
A feature of the modulation of the space-energy dis- 
tribution of the particles in this case is that despite the 
preserved form of the energy spectrum, continuous en- 
ergy transfer takes place from the moving inhomogen- 
eities to the charged particles. The similarity, char- 
acteristic of this case (vau= O), of the form of the en- 
ergy spectrum of the particles in space i s  the conse- 
quence of the balance of the particle flux J in the space 
and the "transfer" of the particles over the J, system. 

6. CONCLUSION 

Our analysis shows that the energy exchange between 
charged particles and moving magnetic-field inhomo- 
geneities, at  a given law of variation of the velocity of 
the medium in space, is determined by the concrete 
form of the particle distribution function. The consid- 
ered illustrative typical boundary-value problems show 
that the character of the change of the charged-parti- 
cle energy spectrum is not a criterion that determines 
the change of the charged-particle energy in multiple 
scattering by moving magnetic-field inhomogeneities. 
In the general case, only an analysis of the system of 
the moment equations can lead to definite conclusions 
concerning the energy dissipation in a system consist- 
ing of charged particles and magnetic inhomogeneities. 
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The equilibrium configurations and low-frequency radial oscillations (ion sound) of intense charged-particle 
beams are considered in the approximation of the hydrodynamics of perfect electron and ion liquids 
interacting with each other via the electromagnetic field produced by the charges. The employed macroscopic 
approach is valid without any assumptions concerning the equations of state. The oscillation singularities due 
to the specifics of the equation of state of the medium are expressed in terms one macroscopic parameter, the 
speed of sound. In the intermediate low-current region, the ion-sound oscillations with wavelength exceeding 
a certain critical value increase exponentially. This instability is due to the tendency of the beam to split up 
into individual jets if the magnetic field of the current flowing through an individual channel is capable of 
preventing the charges from spreading radially. In a high-current beam, the instability of buildup of radial 
ion-sound oscillations is suppressed by the magnetic field of the current. 

PACS numbers: 52.30. + r, 41.80.Gg, 52.35.Dm 

1. INTRODUCTION this trend on the development of modern physics. 

Research into self-compressing streams of charged 
particles, initiated by Bennetl and revived by ~udker ;  
has become recently a separate branch of the physics 
of non-neutral plasmaS and of strong electron-ion 
beams.4 A f a r  from complete list of the projects in 
which high-current devices are used-from suggestions 
aimed at solving the problem of controlled thermonu- 
clear fusion5 to the development of x-ray and gamma- 
ray lasers6 and of collective accelerators for charged 
particles7-gives an idea of the degree of influence of 

The study of pinch systems (see, e.g ., Refs. 8- 19) 
has shown that the most interesting experimental phe- 
nomena occur during the strong compression stage 
(x-ray flash, high temperature, density and multiplicity 
of atom ionization, acceleration of electrons and ions, 
the appearance of neutrons, the explosive character of 
the electron emission). A non-traditional approach to 
the pinching phen~menon,'~ based on an analysis of the 
equilibrium21a4 and r a d i a t i ~ n ~ ~ * ~ ~  of a plasma in the 
magnetic field of the current itself, makes it possible 
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to describe from a unified point of view the phenomena 
that accompany the pinch effect, and fill to some degree 
the gaps that appear when attempts are made to explain 
separately individual properties of the pinch. 

The analysis of the electromagnetic field produced by 
the charges''*4 has shown that in addition to the well 
known equilibrium configuration of a plasma regarded 
a s  a classical ideal gas,1*27'30 a much larger class i s  
made up of structures that a re  compressed by collec- 
tive-interaction forces to a degree that causes electron 
degeneracy. 21*a2~24*2s The actual realization of any par - 
ticular equilibrium state depends to a considerable 
degree on the stability of the state. Thus, once the 
possible equilibrium structures of the beams are an- 
alyzed, the problem of their stability comes to the 
forefront. 

A kinetic approach to the problem of stability of pinch 
systems i s  indicated by ~uneman . ' ~  In general form, 
however, this approach is not realizable in principle, 
both because of mathematical difficulties and because 
i t  i s  impossible to take into account simultaneously the 
entire aggregate of the phenomena that occur in the 
plasma in a strong-current channel. 

Usually the oscillations and the stability of the beams 
are  investigated in the collisionless-plasma l i ~ n i t . ~ * ~ ' * ~ ~  
The plasma of a maximally compressed pinch, however, 
cannot be regarded a s  collisonless. On the contrary, 
according to the experimental datas*g*'3*s3'35 the time 
between the collisions of the charges during the strong- 
compression stage i s  much shorter than the character- 
istic lifetime of the densest possible state of the plas- 
ma, as determined from the duration of the x-ray 
flash. This means that with increasing compression of 
the current channel the plasma can rapidly reach equi- 
librium, and its further evolution i s  connected with the 
slow change of the equilibrium state. This makes it 
possible to change over to the macroscopic equations 
of motion in the description of slow processes in the 
strongly compressed beam-channel plasma. The ther- 
modynamics approximation was in fact used in the an- 
alysis of equilibrium structures. 2''24 

The macroscopic-hydrodynamics equations applicable 
to the description of slow motions of charged ideal elec- 
tron and ion liquids are given in the next section. The 
stationary solutions of these equations yield hydrosta- 
tic-equilibrium configurations whose properties were 
explained in Refs. 21-24 on the basis of a kinetic ap- 
proach. In Sec. 3, the macroscopic hydrodynamics 
equations of ideal charged liquids are used to analyze 
the radial short-wave oscillations of a plasma at equi- 
librium in a field of collective-interaction forces. 
These oscillations are ion-sound waves. It i s  shown in 
Sec. 4 that there exists an intermediate region of beam- 
current values in which the plasma becomes unstable to 
radial oscillations. This is due to the possibility of 
breakup of the current channel into individual jets in 
such a way that the energy of the magnetic field of the 
current flowing through an individual channel i s  suf- 
ficient to keep the charges from spreading radially. In 
the high-current region, when the Larmor radius of 
the electrons in the magnetic field of the current be- 

comes less than the radius of an individual channel, 
the instability of the radial oscillations is suppressed 
by the growth of the magnetization of the electrons. 

2. EQUATIONS OF MACROSCOPIC 
HYDROELECTRODYNAMICS 

We assume that the drift velocity v, of the electrons 
relative to the ions i s  large compared with the veloci- 
ties v,, of the thermal spread of the charges (of spe- 
cies a) but i s  small compared with the speed of light c: 

(the index o! = i , e labels throughout the species of the 
particle). 

Owing to the rapid decrease of the Coulomb cross 
sections with increasing relative velocity of the collid- 
ing particles, the condition (2.1) ensures faster sepa- 
rate relaxations of the electron and ion subsystems than 
the relaxation of the plasma a s  a whole. Of real in- 
terest are  the electron-ion beams after times that a r e  
long compared with the relaxation times l/v, of the in- 
dividual subsystems, but short compared with the time 
l/v,, of the relaxation of the electrons with the ions. 
We consider beams whose length L satisfies the condi- 
tions 

at frequencies w such that 

The conditions (2.4) mean that within the short times 
l/v, <c L/w0 equilibrium is established in the electron 
and ion subsystems. The state of the subsystems then 
varies slowly (with frequency w )  and i s  locally in equi- 
librium at each point of space at any instant of time. If 
the characteristic radius a of the plasma i s  large com- 
pared with the mean free path 1, of the charges 

then the hydrodynamics equations are applicable in the 
wavelength range X >> 1, (the relation between a and X 
can be arbitrary). The collective-interaction electro- 
magnetic field produced by the charges enters in the 
equations of motion as the external field. 

Neglect, by virtue of conditions (2.3) and (2.4), of 
the collisions of the electrons with the ions excludes 
from consideration the electric conductivity a s  a source 
of dissipation. Disregarding viscosity and thermal 
conductivity, a s  phenomena that arise in a higher-order 
approximation with respect to the small parameter l/a 
<c 1 (2.5), we arrive at the macroscopic equations of 
the hydrodynamics of ideal liquids of electrons and ions. 
The electromagnetic field of the collective interaction 
of the charges, expressed in terms of the potentials cp 
and A, satisfies the wave equations. 

For the considered nonrelativistic motions (2.2) we 
can neglect the retardation in the field equations and 
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assume that the field follows instantaneously to the slow 
variations of the distributions of the charges and cur- 
rents. The derivatives of the field potentials with re-  
spect to time can then be omitted. This approximation 
means at the same time neglect of the radiation. In 
the absence of dissipative mechanisms, the heat-trans- 
port equations reduce, for both the electron and ion 
subsystems, to the continuity equations for the entropy 
S, per unit volume. Thus, the equations that describe 
the slow changes of the state of the current channel o r  
of the beam are  given by 

as. as. -+ va,--0. 
at ax, 

In ~ u l e r ' s  equations (2.7), the pressures pa  should be 
expressed by the equations of state in terms of the 
temperatures T, and the charge densities n,. 

We note that the inequalities (2.3) a re  extremely im- 
portant for the treatment of the electrons and ions as  
isolated equilibrium subsystems that interact with each 
other only via the collective -interaction electromagnet - 
ic field. In the opposite case of a long current channel 
L >> v,/v,,, the collisions of the electrons with the ions 
would lead to deceleration of the electrons over a 
length on the order of uo/v,,. In the absence of an ex- 
ternal field along the beam, the drift velocity v, would 
vanish over this length, and the energy would go into 
heat. If an external electric field is applied along the 
beam, the drift velocity v, assumes a value such that 
the force applied by the external field and accelerating 
the electrons is offset by the force of the friction of the 
electrons against the ions. On the other hand if the 
current channel is so long that L >> vo/ve,6 (6 i s  the en- 
ergy fraction transferred in the collision between the 
electron and the ion), then the temperatures of the elec- 
trons and ions become equalized over a length u0/ve,6 
after the stationary drift is established. A Druyve- 
stein-Davydov distribution3640 is then established in the 
current channel at a length L vo/ve, 6. The plasma is 
s o  heated that the average thermal velocity becomes 
large compared with the drift velocity. If at the same 
time the charge mean free path remains the smallest 
parameter with the dimension of length, then the plas- 
ma flow is described by the equations of magnetohydro- 
dynamics:' in which the essential role is played by the 
electric conductivity. In the opposite limiting case 
(I 2 a,A), and also for short beams (L << v,/v,), the 
kinetic approach must be used. 

Equations (2.7)-(2.9) contain the potentials of the 
average field produced by the plasma charges. The 
difference between the average and true microscopic 
value of the field is due to fluctuations. This differ- 

ence is particularly substantial in a weakly inhomogen- 
eous plasma, inasmuch a s  in a homogeneous equilibri- 
um plasma the average value of the electric field is 
zero. In the opposite limiting case considered here, 
that of an essentially inhomogeneous current-channel 
plasma, the fluctuation fields become weaker than the 
average fields the stronger the current and the smaller 
the radius. Noting that the average field is of the order 
of e2NP2/a, and the fluctuation field is of the order of 
the Coulomb field at an average distance e2n2I3 between 
charges, the condition under which the fieldefluctuations 
can be neglected takes the form 

Here 1, = mc3/e = 17 kA is the Alfven current and a, 
=e2/Ac= 1/137 is the fine-structure constant. 

We emphasize that Eqs. (2.6), (2.71, and (2.10) are  
the equations of the hydrodynamics of ideal liquids and 
not of gases. They a re  valid a t  arbitrary ratio of the 
temperature T, to the average potential energy of the 
paired Coulomb interaction of the charges TO/ 
e32:'3 -1. Their applicability is not restricted to the 
ideal -gas approximation. 

The stationary solutions of Eqs. (2.6)-(2.10) de- 
scribe the equilibrium configurations of beams that a re  
homogeneous along the current and in azimuth. By 
virtue of conditions (2.3), each of the subsystems i s  at 
thermal equilibrium in the static field of the collective- 
interaction forces. Thermal equilibrium means that 
the charge temperatures T, and the electron drift ve- 
locity v, do not depend on the coordinates. On the 
other hand, the dependences of the densities, pres- 
sures,  and field potentials on the radius a re  deter- 
mined by the mechanical-equilibrium conditions. The 
continuity equations for the entropy (2.10) at equilibri- 
um a r e  satisfied identically, since v, is directed along 
the cyclic coordinate z .  The Euler equation (2.7) re- 
duces at equilibrium to  equality of the sum of the forces 
to zero-to the macroscopic equations of hydrostatics 
(Ref. 42, Sec. 3): 

Here U,, = e ,  (cp - 0, A: ) are  the Upotentialsn of the 
forces applied to the charges of species a by the col- 
lective-interaction field. The subscript azero* marks 
the equilibrium values of the quantities. From the 
field equations (2.8) and (2.9) we obtain equations for 
uoa : 

Here P a  = voa/c. 

In Eqs. (2.11) the pressures Po,  should be expressed 
in terms of the temperatures and the charge densities 
by the equations of state, which contain the entire in- 
formation on the internal properties of the medium. 
Taken together with the equations of state, Eqs. (2.11) 
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and (2.12) comprise a closed system of equations that 
determine the equilibrium structures of the beams. 
Using the equations of state of ideal gases p,, =no, T,, 
or  of Fermi gases (Ref. 43, Sec. 56), a s  well a s  of a 
strongly degenerate Fermi gas (Ref. 43, Sec. 57), we 
can obtain with the aid of (2.11) and (2.12) all the pre- 
viously equilibrium configurations of 
high-current beams. 

The macroscopic hydrostatic equations (2.11) make it 
also possible to investigate the equilibrium of the 
beams in cases when the electrons are  degenerate and 
the ions have a Boltzmann distribution, when the elec- 
trons a re  hot and the ions cold, and for all other com- 
binations, i f  the equations of state are known. Since 
the states of the charges of each species are  not simply 
stationary but also in thermodynamic equilibrium, it i s  
understandable that the hydrodynamic, the k i n e t i ~ ~ l * ' ~  
approaches both lead to same beam structure. 

3. SHORT-WAVE RADIAL OSCl LLATIONS 

We use now Eqs. (2.6)-(2.10) to investigate the 
short-wave low-frequency radial oscillations of the 
plasma in a current channel. For simplicity we as- 
sume that the small perturbations, a s  well a s  unper - 
turbed equilibrium quantities, do not depend on z or cp. 
The linearized equations are  

a 

The continuity equation for the entropy reduces to 
as: /at = 0, from which it  follows that the entropy i s  
constant. The constancy of the entropy allows us to 
write p i  = (apa/ana)sna = masin,,! and, a s  i s  done in 
the investigation of sound (Ref. 42, Sec. 63), to de- 
scribe those internal properties of the medium which 
a re  connected with the specifics of the state equation 
in terms of a single macroscopic parameter-the 
speed of sound: 

To continue the analysis, we make two simplifying 
assumptions 

k v o / Q . ~ l ,  (3.6) 

ka>l .  (3.7) 

We denote by Sl, = (e,/m,c)dA; /dr the Larmor f re -  
quency of the charges of species a! in the magnetic field 
of the current. The condition (3.6) allows us to neglect 

the term no,vh, in (3.4) compared with n',vo,. The 
inequality (7) means that the derivatives of the unper- 
turbed quantities with respect to the radius are  much 
smaller than the derivatives of the perturbations. 
Thus, for example in (3.2) we have 

and consequently the term (n; /nA )dpoa/dr can be 
omitted. In addition, the condition (3.7) allows us to 
seek the dependence of the perturbations on t and on r 
in the form 

Equations (3.1 b(3.5) constitute a homogeneous linear 
system. At a given frequency w this i s  an eigenvalue 
and eigenfunction problem. Under the condition (3.7) 
we should therefore obtain with the aid of the substitu- 
tion (3.8) a system of equations for the spectrum of the 
possible frequencies w, of the oscillations and the ei- 
genfunctions that constitute the wave numbers k(w,, r). 
The condition (3.7) i s  in essence the condition for the 
quasiclassical treatment. It follows from it that the 
spectrum of the natural frequencies is determined from 
self -consistency equations of the type44 

corresponds to the large n>> 1 and therefore contains so 
large a number of closely located eigenvalues that i t  
can be regarded as continuous. At a given field fre- 
quency w, the local values of the wave number k(w, r) 
are  determined from the equations 

(1) (1) - on.  -knwv,. - 0, 

Here U t  = ea(cp - j3, A,' ). Eliminating v& , v,,! , and 
U,,! from (3.9) we arrive at a system of equations that 
determine the oscillations of the relative densities en, 
= n a  /no,: 

4ne,epn0s z{ ( k ' ~ z + a ' - 0 2 )  ti*+ - ( I - , )  ) =  (3.10) 
mu 

P 

The dispersion equation that follows from (3.10) and 
determines the function k(w, r) is 

en m~ 
(kkz+0. ' -w')  b ~ +  -- u 8 2 ( 1 - B D ~ ~ ) ] =  0. 

m. 

where wi=4rein, and w, i s  the frequency of the Lar- 
mor oscillations of the particles of species j3. In the 
reference frame in which the ions a re  a s  a whole im- 
mobile ( 8 ,  = 0, p,  = p), we have 

650 Sov. Phys. JETP 52(4), Oct. 1980 6. i. ~ererovich 650 



Given the values of the radius r and of the wave number 
k, the dispersion equation determines the frequency w 
of the local oscillations. 

In the low frequency region w s o, cc we at nonrela- 
tivistic drift velocity, the dispersion equation (3.11) is 
simpler and yields 

Here 4= C,(S,/W,)~, and rd is of the order of the 
Debye radius, inasmuch a s  the speed of sound s, is of 
the order of the thermal velocity v,, of the charges. 
The ratio of the Larmor frequency of the electrons to 
the frequency of their Langmuir oscillations is of the 
order of 

In a weak current, when (S~,/W,)~ - pa << (rda)', we ob- 
tain from (3.12) theusual ion-sound spectrum: 

o=ks ,  r z - o , z z  (sa/oa)',  p, ~ , / o . ~ r a / a .  
a 

At T, >> T, the speed of sound s i s  of the order of the 
ion thermal velocity, and a t  T, >> Ti it increases by a 
factor (T,/T, )lJ2. 

4. INSTABILITY OF RADIAL OSCILLATIONS 

If the current in the beam is so weak that 

the term (S~,/W,)~ in (3.12) can be neglected, and we ob- 
t ain 

It follows from (4.1) that for waves longer than the 
critical wavelength 

the frequencies become imaginary: 

This means that oscillations with A >he, (4.2) increase 
a t  a rate (4.3), i.e., the beam is unstable to radial ion- 
sound oscillations. 

The physical meaning of the ensuing instability can be 
easily understood by noting that the n u m b e r 4  of the 
electrons per unit length of the beam, passing through 
a cross section z A:=, i s  of the order of 

It follows from (4.4) that the magnetic-compression 
energy e2&p2 of these& particles, becomes larger 
than the energy e a 4 p 2  2 T, of the thermal spread in the 
radial direction. This means that the energies of the 
magnetic compression of electrons passing through a 
cross section of the order of A:, become sufficient for 

radial self -containment. Under these conditions the 
total electron stream has a tendency to split up into in- 
dividual channels, and i t  is this which causes, in the 
considered geometry, the buildup (during the linear 
stage of the instability) of the oscillations with wave- 
lengths A > A,,,. Radial oscillations of the considered 
symmetry (homogeneous in z and 9 )  would lead to a 
subdivision into tubes, which in turn would be unstable 
to oscillations that a re  inhomogeneous in 9 and would 
breakup into separate jets. 

With increasing current, the critical wavelength in- 
creases with increasing term Sl:/w: in (3.12): 

and at Sl,/w, > /3 the instability is completely suppressed 
by the self-magnetic-field of the current. Thus, at a 
current 1 2  PIA the radial oscillations of the ion sound 
a r e  stable, and a gap appears in their spectrum: 

At Sl,/w, > p the Larmor radius of the electrons be- 
come smaller than the critical wavelength. Under 
these conditions the suppression of the instability with 
increasing current can be attributed to the increased 
magnetization of the electrons. An analysis of the 
electron trajectories in pinches as functions of the cur- 
rent is carried out in Refs. 20, 45, and 46. We em- 
phasize that neither the equilibrium conditions nor the 
magnetization of the electrons lead to  direct limitations 
on the total beam current. The total current is  equal to 
I= eN,vo and, depending on the values of N, and v,, can 
be arbitrarily large. In the limiting case of strong 
magnetization, the electron motion of the electrons re-  
duces to uniform rotation in azimuth (along the mag- 
netic field of the current), small oscillations in the r z  
plane (perpendicular to the magnetic field), and to 
drift along the beam under the influence of the mutually 
perpendicular collective-interaction electric and mag- 
netic fields. The summary drift of all the electrons 
gives the total current of the beam. 

In the approximation of macroscopic hydrodynamics of 
of ideal liquids of electrons and ions, the oscillations 
of the ion sound turned out, naturally, to  be undamped. 
Their real damping i s  due to failure to take into ac- 
count, in this approach, the deviations of the liquids 
from ideal (viscosity, the presence of finite conduc- 
tivity due to the friction of the electrons against the 
ions, and the conversion of energy into radiation). 
However, over a time A t  << v,': o r  over a length L 
<< vo/v,, the damping of the oscillations is small and can 
be neglected in first-order approximation. 

In the most interesting frequency region w - w, p the 
condition w<< v, takes the form 

where A is the Coulomb logarithm. The hydrodynamics 
equations a re  valid a t  an arbitrary ratio ~ , / e ~ n : / ~  - 1. 
Therefore the condition o <c v ,  is satisfied at any rate 
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on account of (2.2). The condition kl ,  << 1 coincides 
with (4.5), inasmuch a s  kl ,  - w / v i  in the region o - k v ,  
of interest to us. 

The condition (3.6) used in the derivation of the dis- 
persion equation can be represented in the form 

& VT 9. 
7z- y (jzbi. 

(4.6) 
In the region %/we - 0 which is of greatest interest 
from the point of view of stability analysis, the condi- 
tion (4.6) is satisfied because the thermal velocity is 
small compared with the drift velocity (2.1). 

Finally, the condition (3.7) for oscillations with k 
-O/r, is equivalent to the inequality 

This means that the energy of the magnetic attraction 
of the electron is large compared with the temperature. 
With respect to equilibrium, the condition (4.7) is sat- 
isfied in the approximation of classical statistics of 
ideal gases if the magnetic-attraction energy is offset 
mainly by the space-charge electrostatic repulsion en- 
ergy, compared with which the temperature terms a re  
small. It is precisely to beams that a re  a t  equilibrium 
and a re  *coldn in this sense 

that the foregoing analysis of the stability to short-wave 
radio oscillations applies. 

In another formulation, as applied to the passage of a 
beam through a dense plasma, the question of the in- 
stabilities that lead to the breakup of the current into 
individual filaments was considered in Refs. 47 and 48. 
It was shown that the beam is unstable in a tenuous 
plasma and stable in a dense one. It should be noted 
that while the instability investigated in Ref. 48 and the 
instability of the ion sound described above lead to the 
same result, breakup of the current into individual 
strands, they differ nevertheless in their physical na- 
ture. 

The breakup of the current channel into individual 
jets was observed in experiment." However, it is dif- 
ficult a t  present to carry out a complete quantitative 
comparison of the theory with experiment, owing to the 
limits imposed by the spatial and temporal resolution. 
In particular, it is not clear to what extent the observed 
subdivision into jets is connected with the jet-like e s -  
cape of the electrons from the cathode during the course 
of development of explosive e m i s ~ i o n , ~ ~ * ~ '  and to  what 
extent it is connected with the instabilities that break 
up the beam as i t  travels. It appears that further pro- 
gress  in the understanding of the physics of high-power 
electron-ion beam calls for both an improvement of the 
old diagnostic methods and development of fundamental- 
ly new ones (see, e.g.?') for dense nonstationary plas- 
ma formations. 

The author thanks A. F. Andreev, S. V. Iordanskii, 
I. M. Liftshitz, and L. P. Pitaevskii for a helpful dis- 
cussion. 
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Self-limiting of a wave field following supersonic dispersal 
of a plasma 
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It is shown that in a collisionless dispersing plasma moving at supersonic speed, striction monlinearity 
imposes an upper limit on the field intensity of the electromagnetic wave propagating in the plasma. This limit 
is due to the fact that in the supersonic stream the plasma is swept into the region of the strong electric field, 
and this decreases the refractive index and hinders the wave propagation. The field of s -  and p-polarized 
radiation in a plasma with cubic nonlinearity is considered, where the plasma inhomogeneity is determined 
entirely by the influence of the ponderomotive forces. Self-confinement of the field is demonstrated in the case 
of s-polarization also for a plane-inhomogeneous linear plasma layer. 

PACS numbers: 52.35.Hr, 52.3S.M~. 52.40.Db 

One of the  pressing problems of nonlinear theory of 
plasma is that  of the  behavior of a s t rong  electromag- 
netic field in  a moving dispersing plasma. A cer ta in  
group of questions r a i s e d  i n  th i s  problem can be  ex- 
plained by numerically solving the  equations of non- 
linear electrodynamic and hydrodynamics (see,  e.g., 
Ref. 1). At the s a m e  t i m e ,  the numerous res t r i c t ions  
on the use  of numerical  methods leave many aspec t s  
of this  problem uninvestigated. T h e  presen t  communi- 
cation r e p o r t s  a n  at tempt t o  investigate t h e  electro-  
magnetic field in  a s tat ionary inhomogeneous p lasma 
s t ream.  Recognizing tha t  the  case of subsonic flow 
is s i m i l a r  in  many r e s p e c t s  to t h e  situation considered 
in a paper by one of us,' and s tr iving t o  obtain qualita- 
t ive resu l t s  of in te res t  f o r  modern  experiments ,  we 
focus our attention i n  th i s  article on the case of super -  
sonic  plasma flow. With a n  aim also t o  make t h e  
resu l t s  as conclusive as possible, we consider  in  de- 
ta i l  the picture corresponding to a maximum deviation 
of the plasma density f r o m  the  c r i t i ca l  value, when 
the "striction" increment  to the dielectr ic  constant of 

t h e  plasma can  b e  accounted f o r  by a cubic nonlinearity 
only. 

Both a qualitative investigation of the  equations of 
the  nonlinear electrodynamics,  and the  analytic solu- 
t ions obtained b y  us  fo r  the field, show that  the super -  
son ic  flow i n  a classical ly  t ransparen t  (in accord  with 
the  l inear  theory)  p lasma the  s t r i c t ion  nonlinearity im- 
poses a n  upper l imi t  on the electric field intensity. 
T h e  reason  is that in  supersonic flow, in  contrast  to 
subsonic flow, the p lasma is not expelled f rom the 
strong-field region but, on the con t ra ry ,  becomes 
denser  there.  I n  the  relatively weak field region the 
p lasma becomes m o r e  tenuous. The increased density 
of the  plasma i n  the  strong-field region hinders  the wave 
propagation. This  effect t akes  place f o r  both standing 
and for  t ravel ing waves, and f o r  both s- and p-polar- 
ized radiation. What changes qualitatively i n  the  super -  
sonic  flow is t h e  s t r u c t u r e  of the electromagnetic sol i -  
ton, in  which t h e  d e c r e a s e  of the p lasma density is 
accompanied by  a weakening of the electric field. 
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