comparison, we shall give the slope obtained in the 
same approximation for a purely two-dimensional 
case,12 corresponding to the form of the potential (2b) 

=2n (1-315 n/2'2)Fa'2=4.77 Fa", 

and in the case of a three-dimensional with 
the usual Coulomb potential we find that 

where Eo, a. and E*, a* a r e  the binding energy and radi- 
us  of three- and two-dimensional excitons, respective- 
ly. In all three cases a self-consistent approximation 
allowing for terms linear in respect of the carr ier  den- 
sity gives, for the same values of the density right up 
to r ,  -2, much lower energies than = Et,. +Each 
for an EHL with a metallic spectrum (Fig. 2). 

Minimization of the functional U for arbitrary values 

FIG. 2 .  Dependences of the energy of an EHL on the carrier 
density. The ordinate gives the energy w in units of E,, 
whereas the abscissa gives the density n in units of a;': I), 
2)  energy in the Hartree-Fock approximation; 3), 4) total en- 
ergy; I), 3) insulating EHL; 2, 4) metallic EHL. The total 
energy of the insulating EHL (curve 4) is  calculated using the 
parameters of GaAs. 

763 Sov. Phys. JETP 52(4), Oct. 1980 Andryushin et at. 763 



.T 

FIG. 3. Spectrum of one-particle excitations in an insulating 
EHL calculated in the Hartree-Fock approximation for various 
densities. The abscissa gives the values of x = kq2 proportional 
to the square of the momentum: 1) n = a12, k = 4.4; 2) n = 7 
~ l o - ~ a ; ~ ,  kz2.75; 3) n = 1 0 - ' a ~ ~ ,  ke1.5;  4) n=a;2; ke0.22. 

of the density was carried out for the class of functions 

where the parameter c is found from the condition (301, 
whereas the parameters a and b a r e  variational. The 
resultant dependence U(n) is shown in Fig. 2. Far low 
values of n, we have 

In the limit n40, Eq. (35) gives the ground-state ener- 
gy of an exciton which corresponds to the value w = 2.21 
in Eq. (9), i. e. ,  our selection of the test function (34) 
is highly successful. 

A calculation of the correlation energy of the system 
with a new initial state is very difficult since in this 
case there is no specific class of diagrams.'3 The total 
energy of an insulating EHL can be estimated using 
again the representation (21) and calculating the func- 
tion I(q) by interpolation between the limiting cases 
q << 1 and q >> 1. For the largest transferred momenta, 
q >> 1, the nature of the spectrum has little effect on 
the energy and the function I(q) is described by Eq. 
(22b) with the same value of the coefficient dl. In the 
opposite limiting case, the approximation for I(q) is a 
sum of the diagrams in the random phase approxima- 
tion which represents-in the present case-some 
improvement compared with the second order of per- 
turbation theory .2 If q << 1, the expansion of I(q) be- 
gins from a term which is linear in respect of g. The 
complete expression for I(q) is obtained by harmonic 
matching of two limiting cases. The correlation ener- 
gy found by integration of I(q) is added to the energy 
deduced in the Hartree-Fock approximation (~/n),,, . 
The total energy of an insulating EHL considered a s  a 
function of the carrier density is plotted in Fig. 2. It 
should be pointed out that the correlation energy of an 
insulating EHL depends, in the approximation employed, 
on the parameters of the actual material not only via the 
quantities E,, a,, and ln(4d/6'~) in a formula analogous 
to Eq. (241, but also via the modified energy of one- 

particle excitations. We calculated the correlation en- 
ergy of an insulatingoEHL using the parameters c 
= 12.35 and Q = 146 A, which represent GaAs, and se- 
lectingd=30&, cl:l, and q = 3 .  We foundthat E, 
= 39.6 meV, a, = 33 A, ln(4d/Cj2%) = 3.44, and the bind- 
ing energy of an exciton E,,=49.2 meV. The total 
energy has a minimum a t  ein =0.007g2 or  a t  r4fhi, 
=6.7. This point corresponds to w,,,,, =2.17 [see Eq. 
(24)]. Figure 3 shows the dependence of the energy of 
one-particle excitations on the momentum in an insulat- 
ing EHL (modified dispersion law) calculated for vari- 
ous values of the density. The insulating nature of the 
dispersion law justifies the name of "insulating EHL." 

A comparison of similar calculations of the EHL 
energy for germanium and silicon with the experimen- 
ta l  shows that the results obtained approximate 
well the dependence of the exact energy of the ground 
state of the investigated Coulomb system on the carr ier  
density in the range n g  2 0.1. We a r e  assuming that 
the exact dependence should have two minima sepa- 
rated by a considerable density interval, a s  indicated 
by our calculations. These minima correspond to the 
formation of an EHL with insulating o r  metallic spec- 
t ra  of one-particle excitations. The state of an insu- 
lating EHL is clearly metastable. 

I t  should be pointed out that insufficient accuracy 
of the calculations of metallic and insulating EHL's 
does not allow us to draw the final conclusions on their 
relative stability. In a l l  likelihood, more accurate 
information on the nature of the phase diagram of an 
EHL and on the metal-insulator transition can be made 
by calculating the energy gap in the spectrum of one- 
particle excitations, similar to that carried out in Ref. 
14 for a three-dimensional EHL. 

The results obtained in the present paper demon- 
strate that it should be possible to detect an EHL in a 
thin semiconductor film on a insulating substrate. The 
binding energy of this EHL is considerably greater than 
the binding energy of an EHL in a three-dimensional 
material. The upper limit on the thickness of the film 
is d- = a,, whereas the lower limit is d,,,,, = 6 ~ ~ 6 ~ .  For  
most substances the value of dm,, is less than or of the 
order of interatomic distances and is unattainable ex- 
perimentally. In the case of practically a l l  the semi- 
conductors there is a range of film thicknesses in which 
the results a r e  valid. For  most semic~nductors the 
appropriate film thickness is -10-100 A (GaAs, Ge), 
whereas for some semiconductors i t  is sufficient if the 
film thickness amounts to a few hundreds of angstroms 
(PbS, InSb). 
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The diffusion component of the thermoelectric power is investigated in the region of electron scattering by 
phonons. A value ( a l n S / a l ~ ) ~ , , ~  = - 1.5 is obtained. It is shown that this value can be attributed to 
topological singularities of the Fermi surface of tin. 

PACS numbers: 72.15.Jf, 72.10.Di, 71.25.H~ 

The  diffusion p a r t  of t h e  thermoelec t r ic  power of a In the  presen t  study w e  have attempted to resolve th i s  
meta l  is defined by the expressions1 contradiction in the  case of tin, using the  size effect 

n'kaT f o r  th i s  purpose. The  electron mean f r e e  path, which is 
a. = - g-aT, 

3ee, (1) governed by the finite dimensions of the sample,  is in- 

dlnA alnS dependent of energy, and th i s  makes  i t  possible  to  est i -  

(2) mate  t h e  contribution of both t e r m s  in the right-hand 
s i d e  of (2). 

where  o is the  conductivity of the  metal ,  A is the  elec- 
tron mean f r e e  path, and S is the  area of the  F e r m i  
sur face  (FS). We have shown in a preceding paper2 that 
in the case of electron sca t te r ing  by impuri t ies  the 
value of 5 is determined mainly by t h e  f i r s t  t e r m  of t h e  
right-hand s i d e  of (2) and depends on t h e  type of im- 
purity. For a p u r e  metal  (when electron-phonon sca t -  
tering predominates),  however, th i s  question has so 
f a r  remained unanswered. The  point i s  that the  experi- 
mental 5 f o r  a number of polyvalent meta l s  ( g a l l i ~ m , ~  
tin2) are essent ial ly  negative, and this  is difficult to  
reconcile with t h e  prevailing notions. In fact,  as shown 
by ~ l e m e n s ?  in the isotropic  case we have a lnr/a In& 
=O. The  physical reason  is that  t h e  energy relaxation 
is much f a s t e r  than the momentum relaxation. I t  can 
therefore b e  assumed that a l n ( r ) / a  lna will  b e  s m a l l  
also in a weakly anisotropic  case.  

On the o ther  hand, the  FS of tin, as well  as of most 
polyvalent metals ,  is in the  broadened-band s c h e m e  
close to a s p h e r e  of f r e e  electrons,  f o r  which a l n v ~ /  
8 In& =3/2. The  negative experimental  5 are there fore  
puzzling [5 =- (1 to  3) f o r  Sn]. 

Nielsen and ~ a ~ l o r ~  have shown recently that a l n r /  
a In& can have l a r g e  negative values on account of scat-  
ter ing p r o c e s s e s  i n  which vir tual  phonons participate. 
According to Ref. 2, however, t h e  contribution they ob- 
tained f o r  t h e  p u r e  meta l  cannot be significant a t  low 
temperatures .  

T h e  theory of the s i z e  effect f o r  e lec t r ic  conductivity 
w a s  developed by ~ i n g l e . ~  I t  i s  known that in this  theory 
a distinction is made  between two limiting cases. For 
cylindrical s a m p l e s  a t  d<< A,, where  d is the  sample  
d i a m e t e r  and A is the electron mean f r e e  path in the 
bulk sample,  

pd/p,=h,/d. (3 

Substituting p, f r o m  (3) in  (2), we  readi ly obtain 

F o r  cyl inders  with d>> A, 

F r o m  (5), (2), and (1) w e  have 

where  

a l n S  
A ,  - =- 

d l n e  d l n e  a l n e  

It  is s e e n  f r o m  the  presented relat ions that by mea- 
sur ing  p and a as functions of the sample  d iameters  we 
can de te rmine  3 l n ~ , / a  lna and 3 l n ~ / a  lns. 

EXPERIMENT 

We investigated s ingle  c rys ta l s  of ul t rapure tin with 
p,,, K/poz 6 -  lo5. The  sample  d iameter  ranged f r o m  4 to 
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