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Self-limiting of a wave field following supersonic dispersal 
of a plasma 
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It is shown that in a collisionless dispersing plasma moving at supersonic speed, striction monlinearity 
imposes an upper limit on the field intensity of the electromagnetic wave propagating in the plasma. This limit 
is due to the fact that in the supersonic stream the plasma is swept into the region of the strong electric field, 
and this decreases the refractive index and hinders the wave propagation. The field of s -  and p-polarized 
radiation in a plasma with cubic nonlinearity is considered, where the plasma inhomogeneity is determined 
entirely by the influence of the ponderomotive forces. Self-confinement of the field is demonstrated in the case 
of s-polarization also for a plane-inhomogeneous linear plasma layer. 

PACS numbers: 52.35.Hr, 52.3S.M~. 52.40.Db 

One of the  pressing problems of nonlinear theory of 
plasma is that  of the  behavior of a s t rong  electromag- 
netic field in  a moving dispersing plasma. A cer ta in  
group of questions r a i s e d  i n  th i s  problem can be  ex- 
plained by numerically solving the  equations of non- 
linear electrodynamic and hydrodynamics (see,  e.g., 
Ref. 1). At the s a m e  t i m e ,  the numerous res t r i c t ions  
on the use  of numerical  methods leave many aspec t s  
of this  problem uninvestigated. T h e  presen t  communi- 
cation r e p o r t s  a n  at tempt t o  investigate t h e  electro-  
magnetic field in  a s tat ionary inhomogeneous p lasma 
s t ream.  Recognizing tha t  the  case of subsonic flow 
is s i m i l a r  in  many r e s p e c t s  to t h e  situation considered 
in a paper by one of us,' and s tr iving t o  obtain qualita- 
t ive resu l t s  of in te res t  f o r  modern  experiments ,  we 
focus our attention i n  th i s  article on the case of super -  
sonic  plasma flow. With a n  aim also t o  make t h e  
resu l t s  as conclusive as possible, we consider  in  de- 
ta i l  the picture corresponding to a maximum deviation 
of the plasma density f r o m  the  c r i t i ca l  value, when 
the "striction" increment  to the dielectr ic  constant of 

t h e  plasma can  b e  accounted f o r  by a cubic nonlinearity 
only. 

Both a qualitative investigation of the  equations of 
the  nonlinear electrodynamics,  and the  analytic solu- 
t ions obtained b y  us  fo r  the field, show that  the super -  
son ic  flow i n  a classical ly  t ransparen t  (in accord  with 
the  l inear  theory)  p lasma the  s t r i c t ion  nonlinearity im- 
poses a n  upper l imi t  on the electric field intensity. 
T h e  reason  is that in  supersonic flow, in  contrast  to 
subsonic flow, the p lasma is not expelled f rom the 
strong-field region but, on the con t ra ry ,  becomes 
denser  there.  I n  the  relatively weak field region the 
p lasma becomes m o r e  tenuous. The increased density 
of the  plasma i n  the  strong-field region hinders  the wave 
propagation. This  effect t akes  place f o r  both standing 
and for  t ravel ing waves, and f o r  both s- and p-polar- 
ized radiation. What changes qualitatively i n  the  super -  
sonic  flow is t h e  s t r u c t u r e  of the electromagnetic sol i -  
ton, in  which t h e  d e c r e a s e  of the p lasma density is 
accompanied by  a weakening of the electric field. 
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1. The stationary one-dimensional flow of a non- 
isothermal plasma acted on by a ponderomotive force 
due to a high frequency field is described by the hydro- 
dynamic equations (cf. Ref. 1) 

a (nu) av v 2  an Zel a l ~ , I ~  -- 0, v - - - l - - - -  az a2 n  a2 4Mim,02 az ' (1.1) 

Here n is the density of the number of ions, v is their 
hydrodynamic velocity, v, is the speed of sound, ~ ( e  1 
and M, a r e  the charge and mass of the ion, e and me a r e  
the charge and mass of the electrons, wo is the fre- 
quency, and E,(x) is the coordinate-dependent electric- 
field intensity 

E (2 ,  z, t )  - ~ e { E , ( z )  exp[  -ioot+iz ( o h )  sin 811, (1.2) 

where 0 is the incidence angle. In (1.1) we assume the 
temperature, and hence the speed of sound, to be inde- 
pendent of the coordinates, a s  is  approximately the 
case in experiment. 

Equations (1.1) have the obvious integrals 

n ( z ) v ( z )  =NV=const, 
(1.3) 

' / : va ( z )  +v.' In n (z )  +[Z$ I Eo(z )  1 '/4M,m.oo2] ='l2P+v.' In N-const. 

Eliminating v(x), we can write down the following equa- 
tion that connects n(x) with the electric field intensity: 

When the hydrodynamic equations (1.1) a re  valid, the 
electroneutrality condition holds, meaning that the 
characteristic distance over which the field changes is  
large compared with the Debye radius. Under these 
conditions we can use the following expression for the 
high-frequency dielectric constant: 

where n, =m,wi/4ne2~ is the critical density of the 
ions. In our analysis we disregard small dissipative 
effects, al l  the more since the general scheme for 
taking these processes into account in nonlinear elec- 
trodynamics was developed earlier  by one of us.' 

Equations (1.4) and (1.5) constitute the material equa- 
tions of the nonlinear electrodynamics of a stationary 
plasma stream. The qualitative deviation from the 
nonlinear electrodynamics of supersonic flow can be 
seen from the following relation that follows from 
(1.11): 

We see therefore that whereas in subsonic flow the 
maximum of IE01' corresponds to a minimum of the 
density, in supersonic plasma flow this corresponds to 
maximum density. In other words, in the subsonic 
flow the strong field expels the plasma and by the same 
token decreases the nonlinear reaction of the plasma 
on the field, thus precluding limitations on the field 
strength in a tenuous plasma. On the contrary, in a 
supersonic flow the pondermotive force sweeps the 
plasma into the region of the strong field, thus increas- 
ing the nonlinear reaction of the plasma on the electro- 
magnetic field. Inasmuch a s  in a dense plasma the 
electromagnetic field is subject to  the skin effect, it 
should be clear that an upper bound on the electromag- 

netic field intensity should exist in supersonic flow. 

We note that nonlinear electrodynamics of a dispers- 
ing plasma deals only with a unique regime in which 
the stream velocity oscillates in space between the 
sonic and supersonic values.' In this regime, the 
plasma converged on the critical-density region at 
supersonic velocity. In our analysis that follows we 
shall deal with supersonic flow in the vicinity of the 
critical density and with a relatively weak electromag- 
netic field, when the regime dealt with in Ref. 3 is not 
realized. 

In the case of interest to us, that of fields whose 
pressure is low compared with the thermal pressure,  
it is possible to demonstrate distinctly the concrete 
peculiarity of the nonlinear electrodynamic properties 
of a supersonic plasma stream. We can assume in 
this case 

n ( z )  =N+dn(z) ,  v ( z )  -V+dv ( z )  (1.7) 

and regard bn and 8v a s  small  compared with N and V 
respectively. We then have from (1.3) and (1.4) 

Equations (1.5) and (1.8) allow us to write down the 
following material equation 

which we shall use below to investigate the behavior of 
the magnetic field in a dispersing plasma. Bearing in 
mind a discussion of the consequences of (1.6), we 
restrict  ourselves to the region of classical (linear) 
transparency of the plasma, when N sn,. 

2. We consider f i rs t the  case of s-polarization, when 
Eo is oriented along the y axis. Assuming 

Eo, ( z )  = i E ( z )  exp[-icp(z) 1, 
we can write expression (1.2) in the form 

Accordingly, the material equation (1 .lo) takes on the 
form 

where 

Formula (2.1) makes it possible, in analogy with the 
procedure in Ref. 2, to write down the following two 
integrals of the field equations : 

The left-hand side of (2.5) can be regarded a s  the sum 
of the effective kinetic, centrifugal, and potential ener- 
gies, and the corresponding problem of finding the 
intensity of the electric field becomes analogous to the 
problem of particle motion in a central field. Figure 1 
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shows the dependence of the sum of the centrifugal and 
potential energy at &,> sin2@. It is seen from this figure 
that finite motion in this effective potential field is 
possible at certain values of 8,. The electric field 
intensity has then an upper bound. In the particular 
case when there is no energy flux (standing wave), and 
M, =0, the maximum field value 

occurs a t  

In accordance with Fig. 1, a t  M,=O we have from (2.5) 
(cf. Ref. 2) 

E ( x )  =Ev (e.-sinZ 9-61) 

We note that when (2.8) is satisfied the oscillatory de- 
pendence (2.9) turns into 

E (z )  =Ev (e,-sin' 0 )  " th (k ,z) ,  

This solution corresponds to 

e=eo- (eo-sin2 0 )  thZ(kmx), 

Sn-n,(e,-sin2 0 )  t h y k , z ) ,  

The foregoing formulas allow us to call the solution 
(2.11) a supersonic soliton. In contrast to  the caviton,' 
in which the density well is filled with an intense high- 
frequency electric field, in our case of (2.11) the 
bottom of the density well corresponds to a zero elec- 
tric-field intensity. On the contrary, for the magnetic 
field we have 

B.(z, z, t )  =-sin 8Ev ( z ,  z, t )  , 

In particular, a t  0 =0  the magnetic field inside the super- 
sonic soliton is a maximum and decreases with increas- 
ing distance from the density well. We must point out 
in this connection the possibility of propagation in the 
plasma of peculiar magnetoacoustic nonlinear waves 
constituting traveling density wells filled with high- 

FIG. 1. 

frequency magnetic field, similar in some respect to 
electroacoustic nonlinear waves.4 

At $ larger than in (2.8) o r  less  than zero,  there 
a r e  no oscillating solutions, i.e., there a re  no solutions 
corresponding to a wave dependence of the field. It can 
therefore be stated that in a dispersing plasma the 
electric field intensity of s-polarized standing waves is 
bounded by the condition 

It follows from this, in particular, that the maximum 
possible field amplitude decreases both when V ap- 
proaches the speed of sound and when N approaches the 
value n, cosaO. 

We note that for a traveling wave, when Ms#O, the 
maximum electric field intensity turns out to be less 
than given by formula (2.13) and decreases somewhat 
with increasing energy flux density in the traveling 
wave. When the energy flux density reaches a value 
close to that determined by the right-hand side of (2.13), 
wave propagation becomes impossible. This can be 
directly seen from the following solution obtained for 
Eq. (2.5) at M,#O (cf. Ref. 2): 

where E3, Q EE =Pm,,<E2, a r e  the three real  roots of the 
equation 

We note that at E, = E ,  formula (2.14) describes a 
nonlinear plane wave with constant E(x). A solution 
in the form of a plane wave E(x) =Em,, exists also a t  
E, = E, =Em,,, when formula (2.14) describes a soliton 

that goes over a s  Ms- 0 (El- 0) into the soliton (2.11). 

According to (2.15), propagation of the traveling 
waves becomes impossible at 

At the corresponding maximum value of the energy 
flux density, the maximum electric field intensity is 
given by 

To conclude this section, we emphasize that the 
analytic formulas obtained in this section for the field 
a r e  valid under conditions of weak nonlinearity, which 
call for smallness of co - sin20. 

3. We proceed now to consider p-polarized radiation. 
Bearing in mind the application of the results to a plas- 
ma with infrequent collisions and with a density higher 
than critical in the interior of the plasma, we confine 
ourselves here to the case of standing waves. The 
principles of nonlinear electrodynamics of p-polarized 
waves a r e  treated in a paper by Eleonskii and one of 
us.5 Assuming in accordance with that reference E,x 
= E,(x) and E,, = iE,(x), we have 
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E.(x, z ,  t )  =Es(z)eos[oot-i(oo/r)sin 01, 

E, (x ,  z,  t )  =E. ( x )  sin [mot-z ( o o / c )  sin 01. 

Equation (1.10) then takes the form 

The system of field equations reduces to  

-E,"+E,'(oo/c)sin O=odeE,/c2, 

-sin OE.'+E.(oo/c) sin1 O=ooeEJc, 

(&Ex) '=E,e ( o o l c )  sin 0.  

The last of these three equations is the consequence of 
the first  two. I t  will be useful, however, for the analy- 
sis that follows. In accordance with Ref. 5, we have 
from the field equations (3.3) 

With the aid of (3.4) and the first-order equations of 
the system (3.3) we can both investigate the solutions 
qualitztively and solve the field equations. To make the 
exposition more compact, we introduce the notation 

sin 0 2caZP 00 
E- - ,  a Z = l - -  5=z - ( eo )  ". 

(en) ' c 

Then, changing to the dimensionless variables 

we write down, in accord with (3.3) and (3.4), the 
following system of equations : 

Equations (3.7) and (3.8) enable us to express h2 in terms 
of gZ: 

h 2 = f , ( d )  = (2gl-ez)-' (-2g'+2d-el-gzEz 
*E[4g'Ea-ePz(2g'-E2) 1'"). (3.10) 

Next, with the aid of this formula and (3.7) we ulti- 
mately find 

Formula (3.11) determines the dependence of E,(x) on 
the coordinates, and in accord with formula (3.10) also 
the dependence of E,(x). In the particular case $ = 0 
we have 
E.(z) =Ev ( e , )  'v, cos (xooc-I sin 0 ) .  E.  ( s )  =Ev (8 , )  " sin (soot-' sin 0 ) .  

(3.12) 
The solution (3.12) corresponds, according to (3.2), to 
a zero nonlinear dielectric constant. This means that 
in this state the plasma density has become equal to 
critical. The peculiarity of the solution (3.12) can be 
understood by recalling the singular behavior of the 
solutions of linear electrodynamics near & =O. It is im- 
portant that the limiting state (3.12) is realized at a 
finite electric field intensity, when 

Just as in the case of (2.12), the left-hand side decreases 
here when V approaches the speed of sound, and also 
when N approaches the critical density. It should be 

noted that the solution (3.12) can take place both in the 
classical region of the linear transparency, when 
N<n, cos26, and in the region of linear opacity 
n ,cos28<~<n, .  

The general discussion of the question of the maximum 
field of a p-polarized wave in a plasma with a dielectric 
constant (3.2) is best carried out on the basis of equa- 
tions (3.7), (3.8), and (3.9). We note first  that accord- 
ing to (3.8) the extremum of the field E, can be realized 
a t  points of two types. At the extremal points 5, of the 
first  type E, vanishes: 

g(bt)=O, h z ( t , ) = l f  181. (3.14) 

At the extremal points of the second type we have 

gz(6t )+hz(6t )  -4-E' (3.15) 

and 

The largest extremal point, corresponding to is 
given by Eq. (3.14) with the plus sign. This point 
corresponds to the minimum value of h2 on the segment 
(+m, 1 + ( g I), which does not correspond to spatially 
oscillating solutions. The remaining two possible ex- 
tremal points, a s  seen from (3.14) and (3.15), a r e  
such that in them 

g Z ( t t ) + h 2 ( ~ , ) < l .  (3.17) 

This means that the intensity of the electric field a t  
these points cannot exceed the value determined by 
(3.13). 

We note next that from the fact that the left-hand 
side of (3.15) is positive it follows that the extremal 
points of the second type a r e  possible only under condi- 
tions corresponding to the classical region of linear 
transparency t2 < 1 o r ,  equivalently, N <n, cos2B. In 
addition, it follows from (3.16) that the following in- 
equalities should hold: 

1>1- ( ~ - e ~ ) ~ > a ~ > ~ ' .  (3.18) 

Therefore we have according to (3.16) and (3.18) 

h2(5 , )  ( 1 - z l ,  g1(5*)  <'/rE-z(l-E'). (3.19) 

We see  thus that the z component of the electric field 
intensity cannot exceed the value determined by (3.13). 
We note that the smaller extremal point (3.14) can be 
realized, just a s  that of the points of the second type, 
only under the condition g 2 <  1. The largest of al l  
possible values of the field h, corresponding to solu- 
tions that oscillate in space, will take place a t  EP = 0, 
when h2(c,) = 1, i.e., in the case of the solution (3.12). 

We turn  now to a discussion of the limitation im- 
posed on the longitudinal field E,. At the extremal 
points 5, corresponding to  this field, when gl(g,) =0 ,  
we have in accordance with (3.9) 

-2g(5r)h(5r)hf(5r) 'Eh(S1) 11-P(C.1)-h2(tr) I.  (3.20) 

If we assume that h(g,)+O, it can be easily verified 
that a simultaneous solution of Eqs. (3.8) and (3.20) 
leads only to values g2(5,)< 1. I t  remains therefore 
to  consider h(5,) =O. It follows then from (3.7) and 
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(3.8) that 

In order for the right-hand side of this equation to be 
nonnegative, it is necessary to  satisfy the inequality 

g'(6i)G1/3{1+[1+3(1-1') ]'")GI. (3.22) 

Account was taken here of the fact that 0 G tY2 c 1. It 
follows from (3.22) that the intensity of the longitudinal 
field is also limited to the value (3.13), which is 
realized only a t  tY2 = 0. 

Thus, when @-polarized radiation interacts with a 
supersonic plasma s t ream,  both electric-field com- 
ponents a r e  bounded, and the maximum possible field 
values of both components decrease when the unper- 
turbed density approaches the critical value [see (3.13)]. 

4. The foregoing analysis allows us to state that when 
radiation propagates in a supersonic stream of a non- 
uniform plasma, the amplitude of the possible station- 
ary solutions is also limited, a t  least in the case of 
sufficiently gently sloping profiles of the unperturbed 
density. To make this conclusion even more obvious, 
we present here results pertaining to  the case of a 
linear layer, when c, =sin20 - X / L ,  and neglect the 
dependence of E, on the coordinate. This is permis- 
sible near the critical density (reflection points), when 
the parameter (~o , /c ) - ' I '  is  small  compared with 
unity. For the case of s-polarization [see (2.111, the 
field equation takes the Painleve form6: 

We have used here the following dimensionless vari- 
ables 

We consider for this equation solutions that decrease 
a s  z -  +a, corresponding to the same asymptotic form 
of the solutions -of the two possible values of 
sign(v2 - u:) :  

For small values of the amplitude A<< 1, Eq. (4.1) cor- , 

responds to the linear Airy equation and i ts  solutions 
using the asymptotic form (4.3) go over into the Airy 
function regardless of the sign of 1/2 - 4 ,  a s  seen from 
Fig. 2a, which shows the solution of Eq. (4.1) for A=0.1 
with the asymptotic form (4.3). 

In the case of subsonic flow V 2 <  4, the solution of 
Eq. (4.1) retains the essential properties of the Airy 
function with increasing amplitude A, although the de- 
formation of the density profile does cause an obvious 
shift of the reflection point and a shift of the maximum 
of the field towards the denser layers of the plasma. 
This is clearly demonstrated by comparison of Figs. 2a 
and 2b, the latter showing the solution of Eq. (4.1) for 
A = 10 and sign(V - 4 ) .  In this case, naturally, there 
is no restriction on the amplitude of the field. 

The situation is qualitatively different in the case 
of supersonic plasma flow, when 1/2 > 4. Above all, in 
this case the deformation Of the density profile causes 
the maximum of the field to shift towards the more tenu- 

FIG. 2. 

ous plasma layers,  a s  seen from Fig. 2c, which shows 
the solution of Eq. (4.1) for (V2 - u:) = + 1 andA 
=1.4169 using the asymptotic form (4.3). The most 
important property of the supersonic plasma flow in our 
analysis, however, is the absence of solutions of the 
Painleve equation (4.1) for a field with decreasing 
asymptotic form (4.3) a t  an amplitude A> 1.417; this 
obviously means a limitation on the possible value of 
the electric field intensity of the electromagnetic 
wave propagating in an inhomogeneous supersonic 
plasma stream. We emphasize that according to (4.2) 
the maximum possible electric field intensity de- 
creases like ( ~ w , / c ) - " ~  with increasing characteristic 
dimension of the plasma inhomogeneity. 

Summarizing all  the foregoing, we can draw the 
following conclusion. In a supersonic plasma stream, 
the plasma striction nonlinearity that leads to  an 
increase of the particle density in the region with 
stronger fields, a limitation is imposed on the possible 
field intensity, inasmuch a s  the plasma transparency 
decreases with increasing field. This conclusion allows 
us to state that when radiation propagates in an inhomo- 
geneous supersonic stream under condition when the 
plasma is subject to cubic nonlinearity (i.e., when the 
pressure of the field is insufficient to  slow down the 
supersonic flow), the stationary value of the electric 
field in the vicinity of the reflection point turns out to 
be limited and decreases with increasing characteris- 
t ic dimension of the inhomogeneity, in contrast to the 
situation in linear electrodynamics. This conclusion 
distinguishes qualitatively the foregoing results from 
those obtained earl ier  in the theory of a quiescent 
plasma2 and in the theory devoted to the case of sub- 
sonic influx of plasma into the critical-density region.' 
At the same time, our analysis i s  in qualitative agree- 
ment with an experiment7 that shows the field in the 
plasma to decrease on going from subsonic to super- 
sonic flow. 
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in the same approximation the following equation APPENDIX I 

We consider here the non-wave solution of Eq. (2.5), 
corresponding to M, = $, =O. We then have from (2.5) 

E (z) =Ev[2(sin2 0-8,) l'"lsh[z(oolc) (sin"-e~)"]. ' (A.1) 

This solution is possible only in the opacity region, 
when sin2@> G. For a plasma with an abrupt boundary, 
Eq. (A.l) can describe the nonlinear screening of a 
high-frequency electromagnetic field. The field that de- 
creases monotonically inside the plasma can in this 
case exceed the value (2.7), inasmuch a s  a t  
x(wo/c)(sin2% - c0)lt2<< 1 formula (A. 1) yields 

Accordingly, the maximum field can be exceeded only 
in the very unusual penetration region, when the inten- 
sity of the electric field turns out to be inversely pro- 
portional to the coordinate. In this region we have for 
the dielectric constant 

e- ( - ~ c ~ I o ~ ~ z ~ )  +l/,eo+'/r sin2 0. 64.3) 

This expression, while not containing E,, corresponds 
to an essentially nonlinear region. In our approxima- 
tion (1.8) we must assume &?c/(o,x)<< 1, for which pur- 
pose sin2% - co must be small. 

APPENDIX II 

The .naterial equation (1.10) corresponds to a station- 
ary picture of the field. On the other hand, if we a r e  
interested in the nonstationary problem, we can write 

i as 
IEo(z,t)I' 

at' 

It is easily seen that the intensity of the nonstationary 
field need not necessarily become self-limited. This 
can be easily verified using a s  the example the func- 
tions h ( x  - vt), E,(x - vt), for which 

I t  is clear therefore that in such a case of a nonsta- 
tionary dependence of the field on the time and on the 
coordinate the self-limitation effect will take place 
under the condition (V - v)' > <. 
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