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Measurements were made of the half-width of a Rayleigh line wing as a function of the concentration of 
nitrobenzene-n -hexane, nitrobenzen+n -dotiecane, and aniline-cyclohexane solutions at various 
temperatures. It was found that the wing became narrower on approach to the stratification point. A special 
feature of the experimental curves was a maximum at temperatures far from critical and a minimum at 
temperatures close to critical. An explanation of this property is proposed. 

PACS numbers: 33.70.Jg, 61.25.Hq 

Narrowing of a Rayleigh ling wing on  approach t o  the  
c r i t i ca l  t empera ture  was  f i r s t  observed i n  the homo- 
geneous phase of stratifying binary nitrobenzene-n- 
hexane and aniline-cyclohexane solutions of c r i t i ca l  
concentration.' F u r t h e r  investigations of th i s  effect2*' 
showed that t h e  wing narrowing was nonmonotonic in 
mos t  solutions: the half-width of the  wing depended in a 
steplike manner  on temperature.  Moreover ,  i t  was 
l a t e r  found that  the depolar ized Raman sca t te r ing  l ines ,  
whose width (after subtract ion of the temperature- in-  
dependent t e r m s )  was governed by the  s a m e  mechanism 
as the  width as t h e  Rayleigh line wing, a l s o  became 
nar rower  on approach to the c r i t i ca l  t empera ture  in 
solutions of c r i t i ca l  c o n c e n t r a t i ~ n . ~  T h i s  observat ion 
was not only of independent in te res t  but it a l s o  con- 
f i rmed  the  exis tence of the  narrowing of Rayleigh l ine 
wings. 

Narrowing of various depolarized Raman l ines  was 
observed in various t empera ture  ranges ,  indicating 
t h e  exis tence of s e v e r a l  anisotropy relaxat ion t i m e s  
and thus yielding information o n  t h e  r e a s o n  f o r  the 
appearance of s teps  i n  the  t empera ture  dependences of 
t h e  wing widths. These  s t e p s  were  at t r ibuted t o  the  
exis tence of s e v e r a l  anisotropy relaxat ion times.* The  
narrowing of a wing was  found t o  vary  considerably f r o m  
solution t o  solution. Moreover ,  according to s e v e r a l  
 author^,^*^ th i s  effect was  not observed a t  a l l  in  nitro- 
ethane-isooctane and nitroethane-3-methylpentene 
solutions. Consequently, Phi l l ies  et aL7 compared and 
d i scussed  the  experimental  methods and the methods of 
analysis  of the r e s u l t s  used in Refs. 5, 6, and 1-3. 

One of us  proposed e a r l i e r s  a n  explanation of t h e  
narrowing of Rayleigh line wings in  s t rat i fying solutions 
of c r i t i ca l  concentration based on allowance for  the 
fact  that the difference between the energ ies  of inter-  
act ion of two identical and two different molecules, 
which governs t h e  c r i t i ca l  t empera ture ,  is a function 
of the  mutual orientation of t h e s e  molecules, i.e., it 
is a function of the  s q u a r e  of the anisotropy tensor. 
T h i s  dependence gives r i s e  t o  a fourth-order  t e r m  i n  
t h e  express ion  f o r  the  f r e e  energy and th i s  t e r m  is 
proportional t o  t h e  s q u a r e  of the  anisotropy tensor  and 
t o  t h e  s q u a r e  of the  concentration fluctuations. A 
spec ia l  fea ture  of the  concentration fluctuations near  
t h e  c r i t i ca l  point of s t rat i f icat ion is manifested as wing 
narrowing. T h i s  theory was used in Ref. 9 t o  d i scuss  
s t e p s  in  the t empera ture  dependence of a wing. 

I n  a l l  the ci ted investigations the narrowing of Ray- 
leigh line wings was investigated in mix tures  of 
c r i t i ca l  concentration. T h e  interpretat ion of the effect 
given in Ref. 8 a l so  appl ies  t o  such  mixtures .  How- 
e v e r ,  additional information on  the  narrowing effect can 
b e  obtained a l s o  by investigating mix tures  with concen- 
t ra t ions  o ther  than cr i t ical .  The presen t  paper r e p o r t s  
such  a n  investigation of the narrowing of Rayleigh line 
wings of mix tures  of different concentration on ap-  
proach t o  the s t rat i f icat ion point. 

1. THEORY 

I n  accordance with the overal l  a i m  of the  present  
investigation, we sha l l  general ize the theory of narrow- 
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ing of Rayleigh line wings in stratifying solutions of 
critical concentration8 to  the case of solutions of 
arbitrary concentration. We shall therefore express 
the stratification temperature of a solution TmI in 
terms of the interaction energies of molecules. The 
critical temperature of stratification (on the absolute 
scale) can be described quite accurately by 

where Z, is the average energy of the interaction be- 
tween two adjacent identical molecules; v is the 
average energy of the interaction between two adjacent 
different molecules; k is the Boltzmann constant; z is 
the number of nearest neighbors. A natural generaliza- 
tion of Eq. (1) is the following definition of the stratifi- 
cation temperature: 

where is the average energy of the interaction of 
two adjacent molecules in a solution of concentration F 
in the homogeneous phase; b is the average energy of 
the interaction of two adjacent identical molecules in 
such a solution. 

We shall use v,, and v,, for the energies of the inter- 
action between two adjacent identical molecules of the 
component 1 and the component 2 of the solution, and 
v, for the energy of the interaction between two ad- 
jacent different molecules. We can easily show that v;, 
considered a s  a function of the molar concentration F 
of the first  component, has the following form: 

Using Eqs. (2) and (3) and assuming, for simplicity, 
that v,, = v,, we obtain 

When F =0.5, this expression reduces to (1). 

Equation (4) is the binodal of a solution. It is derived 
ignoring fluctuations of the concentration which a r e  
strong near the critical point of stratification. There- 
fore, our binodal is  "simplified" to a parabola with its 
vertex at F =0.5. The critical concentrations of stratify- 
ing solutions a r e  indeed close to 0.5 but a r e  not exactly 
equal to 0.5. The form of a binodal of stratifying solu- 
tions is also close to a parabola but has a flattened 
vertex, which makes it closer to the cubic dependence. 
One could refine the above simplified binodal by allow- 
ing for the concentration fluctuations, but this is not 
required in the derivation of the expression for the 
width of a wing. 

Assuming, as in Ref. 8, that v,, and v,, depend on 
the anisotropy tensor 5,,: 

(vl:), vg),  a,,, and a, a re  quantities independent of 
5,,) and substituting Eq. (5) in Eq. (4), we obtain 

k~ ,~ / z=4(v ,? ' -  v:?) [ I / .  - (E-0.5)']-4(a,,-a,.) [ I / .  -(1-0,5)21Em~E~m. 

(6) 
Denoting, a s  in Ref. 8, by a the coefficient in front of 
[,,{,, in Eq. (6) with the opposite sign and performing 
calculations similar to those made in Ref. 8, we ob- 

tain the following expression for the reciprocal of the 
anisotropy relaxation time divided by 2rc: 

(7 
Here, A, y,  to, b, and L have the same meaning a s  in 
Ref. 8: A is the coefficient in front of [ ,{, , in the 
free-energy term which depends only on <,t,,; y is 
the critical exponent (73 1.2); to is the coefficient in 
the expression for the correlation radius r,: 

T is the absolute temperature;,b ?s a constant (b= 5); 
L is the coefficient in front of [,,[,, in the dissipative 
function. 

Among these quantities the only one which depends 
strongly on the concentration is the coefficient L which 
varies proportionally to the viscosity of the investigated 
solution q .  The half-width of a wing Av can be expressed 
in terms of T a s  follows: Av =(2rcr)-', where c is the 
velocity of light. We can easily show that if v,, # u,,, 
the expressions (4), (6), and (7) should be transformed 
by the substitutions 

~ I I + ' / Z ( ~ ~ I + U ~ ~ ) ,  a , ,+1/2(a11+azz) .  

As pointed out in Ref. 8, a wing should become nar- 
rower only if a >  0, which reduces to the following con- 
dition if v,,#v,: 

If we use I ,  and I, to denote the lengths of the molecules 
of the components 1 and 2 and assume that a,, a la,, 
a,, o: I : ,  a, 111,, then for the same coefficients of 
proportionality in these expressions we find instead of 
Eq. (8) the condition (1,- h)'>O, which is obeyed if the 
molecules a r e  of different length. 

In comparison with the experimental results ,  Eq. (7) 
can be conveniently rewritten in the form 

where A, and 4 a r e  constants, q, is  the shear viscosity 
corresponding to F =Fc and T - T, =0.1 "C. 

2. MEASUREMENT METHOD AND DESCRIPTION 
OF THE INVESTIGATED SYSTEMS 

The apparatus used to study the spectra of depolarized 
scattering was basically similar to that employed in 
Ref. 2. One should mention that we employed a double- 
pass Fabry-Perot interferometer, which increased 
considerably the precision of measurement of the line 
wing. The scattered light was excited by an He-Ne 
laser (632.8 nm, 20 mW). The laser  radiation was 
polarized linearly in the scattering plane. Light scat- 
tered at an angle of 90°, polarized in the scattering 
plane and at right-angles to this plane, was investiga- 
ted. The region in the vicinity of the Rayleigh line wing 
was investigated from the position of the undisplaced 
line to 8 cm-' using the Fabry-Perot interferometer 
f ree  spectral ranges of 0.3, 0.417, 0.714, 1, 2.5, 5, 
and 16.7 cm". The half-widths of the Lorentzians 
representing the low-frequency part of a Rayleigh line 
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wing were determined by a method described in Ref. 2. 

We investigated stratifying aniline-cyclohexane (AC), 
nitrobenzene-n-hexane (NH), and nitrobenzene-n- 
dodecane (ND) solutions. Figure 1 shows the coexis- 
tence curves of these solutions. Curves 1, 2, and 3 
correspond to the NH, ND, and AC systems, respec- 
tively. In the case of the NH solutions measurements 
were made of the viscosity by a capillary viscometer 
in  the range of temperatures exceeding the critical 
value by 20-1°C (Table I). In the case of the ND solu- 
tions the viscosity was measured only for a solution 
of critical concentration in the temperature range 
50-28.5 "C. The values of the viscosity were easily 
approximated [(t -tc) 3 11 by the formula q,, =qDc + 
q dl-  c), where c is  the concentration of n-dodecane 
in molar fractions, whereas q2) and T J ~  a r e  the shear 
viscosities of the components. Therefore, for the 
other concentrations the viscosity was calculated 
using the same formula, which should not result in 
significant e r r o r s  because the viscosities of the com- 
ponents were similar. In the case of the AC solutions 
the viscosities were studied in a wide range of tempera- 
tures and concentrations in Ref. 10 and we used the 
results given there in an analysis of our data. 

The AC and NH stratifying solutions were in many 
respects similar. At room temperature the shear  
viscosities of aniline and nitrobenzene were consider- 
ably greater than the viscosity of cyclohexane (by a fac- 
tor of 3-4) and n-hexane (by a factor of 6-7). Our 
measurements indicated that the integrated intensity of 
the depolarized scattering in cyclohexane and n-hexane 
was more than order of magnitude less  than in aniline 
and nitrobenzene. Bearing this point in mind, we could 
assume that in the case of the AC and NH solutions an 
instrument recorded mainly the light scattered by the 
aniline and nitrobenzene molecules. 

The ND solutions differed from the AC and NH solu- 
tions. Fi rs t  of all, the viscosities of nitrobenzene and 
n-dodecane differed by just a factor of two a t  20°C. In 
the low-frequency part of a wing of both components of 
the mixture there was a narrow region where the inten- 
sity distribution was ~orentzian. ' )  The half-widths of 
the Lorentzians of nitrobenzene and n-dodecane a t  20°C 
were 0.12 and 0.05 cm", respectively. The integrated 
intensity of the spectrum of depolarized scattering in 
nitrobenzene was only ten times higher than in the case 
of n-dodecane, so  that the spectrum of the solution 

u 0.5 1.0 
c,  molar fnctionr 

FIG. 1. Solution coexistence curves: 1) nitrobenzene-n- 
hxane (< = 0.6 molar fractions of n-hexane, Tc = 20 "C); 2) 
nitrobenzene-n-dodecane (< = 0.43 molar fractions of n- 
dodecane, Tc = 28.2 'C); 3) aniline-cyclohexane (< = 0.56 
molar fractions of cyclohexane, Tc = 32 'C). 

TABLE I. Viscosity of NH solutions (cP). 

should include light scattered by the nitrobenzene and 
n-dodecane molecules. 

M o h I  frnc- 
tion of 
"h- 

3. RESULTS OF MEASUREMENTS 

Typical spectrograms (interferograms) obtained for 
a n  ND solution of critical concentration a t  temperatures 
15°C and 1.3"C higher than the critical value a r e  shown 
in Fig. 2. They were recorded using the f ree  spectral 
range of the interferometer amounting to 5 cm" (the 
instrumental function of the apparatus was then described 
by the Voigt distribution with the parameters j3, 
=0.0154, 8, =0.056, and h =O.ll-Ref. 11). Figure 3 
shows our dependences of the half-width of a Rayleigh 
line wing on the concentration of n-hexane, n-dodecane, 
and cyclohexane in the NH, ND, and AC mixtures at 
various temperatures. 

0.2 0.87 0.966 1.1 1.235 1.25 0 34.5 0.355 0.4 0.44 0.43 
0.4 0.62 0.67 0.755 0.92 0.935 0.31 0.35 0 3  00.97 
0.6 4 9 1 .  0 6 7  1 .  I !!i 1 %  1 0.26 1 0.3 1 0,32 10.325 

t.Oc 

50 1 4 0 1  30 1 2 2  1 2 ,  

In a stratifying ND solution in the low-frequency part 
of a Rayleigh line wing we found two Lorentzians with 
very different half-widths. The difference between these 
widths increased on approach of the solution concentra- 
tion to the critical value. 

Since in the case of the ND solutions the narrowing 
of a wing had not been investigated earl ier  in a mixture 
of critical concentration (this was in contrast to the NH 
and AC solutions), we reproduced in Fig. 4 the depen- 
dence of the logarithm of the anisotropy relaxation time 
7 on -In&, where E =(T - T,)/T,, applicable to a wide 
Lorentzian. In the temperature interval from At =T - T, 
= 20 "C to At = 2 "C this Lorentzian decreased in width by 
a factor of about 10. There was no change in the width 
in the temperature interval from At = 2 "C to At = 0.1 "C. 

I 

The behavior of the wing width in stratifying solutions 
was compared with the behavior in the case of pure 

Molar f i ~ c  1 1. "c 
aon of 
d e X U l l C \ 5 0  1 4 0  1 3 6  1 2 2  1 2 ,  

FIG. 2. Typical interferograms obtained for an ND solution 
when At = 15 "C la) and A t = 1.3 "C (b). The polarization of 
the scattered light was normal to the scattering plane and the 
free spectral range of the interferometer was 5 cm-'. 
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c, molar fractions 

FIG. 3. Dependences of the half-width A v of Rayleigh line wings a t  various temperatures (OC). a) Dependence on the concentra- 
tion of n-hexane in an NH mixture: 1 (0) - 50; 2 (A) - 40; 3 (0) - 30; 4 (m ) - 22; 5 (e ) - 21. b) Dependences on the concentration of 
n-dodecane in an ND mixture: 1 (.) -38.8; 2 (0) - 31.2; 3 (A)- 28.8. c) Dependences on the concentration of cyclohexane in an 
AC mixture: 1 (0) - 61.8; 2 (m) - 51 ; 3 (A) - 42.4; 4 (0) - 38.5; 5 (0) - 35.3; 6 (A) - 33.2. The continuous curves are calculated 
ushg Eq. (9). 

liquids and nonstratifying solutions by determining the concentration is altered (dark triangles in Fig. 5, cor- 
temperature dependences of the anisotropy relaxation responding to solutions of nitrobenzene in CC1, at 20°C 
time of nitrobenzene, toluene, and aniline, and also with concentrations of CC1, from 0.1 to  0.8 molar frac- 
solutions of these liquids in CC1,. The open and black tions). It follows from Fig. 4 that in the case of 
circles,  squares, and triangles in Fig. 5 represent the stratifying solutions the value of T varies much more 
values of 7 deduced from the half-width of the low- rapidly with temperature in the region T - T, than does 
frequency part of a Rayleigh line wing in the case of the viscosity. 
aniline, toluene, and nitrobenzene, and of their solu- 
tions in CC1, considered a s  a function of the viscosity. 
The results for the solutions of toluene in CC1, were 
taken from the work of Alms et a1.12 The solvent (CC1,) 
for nitrobenzene and aniline was not chosen a t  random. 
The intensity of anisotropic scattering in CCl,, cyclo- 
hexane, and n-hexane was approximately of the same 
order of magnitude s o  that nonstratifying nitrobenzene- 
CC1, and aniline-CC1, solutions were similar,  in 
respect of the intensities of light scattered by the com- 
ponents of the solution, to the stratifying NH and AC 
solutions. 

4. DISCUSSION OF RESULTS 

We can see  from Fig. 5 that the anisotropy relaxation 
t ime of nonstratifying solutions and pure liquids varies 
with temperature in direct proportion to the viscosity. 
This proportionality is observed when the temperature 
of the solution is varied (dark circles in Fig. 5 cor- 
responding to a solution of aniline and 0.6 molar frac- 
tions of CC1, a t  various temperatures) o r  when the 

- 2 
-In E 

FIG. 4. Dependence of the logarithm of the anisotropy relaxa- 
tion time T on -In & (& = A T/ To) for an ND mixture of critical 
composition. The continuous curve is  calculated using Eq. (9). 

It follows from Figs. 3 and 4 that the narrowing of a 
Rayleigh line wing occurs in the case of solutions of - 

critical concentration and also in the case of solutions 
with concentrations other than cri t ical  when the point 
of stratification i s  approached. For example, in the 
case of the AC solutions (Fig. 3c) the greatest narrow- 
ing of the wing occurs a t  F =Fc (for this solution, we 
found that F, =0.56 molar fractions of cyclohexane). 
Similar narrowing is also observed a t  concentrations 
separated from F, by 0.1-0.2 molar fractions. Analog- 
ous behavior is exhibited also by the NH and ND solu- 
tions (Figs. 3a, 3b, and 4). 

The nonmonotonic nature of the narrowing of a Ray- 
leigh line wing observed earlier  for solutions of cri t i-  

FIG. 5. Dependences of the anisotropy relaxation time T on 
the viscosity q of nitrobenzene (d, toluene (01, aniline (0) 
and their solutions in CCll (represented by A, m, and o, re- 
spectively). 
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cal concentration2" occurs also in solutions of non- 
critical concentration. This is clearly seen in Fig. 3c, 
where the half-widths a t  51, 42.4, and 38.5"C a r e  
similar for F =E, ,  a s  well a s  for 0.49 and 0.65 molar 
fractions of cyclohexane. Such nonmonotonic narrowing 
of a Rayleigh line wing is not observed for the ND solu- 
tions (Figs. 3b and 4). As shown in Ref. 9, the exis- 
tence of several anisotropy tensors, whose relaxation 
times vary in accordance with the theory of Ref. 8, 
may result in nonmonotonic narrowing of the wing since 
the method of analysis 'does not allow us to distinguish 
between Lorentzians with close half-widths. In the case 
of the ND solutions the low-frequency part of the wing 
is described, a s  pointed out earl ier ,  by a sum of Lor- 
entzians with very different (by an order of magnitude) 
half-widths, so  that each Lorentzian can be easily 
separated from the spectrum. Clearly, this is why the 
narrowing of the wing is monotonic for the ND mixtures. 

It readily follows from Fig. 3 that the narowing of a 
Rayleigh line wing on variation of the solution concen- 
tration is  characterized by the following features: the 
wing half-width considered a s  a function of the concen- 
tration has a maximum at temperatures far from T, 
and a minimum at  temperatures close to T,. In the case 
of the AC and ND solutions this maximum and minimum 
a r e  located near the critical concentration. However, 
in the case of the NH solutions the maximum i s  shifted 
toward higher n-hexane concentrations. 

We shall now compare the results obtained with the 
formulas derived in Sec. 1. We shall begin with a 
qualitative comparison. Equations (7) and (9) predict 
a maximum in the concentration dependence of the wing 
half-width at temperatures f a r  from T, and a minimum 
at temperatures close to T,, in agreement with the ex- 
perimental results. If the viscosities of the solutions 
do not vary greatly with the concentration, a s  in the 
case for the AC and ND solutions, the maximum and 
minimum in Eqs. (9) and (9) a re  located near E =F, 
= 0.5, which i s  again in agreement with the experimental 
results. When the viscosities depend strongly on the 
concentration, which is  true of the NH solutions, in 
which case the viscosities of the components differ by 
a factor of 7 a t  20°C, the maximum in the formulas 
(7) and (9) shifts toward lower viscosities, a s  indeed 
observed for an NH solution. At a fixed concentration 
the formulas (7) and (9) predict the observed narrowing 
of the wing on approach of T to T ,, . 

A qualitative comparison of our experimental results 
with Eq. (9) is made in Fig. 3. The continuous curves 
a r e  calculatedusingEq. (9) selectingtwo constantsAl/ql 
andA2/q1; the points a r e  the experimentalvalues. The 
values of A1/ql and 4/11, and of q, used in these cal- 
culations a r e  listed in Table 11. It is clear from Fig. 3 
that the formula (9) describes reasonably the concen- 

tration dependence of the half-width of a Rayleigh line 
wing in the case of the upper and lower curves. The 
disagreement for the intermediate curves is clearly 
associated with the steplike experimental dependences. 
The formula (7) predicts just one anisotropy relaxation 
time. The formula (9) applies also the the average 
half-width of a Rayleigh line wing =(2nc7)-' when 
there a r e  several  relaxation times rl, r2,. . . (7-I =rll 
+r;l +. . . ), described by the formula (7). In the pres- 
ence of steps in the experimental curves the formula 
(9) can describe only the behavior of the smoothed-out 
curve. 

At i? =Z,J 0.5 the formula (9) reduces to the expres- 
sion obtained in Ref. 8 for a solution of critical con- 
centration: 

We shall use this formula to compare our data on the 
temperature dependence of T of an ND solution of criti- 
cal concentration. Since such a solution does not exhibit 
the steplike behavior, the formula (10) can be used 
without complications. Figure 4 shows a continuous 
curve plotted on the basis of Eq. (10) for A1/ql and 
A,/?, listed in Table XI, whereas the points a r e  the 
experimental values. It i s  clear from Fig. 4 that this 
equation describes well the experimental results so  that 
the critical index for the wing half-width is  indeed close 
to 0.8. 

We shall conclude by considering a different explana- 
tion of the narrowing of a Rayleigh line wing. The al- 
ternative explanation in Ref. 4 is based on the Wilsonls 
formula for the rotational diffusion coefficient: Drat 
= k~/8nq^/9,. This formula is  obtained by replacing in the 
Debye expression the molecular radius with the corre- 
lation radius r,. The Wilson formula is  an analog of 
the experimentally tested expression for the transla- 
tional diffusion coefficient D t,ne =k~/Gnqr,, which is 
again obtained by replacing the molecular radius with 
the correlation radius but in the Stokes formula. We 
might mention that the Wilson formula might be valid 
near the transition from an isotropic liquid to a nematic 
liquid crystal, where a correlation is  observed in the 
molecular orientation, but there is no justification to 
apply it a t  the critical point of stratification when there 
is no such correlation. Moreover, in the case of 
translational motion the displacement of molecules 
involves a change in the concentration and, therefore, 
a molecule tends to  drag a region of volume behind 
it; the rotational motion does not al ter  the concentra- 
tion s o  that similar considerations a r e  inapplicable. 
This raises doubts about the validity of the Wilson 
formula near the critical point of stratification. 

We take this opportunity to thank I. L. ~abel inskG 
and V. S. Starunov for their help and valuable com- 
ments in the discussion of the results, and to A. K. 
Atakhodzhaev for his continuous interest. 
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A consistent theory of energy exchange between high-energy charged particles and random magnetic-field 
inhomogeneities frozen in a moving plasma is developed. It is shown that the character of the change of the 
particle energy, given the plasma-velocity variation in space, is determined by the concrete form of the 
particle distribution function. An equation is obtained for the particle energy density, and the question of 
formation of the energy spectrum of the charged particles in the course of multiple scattering by random 
magnetic-field inhomogeneities is considered. 

PACS numbers: 52.20.Hv, 52.30. + r 
1. INTRODUCTION 

One of the vital problems of plasma physics, cosmic- 
ray physics, and plasma astrophysics is  that of the mo- 
tion of charged particles in a random magnetic 
The first  consistent kinetic approach to the problem of 
the motion of charged particles in a magnetic field with 
random inhomogeneities was developed by Dolginov and 
Toptygin.' They obtained a kinetic equation that de- 
scribes the multiple scattering of charged particles by 
moving magnetic-field inhomogeneities, and established 
the correct form of the diffusion-approximation equa- 
tions, namely the equation for the density of particles 
with a given momentum and the expression for the par- 
ticle flux-density vector in space. 

On the other hand, a phenomenological theory of 
propagation of charged particles in a random magnetic 
field was developed6-' in connection with problems of 
cosmic-ray physics. In this theory it became neces- 
sary to postulate an expression for the particle flux 
density in the space of the absolute values of the mo- 
mentum due to the exchange of energy between the 
charged particles and the moving magnetic-field in- 
homogeneities. The dominant concept in the consider- 
ation of the process of energy dissipation in a system 
consisting of charged particles and magnetic inhomo- 
geneities was the conviction that the energy-exchange 
mechanism is limited exclusively by the spatial char- 

acter of the change of the velocity of the medium in 
which the random magnetic-field inhomogeneities a r e  
frozen-in. This point of view was formulated most 
clearly for the question of energy exchange between 
charged particles and magnetic inhomogeneities by 
parkers and by Jokipii and Parker: who used the hy- 
pothesis of adiabatic slowing down of the charged parti- 
cles. The gist of this hypothesis i s  that high-energy 
charged particles scattered by radially moving mag- 
netic field inhomogeneities lose energy systematically. 
We shall show that this i s  a restricted concept, since 
it takes no account of the character of the distribution 
of the charged particles, so  that i t  i s  necessary to re-  
view the notions concerning energy dissipation in multi- 
ple scattering of charged particles by moving magnetic- 
field inhomogeneities. Actually, given the law that 
governs the variation of the velocity of the medium in 
space, the character of the change of the energy of the 
charged particles depends essentially on the form of 
the particle distribution function. If the system di- 
mensions a r e  large enough and the particles have time 
to become strongly scattered, so  that their spatial dis- 
tribution becomes close to isotropic, then the energy- 
exchange process i s  determined by the sign of the sca- 
lar product (u- V ) N  [u(r) is  the velocity of the medium, 
and ~ ( r ,  p, t) is  the density of the particles with given 
value of the momentum ppO and at (u- V ) N >  0 continuous 
energy transfer takes place from the moving magnetic- 
field inhomogeneities to the charged particles. In the 
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