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A consistent theory of energy exchange between high-energy charged particles and random magnetic-field 
inhomogeneities frozen in a moving plasma is developed. It is shown that the character of the change of the 
particle energy, given the plasma-velocity variation in space, is determined by the concrete form of the 
particle distribution function. An equation is obtained for the particle energy density, and the question of 
formation of the energy spectrum of the charged particles in the course of multiple scattering by random 
magnetic-field inhomogeneities is considered. 

PACS numbers: 52.20.Hv, 52.30. + r 
1. INTRODUCTION 

One of the vital problems of plasma physics, cosmic- 
ray physics, and plasma astrophysics is  that of the mo- 
tion of charged particles in a random magnetic 
The first  consistent kinetic approach to the problem of 
the motion of charged particles in a magnetic field with 
random inhomogeneities was developed by Dolginov and 
Toptygin.' They obtained a kinetic equation that de- 
scribes the multiple scattering of charged particles by 
moving magnetic-field inhomogeneities, and established 
the correct form of the diffusion-approximation equa- 
tions, namely the equation for the density of particles 
with a given momentum and the expression for the par- 
ticle flux-density vector in space. 

On the other hand, a phenomenological theory of 
propagation of charged particles in a random magnetic 
field was developed6-' in connection with problems of 
cosmic-ray physics. In this theory it became neces- 
sary to postulate an expression for the particle flux 
density in the space of the absolute values of the mo- 
mentum due to the exchange of energy between the 
charged particles and the moving magnetic-field in- 
homogeneities. The dominant concept in the consider- 
ation of the process of energy dissipation in a system 
consisting of charged particles and magnetic inhomo- 
geneities was the conviction that the energy-exchange 
mechanism is limited exclusively by the spatial char- 

acter of the change of the velocity of the medium in 
which the random magnetic-field inhomogeneities a r e  
frozen-in. This point of view was formulated most 
clearly for the question of energy exchange between 
charged particles and magnetic inhomogeneities by 
parkers and by Jokipii and Parker: who used the hy- 
pothesis of adiabatic slowing down of the charged parti- 
cles. The gist of this hypothesis i s  that high-energy 
charged particles scattered by radially moving mag- 
netic field inhomogeneities lose energy systematically. 
We shall show that this i s  a restricted concept, since 
it takes no account of the character of the distribution 
of the charged particles, so  that i t  i s  necessary to re-  
view the notions concerning energy dissipation in multi- 
ple scattering of charged particles by moving magnetic- 
field inhomogeneities. Actually, given the law that 
governs the variation of the velocity of the medium in 
space, the character of the change of the energy of the 
charged particles depends essentially on the form of 
the particle distribution function. If the system di- 
mensions a r e  large enough and the particles have time 
to become strongly scattered, so  that their spatial dis- 
tribution becomes close to isotropic, then the energy- 
exchange process i s  determined by the sign of the sca- 
lar product (u- V ) N  [u(r) is  the velocity of the medium, 
and ~ ( r ,  p, t) is  the density of the particles with given 
value of the momentum ppO and at (u- V ) N >  0 continuous 
energy transfer takes place from the moving magnetic- 
field inhomogeneities to the charged particles. In the 
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opposite case, when (u. v)N< 0, the particles lose en- 
ergy in the course of their multiple scattering by the 
random inhomogeneities of the magnetic field. 

The purpose of the present paper is a consistent 
treatment of the problem of energy exchange between 
high-energy charged particles and moving magnetic- 
field inhomogeneities. The transport equation is used 
to obtain relations for the energy density of the charged 
particles and expressions for the energy flux density 
and the particle-energy source density. A law of con- 
servation of the number of particles with specified val- 
ue of the momentum is formulated, compatible with the 
requirements that follow from the equation for the par- 
ticle-energy density. The kinetic equation is used to 
derive an expression for the change of the energy of an 
individual particle. This expression is used for an in- 
dependent calculation of the energy source in the equa- 
tion for the particle-charge density. Boundary condi- 
tions that illustrate the character of the change of the 
particle energy for concrete examples a r e  considered 
for the transport equation. 

2. EQUATION FOR THE ENERGY DENSITY OF 
CHARGED PARTICLES; PARTICLE FLUX IN  THE 
SPACE ABSOLUTE VALUES OF THE MOMENTUM. 

The consistent theory of multiple scattering of parti- 
cles in a magnetic field with random inhomogeneities 
is based on the use of the kinetic equation for the dis- 
tribution function F ( r ,  p, t) (Ref. 1) 

where v= c%/& is the velocity of the particles with mo- 
mentum p, total energy &, and charge e; the diffusion- 
coefficient tensor in momentum space, D,,(r,p), is de- 
fined a s  

where A(r,p) is the transport mean free path of the 
particle, and its concrete expression i s  determined by 
the correlation function of the random magnetic field"; 
w = v - u, where u(r) is the hydrodynamic velocity with 
which the random inhomogeneities of the magnetic field 
that a r e  frozen in the plasma are  frozen in the plasma 
are  transported. 

If the particles a re  intensively scattered by random 
inhomogeneities of the magnetic field, so that their di- 
rection distribution becomes close to isotropic, it is 
convenient to change over to the diffusion approxima- 
tion, i.e., to describe the evolution of the particle dis- 
tribution with the aid of the moments of the distribution 
function 

where N(r,p, t) is the density of particles with given 
value of the momentum, J(r,p,  t) is the vector of the 
particle-flux density in space, and the integration in 
(3) and (4) is carried out over the solid-angle element 
dl in momentum space. 

Using the definitions (3) and (4), we can obtain from 
(1) the transport equation for the particle density 
~ ( r , p ,  t) (Ref. 1): 

and the expression for the vector of the particle flux 
density in space: 

where ua,(r, p) is the tensor of the particle diffusion 
coefficients in space. 

The equation for the charge-particle energy density 

corresponding to the transport equation (5) is of the 
formx0 

where 

is the vector of the charge-particle energy flux density, 
and is equal to the amount of energy carried through a 
unit area per unit time. As seen from (9), the pres- 
ence of the energy flux is due to the presence of a par- 
ticle flux J(r ,p ,  t) through the surface of the considered 
volume. 

Equation (8) is of the form of a continuity equation with 
with a source in the right-hand side. According to (8), 
the change in the particle energy density is due to the 
presence of an energy flux from the given volume, a s  
well a s  to the exchange of energy between the charged 
particles and the moving inhomogeneities of the mag- 
netic field. If the scalar product (u. V)N> 0, then Q(r, t )  
represents the energy acquired by the particles in a 
unit volume per unit volume per unit time a s  they inter- 
act with the moving inhomogeneities of the magnetic 
field. In the opposite case, when (us V)N< 0, the parti- 
cles give up energy to the inhomogeneities of the mag- 
netic field. Thus, the character of the energy ex- 
change between the charged particles and the magnetic 
inhomogeneities, at  a given law of variation of the ve- 
locity of the medium in space, is determined by the 
character of the particle distribution function. In par- 
ticular, for galactic cosmic rays (whose radial gradi- 
ent is positive), with radial outflow of the solar wind, 
the plasma dissipates energy continuously on the high- 
energy charged particles-cosmic rays-as they a re  
repeatedly scattered by the random magnetic-field in- 
homogeneities that a re  frozen in the moving plasma. 
When cosmic rays of solar origin (which have a nega- 
tive radial gradient) propagate in the solar wind, the 
charged particles at each point of space give up energy 
to the moving inhomogeneities of the magnetic field. 
A similar conclusion concerning the character of the 
energy exchange between the charged particles in the 
magnetic inhomogeneities follows directly from the 
transport equation (5). We write down the transport 
equation (5) in a form corresponding to the law of con- 
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servation of the number of particles with given momen- 
tum1° 

where 

is the particletflux density in the space of the absolute 
values of the momentum, i.e., the number, per unit 
volume, of particles whose absolute value of the mo- 
mentum, when changed by collision with the inhomogen- 
eities of the magnetic field, goes through a given value 
in a unit time. We note that the operator 

is that part of the divergence operator in momentum 
space which depends on the modulus of the momentum. 

In accordance with Eq. (lo), the change in the number 
of particles with a given momentum per unit volume and 
per unit time is determined both by the presence of the 
particle flux J and by the presence of particle "migra- 
tion" over the energy spectrum, due to the presence 
of the flux J,. The flux J, is in this case positive if the 
particle energy increases, and negative if it decreases. 
As follows from (l l ) ,  at  (u-v)N>O we have J,>O, i.e., 
the particles a re  shifted in the spectrum towards higher 
momenta p, so that the particle energy increases in 
accordance with the conclusion that follows from Eq. (8) 
for the charged-particle energy density. 

In the phenomenological theory of the motion of 
charged particles in a random magnetic field the trans- 
port equation (5) was postulated on the basis of the con- 
cept of systematic energy loss by the particles as  they 
interact with the radially moving inhomogeneities of 
the magnetic field. An incorrect expression was postu- 
lated in this case for the vector of the particle flux den- 
sity in space"' 

I,=-xElVJ4+u.N, (12) 

and the particle flux in the space of the absolute values 
of the momenta was defined a s  

where (dp/dt) was taken to mean the average change of 
the particle momentum per unit time and was calculated 
by invoking intuitive reasoning that makes use of the 
concept of systematic loss of particle energy. The ex- 
pression used for (dp/dt) 

is based on the analogy between the motion of particles 
in a medium with radially moving magnetic-field in- 
homogeneities, on the one hand, and the adiabatic de- 
crease of the particle energy upon expansion of a given 
volume occupied by gas, on the other. 

However, the analogy between the scattering of par- 
ticles by moving magnetic-field inhomogeneities and 
the expansion of a given volume occupied by gas is in- 
correct. This is  seen even from the fact that if the 
plasma velocity u(r) in an immobile coordinate frame 

is constant in time, then tlie average distance between 
the magnetic inhomogeneities remains unchanged. 

Thus, even though the erroneous premises (12)-(14) 
yielded a perfectly correct form of the transport equa- 
tion, the conclusion that the particles lose energy sys- 
tematically when they become scattered by radially 
moving magnetic-field inhomogeneity (the adiabatic de- 
celeration concept) is incorrect. 

We note that a perfectly cokrect form of the transport 
equation, in which the fluxes of the particles in ordi- 
nary space J (Ref. 1) and in momentum space J, (Ref. 
10) have forms determined by relations (6) and ( l l ) ,  
was obtained also in Ref. 12. 

3. CHANGE OF ENERGY OF INDIVIDUAL PARTICLE 
AND CALCULATION OF SOURCE ENERGY ON THE 
BASIS OF THE KINETIC EQUATION 

The average change of the energy of an individual 
particle per unit time can be calculated by using di- 
rectly the equations of motion of the particle in a ran- 
dom magnetic field. In our case, when the expression 
for the diffusion coefficient in momentum space (2) is 
known, there is no need to resort to the equations of 
motion, since all the necessary information on the 
change of the energy of an individual particle is con- 
tained in the expression for D,,. In fact, by definition 

where ~p is the momentum change of a particle scat- 
tered by the moving magnetic-field inhomogeneity in a 
time t, and the angle brackets denote averaging over 
the statistical ensemble corresponding to the random 
magnetic field. The average rate of change of the par- 
ticle momentum is given by the relation 

and the average rate of change of the particle energy in 
the course of multiple scattering by moving magnetic- 
field inhomogeneities is  calculated with the aid of (15) 
and (16) a s  follows: 

The tensor D,, is given, accurate to terms of order 
uZ/v2 << 1, by the relation 

where a, b, and p a re  certain scalar functions of the 
momentum p - 

For the average rate of change of the energy we obtain 
from (17) 

from which it follows that the rate of change of the en- 
ergy of an individual particle is determined by the rela- 
tive directions of the vectors u and v. Consequently the 
particle acquires energy in the case of head-on colli- 
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sions and loses energy in rear collisions. This result 
is natural: formula (20) is simply a logical conse- 
quence, for the considered case, of the known relation 
on which the Fermi acceleration mechanism is based, 
and the change of energy of the individual particle is 
determined exclusively by the relative change of the 
vectors u and v and does not depend on the concrete 
character of the change of the velocity of the medium 
in space [in contrast to relation (14) used in the formu- 
lation of the adiabatic deceleration hypothesis]. Even 
the very structure of (20) indicates that energy ex- 
change between the charged particles and the magnetic 
inhomogeneities cannot be independent of the form of 
the particle distribution function, and this dependence 
should naturally manifest itself in the behavior of the 
macroscopic quantities (the energy flux, the energy 
source) that characterize the energy-exchange process. 

To  demonstrate the circumstance, we carry out an 
independent calculation of the source of the particle en- 
ergy in Eq. (81, starting directly from Eq. (20), which 
determines the change of energy of an individual parti- 
cle. In accordance with the definition of the particle- 
energy source Q(r,t) as the amount of energy acquired 
(given up) per unit volume and per unit time by the 
charged particles as they interact with the moving mag- 
netic-field inhomogeneities, we can write 

If the particle distribution is close to isotropic, then, 
confining ourselves in the expansion of F ( r ,p ,  t )  in 
spherical harmonics to the first moments ( 3 )  and (4)  of 
the distribution function, we obtain from (21) 

i.e., we arrive at the same expression for the particle- 
energy source as in Eq. ( 8 )  for the energy density. In 
analogy with the definition ( 4 )  for the particle flux den- 
sity vector in the space J, ( 6 ) ,  we can connect with the 
distribution function F(r ,  p ,  t )  also the particle flux in 
the space of the absolute values of the momentum (11). 
From (1)  it follows that 

is the particle-flux density vector in momentum space. 
The particle flux in the space of the absolute values of 
the momentum (11) is connected with n by the obvious 
relation 

In the weak-anisotropy approximation, when two 
terms of the expansion in spherical harmonics are suf- 
ficient, we obtain from (24)  

J p = a ( q V )  N, (25)  

in which the coefficient o is expressed in terms of the 
tensor D,, by the relation 

I f  we use in ( 2 6 )  the concrete form of D,,, we obtain 
a= pu/3 and, consequently, an expression that coincides 
with (11) for J, (25). 

A similar calculation for the particle-flux density 
vector in space J ,  on the basis of the definition (4), 
leads to the general expression for J 

in which o is determined from relation ( 2 6 ) ,  and the 
diffusion coefficient x is expressed in terms of the ten- 
sor D,, b y  the formula 

-1 

x='/ul (up) ' {  j d ~ ( b . - g * g , ) ~ , )  . (28) 

It is seen therefore from the results presented in the 
present section that the conclusion that the energy ex- 
change between charged particles and moving mag- 
netic-field inhomogeneities depends on the form of the 
distribution function, a conclusion based on macro- 
scopic equations ( 8 )  and ( l o ) ,  is in full agreement with 
the "microscopic" definitions of the macroscopic quan- 
tities (energy source, particle flux J,) which are a di- 
rect consequence of the kinetic theory. 

4. STATIONARY CASE. GENERAL RELATIONS 

Before we proceed to investigate the character of the 
deformation of the space-energy distribution of the 
particles, we consider certain general consequences 
of the transport equation in the stationary. case. The 
transport equation ( 5 )  corresponds to the law of parti- 
cle-number conservation per unit volume: 

where 

n ( r ,  t ) =  J dpF(r ,  P ,  t )  = 5 d p p t ~ ( r 7  P ,  t )  
0 

and 

are respectively the particle density and the density 
vector of the flux of particles with all energies. 

In the stationary case I(r) = 0,  meaning the absence of 
a flux of particles with all energies. On the other hand, 
in the stationary case ( a ~ / 8 t =  0) integration of the 
equation for the energy density ( 8 )  leads to the relation 

(q, is the q component normal to the surface); this re- 
lation shows that at a constant number of particles in 
a given volume and at a particle-energy density con- 
stant in time there exists in the system the stationary 
energy flux (32). Thus, in the steady state, the entire 
energy transferred to the particles in a unit volume per 
unit time through scattering by moving magnetic-field 
inhomogeneities is carried out of the volume because 
of the energy flux. Integrating the transport equation 
(10) over the given volume, we obtain the relation 

from which it follows that in the stationary case there 
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exists in the system a particle flux J(r,p) with a given 
value of the momentum. To establish the direction of 
this flux, we note that from the condition that the ener- 
gy density of the charged particles (7) be finite it fol- 
lows that at large values of the momentum p the density 
N(r,p) of particles with a given momentum should de- 
crease with increasing p more rapidly than and it 
should decrease more slowly than p'3 at small values 
of the momentum p. It follows thus from (33) that at a 
positive radial gradient [(w V)N> 01 the flux of the en- 
ergetic particles is directed out of the system, and the 
flux of the low-energy particles is  directed into the 
system (we note that at the particle flux J= 0). 
This result is a direct consequence of the acceleration 
of the particles, whose distribution is characterized by 
a positive radial gradient. Indeed, in the stationary 
case at (w V)N> 0 there exists an energy flux (con- 
nected with the particle flux J [see (9)], which is di- 
rected out of the system, and the flux of particles with 
all energies is equal to zero [I(r) = 01. This is possible 
only when the flux of the low-energy particles is  di- 
rected into the system, and the flux of the high-energy 
particles out of the system, thus ensuring the presence 
of an energy flux in this direction. We note that the ex- 
perimental consequence of the presence of the flux of 
energy of cosmic rays in the stationary case can be the 
observation of different signs of the radial component 
of the diurnal variation for particles of high and low 
energy. 

5. ENERGY SPECTRUM OF CHARGED PARTICLES 

The notions developed concerning the character of the 
energy exchange between charged particles and moving 
magnetic-field inhomogeneities make it possible to 
examine the dynamics of formation of the energy spec- 
trum of the charged particles in the course of multiple 
scattering. We consider the particle propagation in a 
spherically symmetrical region filled by a magnetized 
plasma that moves radially with constant velocity u 
= ur/r, in which random inhomogeneities of the mag- 
netic field are frozen-in. At the boundary Y =  7, of the 
volume, the plasma velocity u=  0, and the scattering 
properties of the medium are characterized by a diffu- 
sion coefficient x, assumed to be constant. The prop- 
agation of the particles in such a model is described 
by the stationary transport equation (5) 

with boundary conditions on a sphere of radius x =  1 

where x =  r/r0 is the dimensionless coordinate and p 
= w J x .  

The boundary-value problem (34), (35) was consid- 
ered for different forms of the limiting sepctrum N0(p) 
in Refs. 1,8,13,14. We shall not describe the detailed 
solution, which can be found in Ref. 14, and confine 
ourselves to a brief discussion of the end results. The 
numerical calculations of the energy spectrum of cos- 
mic rays show that the experimental data agree best 
with the dependence of the limiting spectrum on the 

dimensionless momentum f =p/mc, in the form 

No ( c )  =AS-' (l+cz)-'1-'"', 

where 

y is the exponent of the spectrum, and no is the density 
of the particles with all energies at x = 1. 

The figure shows a plot of the function 

which constitutes the ratio, normalized to unity, of the 
number of particles in the interval from f to f +  df and 
the total number of particles n(z) per unit volume, as a 
function of the dimensionless momentum f for values 
z =  p= 3 (curve I), z =  p/2 (curve 2), and z= 0 (curve 3). 
The parameter is  x =  3 for u= 4 x lo7 cm/sec, yo= 1,.5 
X lV5  cm, and x =  2 X loz2 cm2/sec. It is seen from the 
figure that a t  a constant diffusion coefficient x the en- 
ergy spectrum of the charged particles is deformed in 
such a way that the maximum of the spectrum shifts 
towards low particle energies on going towards the 
center of the region filled with the plasma. However, 
this character of the space-energy distribution of the 
particles is  not proof of slowing down of the high-ener- 
gy particles and cannot be treated a s  a decrease of the 
energy of an individual particle in the course of multi- 
ple scattering by radially moving magnetic-field in- 
homogeneities. In the considered stationary case the 
particle energy source Q >  0 and the energy is trans- 
ferred from the moving magnetic inhomogeneities to 
the charged particles. The entire energy acquired by 
the particles in the given volume flows out through the 
surface of the volume. The formation of the energy 
spectrum corresponds fully in this case to the general 
picture of stationary modulation, considered in the pre- 
ceding section. The flux of the particles of all energies 
is I=  0 and the particle flux density vector J(r,p) for 
the high-energy particles is  directed outward from the 
system, while for the low energy particles, to the con- 
trary, it is directed towards the center of the system. 
Accordingly, the resultant energy flux is always di- 
rected out of the system and increases in absolute val- 
ue with increasing z.14 On the other hand, the consid- 
ered behavior of the energy spectrum, which manifests 
itself in a shift of the maximum of the spectrum towards 

FIG. 1. 
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lower energies, is not universal, and i s  typical only for 
a particle-propagation model with a constant diffusion 
coefficient. Goldstein, Fisk, and ~ a m a t y ' ~  calculated 
numerically the energy spectrum of the cosmic rays  
near the earth's orbit from a spectrum given on the 
boundary of the modulation region, using a propagation 
model with a diffusion coefficient in the form of a mon- 
otonically increasing function of the particle momen- 
tum. The maximum of the energy spectrum turned out 
to be shifted towards higher energies, s o  that the in- 
ternal regions of the volume occupied by the plasma 
turn out to be enriched with high-energy particles. 

At the present time there a r e  no analytic methods of 
solving boundary-value problems for the transport 
equation with a momentum -dependent diffusion coeff i- 
cient. For large values of the particle momentum, 
however, it is  possible to obtain an approximate solu- 
tion of the problem by using the smallness of the pa- 
rameter p =  ur,/n.  If the parameter p << l, then it is 
convenient to  seek the solution of the boundary-value 
problem (34), (35) in the form of an expansion in pow- 
e r s  of p. Confining ourselves to  terms of order p2, 

we obtain from (34) 

We consider now the distance dependence of the average 
energy per particle: - - 

( ~ ( 2 )  ) - E ( x ) / n ( x ) =  j d p p 2 ~ N ( x ,  p )  / j d p p 2 ~ b , p ) .  (43) 
a 4 

The quantity (c(x)) calculated on the basis of (40)-(42) 
takes the form 

If the diffusion coefficient i s  independent of the momen- 
tum, then 

from which we see that the average energy per particle 
decreases with increasing distance from the boundary 
of the modulation region, i.e., the maximum of the en- 
ergy spectrum is shifted towards lower particle ener- 
gies. 

If the limiting spectrum N,(p) is  defined a s  in (36), 
and the diffusion coefficient x(p) increases with in- 
creasing particle momentum p rapidly enough, then 
the average energy ( ~ ( x ) )  (44) is  an increasing function 
of the distance x,  i.e., the spectrum of the particles 
within the system is enriched with high-energy parti- 
cles. 

If the particle diffusion coefficient n i s  independent 
of the momentum, the flux density of particles with a 
specified momentum i s  given by 

from which it i s  seen that the flux of the high-energy 
particles is directedaway from the system, while the low- 
energy particles flow into the systemat zero fluxZ(x) of 
particles with all  energies. Thus, in the steady state, 
low -energy particles enter continuously the plasma- 
filled region, while the high-energy particles leave this 
region, so  that a stationary charged-particle flux i s  
present in the system (at a particle energy density that 
is  constant with time), and the presence of this sta- 
tionary flux i s  a direct consequence of the energy trans- 
fer  from the moving magnetic-field inhomogeneities to 
the charged particles. The character of the dependence 
of the average energy (E(x)) on the distance a t  constant 
n i s  determined in the stationary state not by the adia- 
batic deceleration, but by the specific features of the 
convective particle outflow, whose intensity depends on 
the particle energy. 

To clarify the dynamics of formation of the energy 
spectrum of the particles and the character of the 
change of the average energy per particle, it is  neces- 
sary to consider the time evolution of the particle dis- 
tribution function. The initial distribution is assumed 
to be the particle spectrum a t  the boundary of the plas- 
ma-filled region. The particle density N(x,p, t )  will 
vary and approach a stationary distribution, satisfying 
thereby the nonstationary transport equation a t  t < ~ o  

the boundary 

N ,  ( 1 ,  P, 7 )  = N o ( P ) ,  N(O,  p, ~ ) < m  

and the initial condition 

N ( x ,  p, 0 )  =No ( P )  . (48) 

We seek the solution of the problem (46)-(48) in the 
form 

For the function N, we obtain the equation 

with boundary conditions 

N t ( l ,  P ,  T )  SO, Ns(O, P, T )  

and initial condition 

The solution of Eq. (50) with the additional conditions 
(51) and (52) is  of the form 

" 
I - cos n n  sin nnx 

~ J ( z , T ) - ~ - x - ~ ~  exp (-n'n'r) . 
n-i 

n3nS (54) 

The value of the energy density 

corresponding to the solution (54) decreases with time, 
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from the initial value to the value E(x, 7- 00) that 
characterizes the steady state. A similar change takes 
place in the energy per particle: 

which decreases from the initial value (~ (1 ) )  to its sta- 
tionary value (44a). To determine the causes of the 
decrease of (E(x, 7)) with time we calculate the particle 
flux 

1-cos nn 
11 (I, T) -'laup 3 iT ( a ~  ws nn-sin n z )  exp (-nZn'r). 

ap "-1 
(57) 

In the case of a decreasing particle spectrum (8N0/8p 
< 0) the flux of particles of any energy is positive, and 
since the of the high-energy particles with given mo- 
mentum decreases more rapidly, the particle flux nor- 
malized to the function N,(P) exceeds at large values of 
the momentum the flux of particles with small momen- 
tum. Consequently, the particles leave the system on 
account of the convective outflow, which turns out to be 
more effective at high energies. The presence of the 
particle flux (57) leads to a decrease of the density 
n(x, T) of particles with any energy, as  well as  of the 
energy density of the particles E(x, T). The decrease 
with time of the average energy per particle (a(&(x, t ) ) /  
at < 0) is not a criterion of the energy loss by the parti- 
cles when they a r e  scattered by the radially moving 
magnetic-f ield inhomogeneities. To illustrate the last 
statement, we consider the case when the charged-par- 
ticle spectrum inside the plasma-filled region is poor 
in high-energy particles a t  the initial instant of time. 
The initial condition for the transport equation (46) 
with boundary condition (47), corresponding to this re- 
quirement, is of the form 

where 5 < 1. 

The solution of the boundary-value problem (46), (47) 
with the initial condition (48), in the approximation lin- 
ear in k, is of the form 

N, (z, P, 7) ~ f p i ( z ,  T ) P ~ N o / ~ ~ P ,  (59) 
i-cosnn sinnnx 

qi(2, T)=I-If 4(&-1) x-- 
n'nJ z exp (-nZn'r) , (60) 

"-1 

which coincides with (53) at 5 = 0. 

The particle energy density at 5 < 1 - 
E(z,  T) - l /s~c(z,  T) j dppSeaN0lap (61) 

0 

increases with time and approaches a stationary value. 
The average energy per particle 

also increases with time at [> I .  

Consequently, under the initial condition (58), the 
spectrum inside the plasma-filled region becomes en- 
riched with high-energy particles. In the approxima- 
tion linear in p, this effect i s  due to the presence of a 
particle flux in a direction that depends on the particle 
energy: 

At [> 1 the flux is negative, i.e., the particles a r e  
"drawn" into the system, and the relative number of 
high-energy particles entering the system exceeds the 
number of low-energy particles. As a result, the av- 
erage energy per particle increases with time. There- 
fore in this case, too, the character of the variation 
(&(x,T))(~(&(x, r))/87> 0) with time is not a consequence 
of an acquisition of energy by the particles, but is due 
to the presence of the energy-dependent particle flux 
in space. 

To conclude this section, we present one illustrative 
example which shows that the spatial deformation of the 
energy spectrum of the particles does lead, by itself, 
to any conclusions concerning the character of energy 
exchange between the particles and the moving inhomo- 
geneities of the magnetic field. We consider the inter- 
action of particles with magnetic inhomogeneities 
frozen into a flux of an imcompressible plasma whose 
velocity field satisfies the condition v .u= 0. In the 
spherically symmetrical case we have u a  Y ' ~  and the 
boundary-value problem for the stationary transport 
equation (5) takes the form 

with the boundary condition 

The solution of the boundary-value problem (64), (65) 

shows that the form of the energy spectrum of the par- 
ticles is the same at all points of space, in accordance 
with the fact that in this case ( v - u =  0) the transport 
equation does not contain the derivative aN/ap. 

A feature of the modulation process in this case i s  
that, the conserved form of the spectrum, notwith- 
standing, energy is continuously transferred from the 
moving inhomogeneities to the charged particles. As 
seen from (66), the particle distribution is character- 
ized by a positive radial gradient. This corresponds 
to "migration" of the particles over the spectrum with 
increasing momentum and to the presence of a positive 
source Q in Eq. (8) for the particle energy density. 
The particle flux 

is directed out of the system in the case of high-energy 
particles and into the system for low-energy particles 
(see Sec. 4). If a spectrum defined by relation (36) is 
specified on the boundary of the region, then the par- 
ticle flux (67) is positive at p>  J 2 ( y  - 3)lf 2mc and nega- 
tive at p < fi (y - 3)-lf 'mc. The particle energy flux 
corresponding to (67), namely 

i s  directed out of this system in accordance with the 
general premises that determine the energy balance 
of the particles in the stationary case (Sec. 4). 
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A feature of the modulation of the space-energy dis- 
tribution of the particles in this case is that despite the 
preserved form of the energy spectrum, continuous en- 
ergy transfer takes place from the moving inhomogen- 
eities to the charged particles. The similarity, char- 
acteristic of this case (vau= O), of the form of the en- 
ergy spectrum of the particles in space i s  the conse- 
quence of the balance of the particle flux J in the space 
and the "transfer" of the particles over the J, system. 

6. CONCLUSION 

Our analysis shows that the energy exchange between 
charged particles and moving magnetic-field inhomo- 
geneities, at  a given law of variation of the velocity of 
the medium in space, is determined by the concrete 
form of the particle distribution function. The consid- 
ered illustrative typical boundary-value problems show 
that the character of the change of the charged-parti- 
cle energy spectrum is not a criterion that determines 
the change of the charged-particle energy in multiple 
scattering by moving magnetic-field inhomogeneities. 
In the general case, only an analysis of the system of 
the moment equations can lead to definite conclusions 
concerning the energy dissipation in a system consist- 
ing of charged particles and magnetic inhomogeneities. 
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The equilibrium configurations and low-frequency radial oscillations (ion sound) of intense charged-particle 
beams are considered in the approximation of the hydrodynamics of perfect electron and ion liquids 
interacting with each other via the electromagnetic field produced by the charges. The employed macroscopic 
approach is valid without any assumptions concerning the equations of state. The oscillation singularities due 
to the specifics of the equation of state of the medium are expressed in terms one macroscopic parameter, the 
speed of sound. In the intermediate low-current region, the ion-sound oscillations with wavelength exceeding 
a certain critical value increase exponentially. This instability is due to the tendency of the beam to split up 
into individual jets if the magnetic field of the current flowing through an individual channel is capable of 
preventing the charges from spreading radially. In a high-current beam, the instability of buildup of radial 
ion-sound oscillations is suppressed by the magnetic field of the current. 

PACS numbers: 52.30. + r, 41.80.Gg, 52.35.Dm 

1. INTRODUCTION this trend on the development of modern physics. 

Research into self-compressing streams of charged 
particles, initiated by Bennetl and revived by ~udker ;  
has become recently a separate branch of the physics 
of non-neutral plasmaS and of strong electron-ion 
beams.4 A f a r  from complete list of the projects in 
which high-current devices are used-from suggestions 
aimed at solving the problem of controlled thermonu- 
clear fusion5 to the development of x-ray and gamma- 
ray lasers6 and of collective accelerators for charged 
particles7-gives an idea of the degree of influence of 

The study of pinch systems (see, e.g ., Refs. 8- 19) 
has shown that the most interesting experimental phe- 
nomena occur during the strong compression stage 
(x-ray flash, high temperature, density and multiplicity 
of atom ionization, acceleration of electrons and ions, 
the appearance of neutrons, the explosive character of 
the electron emission). A non-traditional approach to 
the pinching phen~menon,'~ based on an analysis of the 
equilibrium21a4 and r a d i a t i ~ n ~ ~ * ~ ~  of a plasma in the 
magnetic field of the current itself, makes it possible 
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