
Refs. 10 and 11, has shown that, first ,  in our range of 
angles 90-150' the Rayleigh background is almost con- 
stant, and second, its value is less than 1% of the reso- 
nant effect, in agreement with the data of Refs. 12-14. 
Therefore the usual procedure of taking the nonresonant 
background into account by using the counting rate at 
v = - introduces no noticeable correctipns in our experi- 
mental angular distributions. 
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An expression is obtained for the critical magnetic field of a cylinder and of a cylindrical cavity inside a 
superconducting matrix. Possible states of a superconducting cylinder with radius R - { (T) ,  when the number 
of vortices in it is small, are investigated. 

PACS numbers: 74.30.Ci 

1. INTRODUCTION ducting matrix. 

The interaction of vortices with the surface increases 
the critical field for nucleation1 and produces a thresh- 
old for the penetration of the vortices into the sample. 
For bulky samples, a detailed investigation of this phe- 
nomenon raises considerable difficulties because of the 
large number of degrees of freedom. It is of interest 
therefore to consider small samples, in which the num- 
ber of vortices i s  small and it i s  much simpler to ob- 
tain physical results. At the same time, bulky samples 
always contain defects whose interaction with the vor- 
tex lattice determines the dynamics of the current 
state. Therefore the investigation of various types of 
inclusions in super conducting materials is of particular 
interest. 

We investigate below the oscillatory dependence of 
the critical magnetic vortex-nucleation field for a 
cylinder and a cylindrical pore in a superconducting 
matrix, when their dimension is of the order of the 
correlation length ((T). We investigate the penetration 
of one and two vortices into a cylinder and show that a 
first-order transition between states of different type 
is realized in this case. An expression is also obtained 
for the critical field of nucleation on a defect in the 
form of a hollow small-radius sphere in a supercon- 

The process of penetration of vortices into a cylindri- 
cal sample of radius R of the order of the penetration 
depth A,  at a large value of the Ginzburg-Landau pa- 
rameter n, was considered both experimentally and 
the~retically.''~ In the case considered by us, that of 
a strong magnetic field, the surface effects a re  large 
and lead to a qualitative change of the vortex distribu- 
tion in the sample. 

2. CRITICAL FIELD OF FORMATION OF A 
SUPERCONDUCTING NUCLEUS ON A CYLINDRICAL 
CHANNEL 

The presence of a surface increases the critical field 
for the formation of the superconducting nucleus.' At 
the same time, when the radius of the pore i s  changed, 
a discrete change takes place in the type of the solu- 
tion that describes the superconducting nucleus. For 
a pore of radius on the order of t ( T )  it is therefore 
necessary to expect an oscillatory dependence of the 
critical magnetic field on the radius of the pore. We 
confine ourselves below to temperatures close to criti- 
cal: 
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If the condition ( 1 )  is satisfied, we can write for the 
order parameter A the Ginzburg-Landau equation. In 
the approximation linear in A this equation takes the 
form 

with the boundary condition 

where n is the direction of the normal to the surface, 
A is the vector potential, D= v1,,/3 is the diffusion co- 
efficient. For a superconductor with a small electron 
mean free path l,, one can use Eq. ( 2 )  with the boundary 
condition ( 3 )  if the size of the region exceeds ( D / T ) ~ ' ~ .  
At an arbitrary electron mean free path, the coefficient 
D in (2 )  must be replaced by6 

where gx) is the psi-function. 

We choose the vector potential in the form 

We direct the z axis along the magnetic field and place 
the origin on the axis of the cylindrical cavity. We 
change over to the dimensionless variables 

p= (eH)"r, p-8TrlnDeH. ( 6 )  

We seek the solution of ( 2 )  in the form 

where (p is the azimuthal angle in the ( x ,  y) plane, p is 
the distance from the cylinder axis to the observation 
point, and n is an integer. The function ~ ( p )  satisfies 
the equation 

and the boundary condition 

PX-aXJap=O at p= (eHRa)'", ( 9 )  

where R is the radius of the cylindrical pore. Equa- 
tion ( 8 )  has a solution that is regular at zero: 

The function X,  increases exponentially at large values 
of p: 

The second linearly independent solution of ( 8 )  has a 
singularity a t  zero and can be represented in the form 

where 

r ( n )  is the gamma function. At large values of the 
argument, the function x,(p) also increases exponen- 
tially: 

xt(p+m) = ' /ZX~  (PI [In 7+9(Q) -9(n+l)  1, (14) 

where lrry = C = 0.577 is  the Euler constant. 

It follows from (11) and (12)  that the solution ~ ( p )  of 
Eq. (8 ) ,  with a power-law growth as p- -, can be rep- 
resented in the form 

The eigenvalue p,  and by the same token the critical 
nucleation field, is determined from the boundary con- 
dition (9 ) .  

For a small-radius pure ( e ~ , & ~  << 1) the parameter 
Q << 1  and from (10) and (12)  we get at p<< 1  

Q ( " ) r ( n ) ,  nZO. x"' (p) - I-2Q'O-' ln p, x("' (p) = pn + - 
P" 

From ( 9 )  and (16) we obtain an expression for the criti- 
cal nucleation field: 

It follows from these formulas that at n= 0 the critical 
nucleation field is  smaller than He,. At n# 0 the critical 
field is  larger than He,. At a small pore radius the 
maximum increase of the field is  reached at n= 1. 

With increasing radius of the pore, the number n of 
the solution, at which the maximum critical field is  
reached, increases. Since the number n assumes dis- 
crete values, the critical field is  a nonmonotonic func- 
tion of the pore radius. At R- ( ( T )  the critical field a s  
a function of the radius can be obtained numerically 
from ( 9 )  and (15).  The critical nucleation field with 
number n is expressed in terms of Q'"' by the formula 

The true critical field corresponds to the number n 

TABLE I. 
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a t  which Q"' is a maximum. Table I lists the results 
of a munerical calculation of A'"' as  a function of the 
dimensionless quantity po (the value of po at which Q'") 
reaches the maximum value a re  maked in the table by 
a double asterisk): 

We find now the behavior of the function Q("'(R) at 
large values of n and R. We assume 

p=n"+t. ( 20) 

The value of interest to us is  t- 1, inasmuch a s  the 
function Q'"'(R) decreases rapidly with increasing ( t  1. 
Equation (9) at large values of n reduces, when account 
is taken of (201, to the form 

where 

It follows from (21) that as  n- the quantity Q, re- 
garded a s  a function of the dimensionless parameter, 
has a maximum. The maximum value A = Q, is reached 
at the point t = -to: 

Near this extremal point we can expand (21) in terms of 
the parameters Q - Qo and t  -to after which it reduces 
to 

From (6), (19), (30), and (24) we obtain an expression 
for Q(")(R): 

We note that the extremal point (Q,, to) is obtained from 
the condition 

At Q= Qo the quantity @(Q) vanishes: 

It follows from (25) that when the radius of the pore 
is increased the critical field increases in oscillatory 
manner and approaches the limiting value 

H,'"'=H,,I ( 1 - 2 ~ ~ )  = 1.695 H.,, (28) 

which coincides with the third critical field for a half- 

space.' The amplitude of the oscillations decreases 
like Rm2 with increasing R. 

3. CRITICAL NUCLEATION FIELD ON A HOLLOW 
SPHERE OF SMALL RADIUS (R<<[ (T) 

We choose a s  before a coordinate frame with the z 
axis along the magnetic field. For the vector potential 
defined by (5), we seek the order parameter A(Y) in the 
form 

A (r) -A (p, z )  einV. (29) 

The function ~ ( p ,  z) satisfies the equation 

where the dimensionless quantities p and p are defined 
in (6). The boundary condition (3) for the function 
~ ( p ,  z) takes the form 

where R is the radius of the sphere. 

The order parameter ~ ( p ,  z) at p> p, can be repre- 
sented in the form 

where the function ~ ( p ,  K) satisfies the equation 

Equation (33) has a solution that decreases a t  infinity, 
in the form 

A (K, p) =B ( K )  ~ ( p ,  Q )  e-P"', Q= (2-k+K3)/4, (34) 

where the function ~ ( p ,  Q) is defined by formulas (lo), 
(12), (15), and B(K) depends only K. 

At p, << 1, as  well a s  in the case of a cylindrical pore, 
the maximum of the field is reached on a nucleus with 
n= 1. The order parameter ~ ( p ,  z) can then be repre- 
sented in the form 

where the functions a, and a, are expanded in powers 
of p and z. Using the explicit form of ~ ( p ,  Q) and for- 
mula (35), we obtain for the order parameter ~ ( p ,  z) 

P'Po. 
For small values of p and z we have from (36) 

Substituting this value of A in the boundary condition 
(31), we obtain an expression for the critical field H,: 

We note that the correction to the critical field is pro- 
portional to the sixth power of the radius. This appar- 
ently explains why no shift of the critical field is ob- 
served in experiment when small cavities are  made in 
a superconducting matrix. 
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4. CY LlNDRlCAL SAMPLE IN A LONGITUDINAL 
MAGNETIC FIELD 

We obtain first the dependence of the critical mag- 
netic field on the radius of the cylinder. The super- 
conducting nucleus satisfies Eq. (8) with boundary con- 
dition (9). The difference from the case of a cylindri- 
cal pore is that the function x for a cylinder should be 
regular a t  eero. Therefore 

X'Xl* (39) 
where the function X, is  defined in (lo). The dependence 
of the critical field on the radius is  obtained from the 
boundary condition (9). We consider first a cylinder 
with a small radius R << [(T). In this case the most 
convenient is the formation of a nucleus with n= 0. 
From (10) we obtain 

Substituting this expression in the boundary condition 
(9) we obtain the critical magnetic field H,: 

Just a s  in the case of a pore, when the cylinder radius 
increases an increase takes place in the number n of 
the solution at which the maximum critical field is ob- 
tained. The expression of the critical nucleation field 
numbered n in terms of Q"' is given in (18). The re- 
sults of the numerical calculation of Q'"' a s  a function 
of the dimensionless quantity p, defined in (19) a re  
listed in Table IL 

The plot of Q") vs. R has a characteristic S shape. 
The quantity Q'") vanishes at eH, ,~ '=n  (n* 0). At this 
point, the derivative ~ Q ( ~ ) / ~ R < o  and Q'"' increases 
with decreasing radius of the cylinder to the turning 
point marked in Table I1 by a single asterisk. The 
cylinder radius at which Q'"' is a maximum is marked 
in Table I1 by two asterisks. 

TABLE 11. 

We find now the behavior of the function Q"'(R) at 
large values of n and R. We put 

where, a s  before, the significant values a r e  t" I. 
Equation (9) reduces a t  large n to 

where 

(44) 
and the integrals I and I, a r e  given by (21) and (22). 

With increasing cylinder radius, Q reaches the ex- 
tremal value Q, at t =  to, where Q, and to a re  given by 
(23). At the extremal point we have 

@, (9 . )  =o. (45) 

Since the integral I, of (22) vanishes at the extremal 
point (Q,, to), the equations for Q"' in the cases of a 
cavity and a cylinder go over into each other following 
the substitutions R - -R, nlf2 - - nLf2: 

Given the cylinder radius, the critical field is deter- 
mined by the nucleus numbered n for which Q'"' is 
maximaL With increasing cylinder radius, the critical 
field decreases in oscillatory fashion. The amplitude 
of the oscillations is proportional to R". 

We consider now the penetration of vortices in a 
cylinder. We deal with a situation when the cylinder 
can contain 0, 1, or 2 vortices. To this end we con- 
sider a cylinder with radius R such that 

where R, is the solution of the equation 

Qcnl (R.)  =Qin+" ( R o ) ,  n=O. 1. 

At n= 0 we have 

eH,,R,'=0.8886, QiO' (R.) =0.269. 

At n = l  we have 

eH,,R,2=1.665; Q'I1(Ro) =0.2545. (50) 

We consider now magnetic fields close to the critical 
one determined by the quantity Q"'(R,). We express 
the free energy in the form 

where H, is the external magnetic field, v =  mp/2n2 is 
the state density on the Fermi surface, and a _ =  8/ar 
- Y e A .  In the vicinity of the critical point (48) the or-  
der parameter A can be represented in the form 

Substituting (52) in (511, we obtain the free energy per 
unit cylinder length: 
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1 I"&(: - ~ H ~ ) I A . I '  + I T ( - -  1-2Q("+" - Hc2 "' ) [ d r ( * - e ~ r )  IA,,+('). 
r 

(53) 
At n =  0 we obtain from (53) 

where 

In (55)' x2  i s  the Ginzburg-Landau parameter: 

xa=635 (3)/2n'e'p2vJzt.'q2. 

The coefficients C ,  and C,  a r e  obtained from the condi- 
tion that the function 3 be a minimum. The extremum 
condition a r e  satisfied by three solutions: 

A solution of type a) exists in the region x Z >  0.529: 

~ 4 3 . 4 5 6  at W>O; ~ 1 0 . 4 5 6  at W<O. (57) 

At x2 < 0.529, a first-order transition takes place. 

A solution of type b) exists in the region x2>0.031: 

z>-0.1 at W>O, z<-0.1 at W ~ O ;  (59) 
C) ICo12=d-LW49.61 (1-0.0707/2) (z-zo) , 

IC,1'=-d-'W89.48(1-0,226/x2) ( z - z l ) ,  
(60) 

ICl14-3.41 (1 - y) lCol' 

where 

A solution of type c) exists only a t  W> 0 in the field re- 
gion defined by the condition 

zo<z<z,. (62) 

In the state of type c), the f ree  energy has a maxi- 
mum. The difference between the free energies, Tc 
-Fa o r  fc - rb is  the height of the energy barrier for  

the transition from a metastable state ( a e b )  into anoth- 
e r  energywise more favored state. If z lies outside the 
region (62), then the metastable state is absolutely un- 
stable and a barrierless transition takes place. At W 
> 0 a solution of type a) gives an absolute minimum of 
the f ree  energy in the region 

A solution corresponding to a conditional extremum 
a t  a given position of the vortex relative to the cylinder 
axis has a f ree  energy 

(64) 
where t = I c,/c, 1 '. This f ree  energy has an extremum 
with respect to t a t  

1-0.226/x2 z-z, 
t=-1.8 

1-0.0707/xa 3-z, ' 

The value of the free energy (64) a t  this point coincides 
with the f ree  energy in the state c) and determines the 
value of the barrier in the transition (a*b). The region 
of the values of z a t  which 0 < t < 00 is  the region (62) of 
the existence of metastable states. 

We can treat similarly the case n = 1, when states 
with one o r  two vortices in the cylinder a re  possible. 
The free energy per unit length of the cylinder is in 
this case 

where 

The quantity R, was defined by us  earlier [formula 
(5011. 

The extremum conditions a re  satisfied by three solu- 
tions: 

a solution of type a) exists in the region n2>0.433: 

This solution exists in the region n2> 0.05: 
z>-0.181 at W>O, zc-0.181 at W c O .  (72) 

The solution of type a) i s  energywise more favored than 
the solution b) in the region 
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z<0.716[ (1-0.433/xz)-"-0,185(1-0.05Ix1)-"'1 

X [ (1-0.433/x')-"+O.736(1-0.O5/x')-"']-'; 

C )  I C, I '=d-'W159.24 (1-0,089/x2) (z-zr) , 

I Cz I"-d-'W119.1 (1-O.205/xz) (z-z,), 

Fc=-2.49(C, 1 '(1-0.433/xa) -5.385ICzI '(1-0.O5/x2) 
(73) 

-14.04(1-0.117/x2) )CICr lz, 
where 

Just as before, a solution of type c) gives the maximum of 
the free energy and the differencep -.?P o r 9  -.P deter- 
mines thevalue of the barrier on goingfrom the metastable 
to  the ground state. A solution of type c) exists only at 
W> 0 in the region of fields defined by the inequality 

za<z<z,. (75) 

The free energy corresponding to the conditional ex- 
tremum at a given vortex position i s  

(7 6) 
where t= )C,/C, 1'. It has an extremum with respect to 
t a t  

1-0.205/x2 z-z, 
t--0.748 

1-0.089/xz z-z, ' 

which forms a solution of type c). 

When z varies in the interval (75), the parameter t 
ranges from infinity to zero. In the region W>O one of 
the states of type a)  with one vortex or  of type b) with 
two vortices i s  metastable. 

We note that a state of type b) corresponds to two 
congruent vortices. In the investigated region, the 
spatial separation of the vortices is energywise un- 
favored. 

CONCLUSION 

The critical magnetic field of a cylinder or  of a 
cylindrical cavity has a nonmonotonic dependence 

on the radius. This nonmonotonicity i s  due to 
the phase quantization that leads to a discrete set of 
possible types of superconducting nuclei. The oscilla- 
tions of the critical magnetic field decrease rather 
weakly with increasing radius (in proportion to R"). 
Since the critical magnetic field is a function of the 
dimensionless parameter ( e ~ , ,  R')"~, and the critical 
field H,, itself i s  proportional to 1 - T/T,, a nonmono- 
tonic temperature dependence of the critical magnetic 
field of the cylinder should be observed. The corre- 
sponding dependence can be easily determined on the 
basis of Tables I and IL 

With increasing cylinder radius, the number n that 
sets the increment of the phase of the order parameter 
after one closed circuit around the origin increases. 
This number can be regarded a s  the number of vortices 
inside the cylinder. At the critical point itself, all n 
vortices a r e  congruent and can be regarded a s  one vor- 
tex with a large phase increment. Away from the tran- 
sition point, one or  more vortices can split off and be- 
come spatially separated. In the case considered, when 
only states with 0, 1, or  2 vortices could be realized, 
no such separation took place. We note that on going 
from one type of solution to another when, say, the 
magnetic field i s  changed, metastable states can be 
produced. With further change of field the threshold 
is lowered and the metastable state becomes absolutely 
unstable with respect to the entry or  emergence of vor- 
tices. 

In conclusion, the author thanks A. I. Larkin for val- 
uable remarks and for a discussion of the results. 
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