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Theory of drift motion of molecules in the field of resonant 
infrared radiation 
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The distinguishing features of the effect of molecule drift in the field of resonant infrared radiation are 
discussed. The kinetics and hydrodynamics of the drift streams in a multicomponent gas mixture, which take 
place at a constant summary gas pressure, are formulated with account taken of the collision quenching of the 
excited molecules and of the rotational relaxation. The stationary distribution of the concentrations of the 
resonant molecules and of the buffer-gas particles are obtained for a closed cuvette as well as in the case of 
drift of the gas-mixture components from one vessel to another. Instability of the two-stream flow in a 
mixture of neutral gases, reminiscent of two-stream instability in a plasma, is predicted. 

PACS numbers: 51.10. + y, 33.90. + h 

Gel'mukhanov and  hal lag in' have predicted theoreti- 
cally the existence of a very interest ing phenomenon- 
the onset,  under  the influence of a t ravel ing resonant  
wave, of macroscopic a tom s t r e a m s  directed along or 
against  the light flux. T h e s e  s t r e a m s  appear  only in  the 
presence of a n  extraneous buffer gas ,  which moves in 
this  case opposite to  the resonant  par t ic les ,  so that the 
summary  mat te r  flux is zero. A s i m i l a r  phenomenon 
w a s  apparently observed in the experiment  of Ashkin 
and co-workers,' but the cause  of the effect remained 
unexplained. In a r e c e n t  experiment3 performed under  
conditions close to those of Ref. 2, a par t i a l  separat ion 
of a mixture of sodium vapor and a noble g a s  (He, Ne) 

was  observed," and the direct ion of the effect was  i n  
agreement  with the predict ions of the theoryi and with 
the  observation^.^ At  the opt imal  choice of the mixture 
p a r a m e t e r s  and of the radiation, the equivalent f o r c e  
acting on the resonant  a toms  can exceed the fo rce  of 
the spontaneous light p r e s s u r e  by six o r d e r s  of magni- 
tude. It is there fore  of in te res t  t o  invest igate  various 
aspec t s  of this  phenomenon in g r e a t e r  detail. 

Par t i cu la r ly  urgent  is the a s s e s s m e n t  of the possibil- 
i ty of obtaining molecule s t r e a m s  in an in f ra red  (IR) 
resonant  field. First, s o u r c e s  of in f ra red  radiat ion are 
available, such  as tunable C02 lasers: with average 

612 Sov. Phys. JETP 52(4), Oct. 1980 0038-5646/80/100612-09$02.40 O 1981 American Institute of Physics 612 



power and efficiency greatly exceeding the sources in 
the visible and ultraviolet bands. Second, the amount of 
energy needed when IR radiation sources a r e  used is 
smaller by a factor ~ / m  than in the optical band (M is 
the mass of the atom o r  molecule, m i s  the mass of the 
electron). Third, when molecules with high elastic va- 
por pressure a r e  used the densities of the gas mixtures 
exceed by many orders of magnitude the densities of the 
atoms a t  the same temperatures. Fourth, the complex 
character of the vibrational-rotational spectrum of poly- 
atomic molecules imposes much less  stringent require- 
ments on the widths of the spectrum and on the tuning of 
the source frequency. Finally, the use of molecules 
would greatly extend the range of possible applications 
of this effect, particularly because it i s  more conven- 
ient to work at lower temperatures, and this would un- 
cover prospects of ecological applications. 

A direct application of the results of the Ref. 1 to 
molecular gases and infrared radiation leads, however, 
to pessimistic estimates. In fact, for a resonant-atom 
flow velocity u, Ref. 1 cites the qualitative estimate 

Here v, (i = 1 ,2 )  a re  the transport frequencies of the 
collisions of the resonant atoms with the buffer gas in 
the lower (1) and upper (2) states, y;' is the radiative 
lifetime of the excited particle, and vT is the thermal 
velocity. Estimates quoted in Ref. 1 for a mixture of Na 
with He yield u -  (0.1-0.002)vT, which is quite appreci- 
able. For the case of molecules in an IR field, there 
a re  a number of physical factors that make velocity cal- 
culated from (1) low. The radiative lifetime of the mol- 
ecules for vibrational transitions is usually smaller by 
more than five orders of magnitude than for optical 
transitions in atoms. As will be shown below, for mol- 
ecules it i s  necessary to use in place of the radiation 
frequency y, the frequency of the quenching collisions 
VT (V-T relaxation), but even this frequency is low 
compared with v2. For  most molecules vT/v2 - 1 om2- 
10'~. Whereas for atoms almost all the particles can 
enter into resonance, on going from a nondegenerate 
ground state, for molecules irradiated with monochro- 
matic IR only one o r  several  rotational sublevels of the 
vibrational band, in which a small fraction (~0.1-0.01) 
of the particles is concentrated, enters into resonance. 

Measurements of vl and v2 have been made for atoms5 
and have yielded a value I (vi-v2)/vl I - 1. Practically 
no such measurements have been made for molecules, 
and arguments a re  advanced in the literature6 that this 
quantity is generally speaking small. Thus, the overall 
loss in the effect on going from atom to molecules 
seems a t  f i rs t  glance to exceed 3-6 orders  of magni- 
tude. 

It must be noted that in a molecular gas the produc- 
tion of streams oi resonant particles by IR radiation is 
accompanied by a much larger number of processes 
than in an atomic gas. These include the processes of 
V-T relaxation, rotational relaxation, V-V exchange, 
cascade excitation of various vibrational states in addi- 
tion to processes common to both cases, such, as exci- 
tation of resonant particles by the field and collisions 

with change of momentum. Thus, the phenomenon a s  a 
whole is more greatly varied in a molecular gas. As 
shown in our earl ier  paper,' i f  a number of conditions 
a r e  satisfied the drift velocity of the resonant molecules 
can reach values comparable with their thermal veloci- 
ty. The present paper constitutes further development 
of Ref. 7 and contains a more detailed investigation of 
the kinetics and the two-fluid hydrodynamics that de- 
scribes the internal flows in a gas mixture. The stabil- 
ity of the streams of resonant particles in the field of a 
wave is considered. 

1. QUALITATIVE DESCRIPTION OF THE EFFECT 

For a qualitative explanation of the effect, we shall 
trace the fate of a single resonant molecule in an IR 
field. Let the radiation frequency w be tuned away from 
the center wo of the absorption line of the given vibra- 
tional transition by an amount A = w - wo - kvT; k = W/C. 

The molecule will absorb most effectively this radiation 
if  the projection of the molecule velocity on the direc- 
tion of the wave satisfies the Doppler condition 

and the molecule rotational states corresponds to the 
resonant state ( j  ,). After a number of collisions, a 
particle having initially an arbitrary velocity and an ar-  
bitrary number j becomes resonant. This takes place 
after a time 

Here r is the collision width of the resonance and is 
determined by the time of loss of phase matching of the 
state (in the general case r 2 T:;), T,, is the momentum 
relaxation time, k, is the Boltzmam weight of the j-th 
rotational state, and rR is the rotational relaxation 
time. The particle is then excited after a time 7 ,  that 
depends on the electric field intensity E and on the ex- 
citation mechanism (coherent p l z ~ / t i r  > 1 o r  incoherent 
p l z ~ / ~ I '  < 1; pi2 is the dipole moment of the transition). 

The transport mean f ree  paths of the molecule in the 
excited (12) and unexcited (1 , )  states, in collisions with 
the buffer gas, a r e  generally speaking different. Con- 
sequently the molecule, which executes random walks 
prior to the excitation, acquires a directional displace- 
ment amounting to 61 =11 - 12, collinear with the wave 
vector of the radiation. The sign of this displacement 
is determined by the sign of A61. The subsequently 
colliding particle, after the lapse of the characteristic 
time 7t1 of momentum relaxation on the buffer-gas par- 
ticle, will again execute random walks with a new mean 
f ree  path. This collision, in contrast to all  others, 
must be precisely with a buffer-gas particle, otherwise 
the total displacement of the two colliding particles is 
equal to zero.2' In order for the molecule to be dis- 
placed once more in the same direction, i t  must be re- 
turned to the initial state by the quenching, after a time 
-rT<< y;l. The cycle s o  described i s  completed within 
a time t, on the order of the longest of the times listed 
above, and is accompanied by a displacement 61 of the 
resonant molecule. Multiple repetitions of this cycle 
lead to a drift3 of the resonant particles with average 
velocity 
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here 

2. ESTIMATES OF THE MAGNITUDE OF THE 
EFFECT. EXAMPLES 

In order for the velocity u to be a s  large a s  possible, 
i t  is desirable, f irst ,  to have 81-1, and second, the 
time t ,  must be minimized. This is easiest to do by 
making all the times in (4) of the same order. Inasmuch 
as a large number of processes of different kinds come 
into play and a r e  determined by different physical mech- 
anisms, one can hope to satisfy these requirements by 
choosing, generally speaking, a multicomponent mix- 
ture in which each component performs various func- 
tions (quenching, rotational relaxation, momentum re- 
laxation) that a r e  different for  different vibrational 
states. 

The foregoing processes, which a re  needed to realize 
a cyclic displacement of the resonant molecule, com- 
pete with the "harmful" collisions that lengthen the time 
of the cycle and decrease the fraction of particles in- 
volved in the flow. Such processes a re  elastic collisions 
of the excited particle with molecules of i t s  own gas, 
and V-V exchange. If the amount of buffer gas is small, 
then the f i rs t  process decreases the velocity u in a ra- 
tio -v,/(v + v,), where v, is the frequency of the colli- 
sion with the buffer-gas particle and v is the frequency 
of the collision of the resonant particles with one an- 
other. If the V-V exchange is the fastest process, the 
fraction of the resonant particles decreases because of 
the particle flow to the upper vibrational levels. How- 
ever, a s  will be shown below, in the optimal regime the 
radiation power should be of the order of the power of 
saturation of the resonant vibrational band (in this case 
r,,-rT and the fraction of the resonant particles is -1). 

We note that V-V exchange processes can increase 
the drift velocity in certain cases (e.g., when the reso- 
nant radiation is applied in pulses) and assume the role 
of quenching collisions. If the width of the vibrational 
band is comparable with the anharmonic change of the 
frequency on the higher vibrational transitions, then the 
upper vibrational-rotational states can enter into reso- 
nance with the radiation field, on account of the V-V 
exchange, and thus participate in the total drift of the 
molecules. We present estimates of the characteristic 
times that determine the duration of the cycle. For  the 
SF6 molecule8 we have pTR - 40 nsec-Torr, firvv- 1 
psec-Torr, prVT - 160 psec-Torr, prel 1 psec-Torr, 
and pi*- 0.3 D. When the vibrations a re  quenched by 
buffer-gas particles, i t  is possible to obtain rT2 T ,, by 
selecting the proper pressure and mixture composition 
(e.g., fiTVT"30 psec-Torr when SF6 is quenched by 
CHSF moleculess), etc. 

It should be noted that the quenching rate can increase 
with decreasing gas temperature.' The decrease of the 
temperature is helpful also from the point of view of in- 
creasing the fraction of particles on the lower resonant 
vibrational-rotational level. It is seen thus that by op- 

timizing the conditions i t  is possible h principle to at- 
tain equality of the times in (4), s o  that t,-rel. 

To increase the drift velocity of a resonant particle i t  
is necessary that the difference between the mean f ree  
paths of the excited and unexcited molecules not be 
small. The difference in the cross  sections of elastic 
scattering of particles in states 1 and 2 can be the re- 
sult of van der Waals attraction of the molecule to the 
particles of the buffer gas. The van der  Waals potential 
of the interaction of the molecule in the vibrational state 
v with an atom can be represented in the form 

Here R is the distance between the particles, a is the 
polarizability of the atom in the ground state, and C is 
given by 

In (6), m and n a r e  the electronic states of the molecule 
and the atom, c, and c, are  the dipole-moment opera- 
tors, and Em and En are  the energies of the correspond- 
ing states. The contribution from the vibrational states, 
which is determined by the f i rs t  term of (5), differs by 
a factor of 3 in the states 1 (V=O) and 2 (V=l) .  At the 
same time, i t  can be much smaller than the contribu- 
tion from the interaction via electronic states, since 
the dipole moment of the vibrational transition for  a 
number of molecules is commensurate with the elec- 
tronic transitions. (Thus, p,,"0.3 D for the SF, mol- 
ecule.) It should be noted that over dimensions of the 
order of the gas-kinetic radius of the molecule, the en- 
ergy of the van der Waals interaction is comparable 
with the thermal energy of the relative motion, and 
consequently i t s  contribution to the scattering cross  
section is comparable with the contribution from the 
short-range repulsion potential. 

We now estimate the influence of the short-range po- 
tential. The characteristic dimension t of the mole- 
cule vibration amplitude is -( rn/p)"*~~ (here m is the 
electron, p is the reduced mass of the vibration, Ro  is 
the equilibrium dimension of the molecule) and is com- 
mensurate with the radius -0.2 hi of the short-range po- 
tential." For this reason the relative difference be- 
tween the scattering cross  sections in states 1 and 2, 
due to the repulsion potential, can also amount to sl. 
Thus, by choosing a molecule with a large transition 
dipole moment, and a buffer gas with high polarizabil- 
ity, one can expect the case 81 < I to be realistic in the 
molecular gas. It is known from e ~ ~ e r i m e n t , ~  for ex- 
ample, that the diffusion coefficient of vibrationally ex- 
cited C02 [in the state (0,0, I ) ]  differs noticeably from 
the corresponding coefficient in the ground state. 

The foregoing arguments show that the drift velocity 
of molecules acted upon by resonant IR radiation can 
reach under optimum conditions values u S 0.1 u,. Of 
course, the realization of these conditions depends es- 
sentially on a large number of parameters and calls for 
experimental research. 
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3. KINETIC PROCESSES IN  A MOLECULAR GAS 
IN THE PRESENCE OF RESONANT RADIATION 

A quantitative description of the drifts of molecules 
under the influence of resonant IR radiation requires 
that a large number of processes be taken into account 
and is in the general case extremely unwieldy. We con- 
sider a model that reflects the main features of the 
phenomenon and makes i t  possible to determine the de- 
pendence of the drift velocity of the resonant particles 
on different parameters, and also to describe the en- 
suing flow of various components of the mixture and to 
investigate the stability of this flow. To simplify the 
notation, we consider f i rs t  the case when the rotational 
relaxation processes need not be written out explicitly 
in the kinetic equations for the resonant gas. This can 
be done if the rates of the corresponding processes a re  
low or,  conversely, large compared with the rates of 
the quenching processes (with frequency vT) and with the 
momentum relaxation (with frequencies vi and v2 for the 
lower and upper  state^).^' A more general case is con- 
sidered in the Appendix. The velocity distribution func- 
tions of the resonant particles in states 1 and 2 satisfy 
the system of equations5' 

Here I is the radiation intensity, u is the cross  sec- 
tion of its resonant absorption, 

(X i s  the wavelength and A is the probability of the spon- 
taneous e m i ~ s i o n ) . ~ '  In the model considered, strong 
 collision^'^ of the resonant particles with the buffer gas 
are  assumed, s o  that the particle relaxes from a state 
with any initial velocity to a Maxwellian distribution 
W,(v) (if the buffer gas moves, then the argument of the 
function UG is shifted by an amount equal to the buffer 
gas velocity). This model is valid if the density n of the 
resonant particles is small compared with the density 
n, of the buffer particles, and the change of the velocity 
in each collision i s  of the order of the velocity itself, 
e.g., i f  the particles a re  light and the buffer is heavy. 
The collision frequencies v1 and v2 in Eqs. (7) and (8) 
a re  proportional to p / ~ ,  where IJ. is the reduced mass 
of the resonant and buffer particles and M is the mass 
of the resonant molecules. We note that i t  is correct to 
express the processes of excitation of the molecules by 
resonant radiation in the form la in the case of mono- 
chromatic radiation. In the more general case this 
quantity must be averaged over the pump spectrum. 
The quantities ni and n2 in (7) and (8) are equal to the 
populations in the states 1 and 2: 

The homogeneous stationary solution of the system (7) 
and (8) takes the following form (the dependence on the 
transverse velocities v is determined by the Maxwellian 
function W,) 

(0) 
f*  ( v )  -wM (v2nz +"(ln,+n,)) lio v / D. 

Here D = vz + v, + (~u/fiw)(l + vz/vi). Integrating (12) 
with respect to the velocities and using the condition nl 
+nz =no, we obtain 

The quantity no is equal to the sum of the populations in 
the states 1 and 2. It follows from (13) that the popula- 
tion on the upper level saturates a t  a radiation power 
I-1,-tiwvT/2(u), where (u)=SuW&v. The summary 
average velocity of all  the resonant particles is given by 

u = I v(f:"+ f?')dv/n. (1 4) 

From (1 1 ) and (1 4) we have 

Here vf i s  the velocity of the buffer-gas particles in the 
laboratory frame. The quantities u and v: a re  connect- 
ed by the condition that there be no macroscopic flow 

nu+nnvmB=O. (1 6) 

In the model considered we have (v:l<< u. It follows 
from (15) that the motion of the resonant particles rela- 
tive to the buffer gas sets in only at vi t v2. The dis- 
tribution function dO'(v) is not in equilibrium in the pre- 
sence of resonant irradiation; in the region of the reso- 
nant velocity v, = h / k ,  a peak appears in the velocity 
distribution. Using (9), (12) and (15) we obtain (at vf 
<< U) 

here 

a, = x Z ~ / 2 n r  is the absorption cross section at reso- 
nance, 

From (1 7) we can obtain 

Here a =rJ2kvT and y =A/~v,.  The function Y(a,y) 
is determined in terms of the Voigt profile of the ab- 
sorption lineis .. 

t l(a,  y) = J c-af-wh cos yt cit 
a 

and the function - 
L(a, y) = I c-"'-"/'/' sin yt dt 

0 

by the relation 

Asymptotically, a t  large and small values of a ,  we have 

V (a, y) mn'" exp (-y') +a/yl+ . . . , a<l; 

Y (a, y)=a/(yZ+a')'+ . . . ,awl .  
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The quantity (0) is determined with the aid of H(a,y): 
(0) = u,a '~(a ' ,  y ), where a' = r/2kvr. 

The direction of the velocity relative to the x axis 
along k depends on the sign of (1 - v,/v,)A. At v,, v, * v, 
and I<Z,~,/V, we have 

If Fi2~/EI'  << 1 and a< y (incoherent case), then I?, I' 
and 

The optimal rate corresponds to the saturation power 
and is given by [cf. (l)] 

At Cli2~/fir >> 1 (I >I,v2/v,) we have r*>> r and the 
velocity decreases with increasing power: 

VI-vz A no AmvT 
u=2---- 

v,+v, k n lo ,  

We investigate now the dependence of the velocity on the 
detuning A (at I <  I,). If a << 1, then the velocity reaches 
a maximum at  A = kv,/fi/ At a >> 1,  on the other hand" 
the maximum velocity corresponds to a value A = r/fi 
(in this case the velocity decreases like a"). If the buf- 
fer-gas velocity is not low ( [v: I s u ) ,  then expressions 
(15) and (16) become the equations for  the velocity of 
the resonant particles, and if there is no buffer gas, 
then there is no motion of the resonant particles, and 
the kernel of the Maxwellian distribution shifts into the 
region of the velocities whose sign is opposite to the 
sign of the detuning from resonance. 

In the case when the resonant particles serve a s  a 
small admixture to the gas that absorbs the incident 
radiation on the line wing, a situation can ar ise  in which 
the total number of the "usefully" excited particles is 
small compared with the number of excited buffer-gas 
particles. The latter will then slow down the motion of 
the resonant particles, but this deceleration is deter- 
mined by the ratio of the cross sections (0) for particles 
far  from resonance for and the useful ones: 

Since ( ~ ) - e x p ( - ~ ~ ) ,  i t  is relatively easy to ensure a 
selectivity S s 2, thereby weakening the harmful effect 
due to excitation of the buffer particles on the velocity 
of the resonant molecule. 

By adding to the mixture of nonresonant gases a small 
admixture of resonant molecules, i t  is possible to sep- 
arate the mixture, since under resonant irradiation the 
magnitudes and the directions of the velocities of the 
different mixture components can be different. 

4. HYDRODYNAMICS OF INTERNAL FLOWS 

In the absence of motion of the medium a s  a whole, 
the inner flows due to the drift of the resonant particles 
lead to a peculiar picture of hydrodynamic flow. A study 

of such flows is of independent interest regardless of 
the possible applications of the described effect. In the 
simplest mixture consisting of a resonant gas and a buf- 
fer  gas, two-stream flow sets  in ,  in which an effective 
force is present and acts from opposite sides on the 
resonant and buffer particles. This situation recalls 
plasma hydrodynamics, in which the role of the force 
acting from opposite sides on the electrons and ions is 
played by the electric field. The expression for the 
volume force F can be obtained by rewriting the condi- 
tion (15) in the form 

F-pn.nk, (u-v.) =o, (1 5 4  
where F =M(vi - vz)nz(uz - v,,) and ki is the elastic- 
scattering rate constant. Here n$z =j fio'v dv. The 
quantity uz depends on the buffer-gas velocity. Expres- 
sion (1 5a) coincides with the condition that the force 
acting on the resonant molecules be equal to the friction 
force between the resonant and buffer particles. 

The hydrodynamic equations of resonant particles can 
be derived from the system of kinetic equations (7) and 
(8), using as  the initial approximation the homogeneous 
solutions for the quantities f:" and f!". These solutions 
a re  not in equilibrium and describe already the drift of 
the resonant particles under the influence of the radia- 
tion force. The distribution functions f:'' depend on the 
parameters n,  I, T, and others. Therefore the hydro- 
dynamics equations reduce in this case to a system of 
equations for the balance of the particles with the drift, 
diffusion (proportional to Vn), thermal diffusion (VT) 
fluxes a s  well a s  fluxes proportional to the gradients of 
the intensity and other parameters on which the locally 
homogeneous solutions .fiO' depend. It is necessary to 
add to these equations the condition (16) that the medium 
a s  a whole remain immobile, and also the equation fo r  
the radiation intensity. 

We consider for simplicity one-dimensional flow. We 
seek the solutions of the inhomogeneous system (7), (8) 
in the form of a ser ies  in the parameter I/X, where X 
is the characteristic scale of the inhomogeneity. Sub- 
stituting the solution in the form 

f , = f : @ ) +  f1° +... 
in Eqs. (7), and (8), we obtain the quantities f p  ' - (v/v) 
af:"/ax. Adding Eqs. (7) and (8) and integrating with 
respect to their velocities, we obtain 

Here u is the drift velocity of the resonant particles (14) 
or  (1 7), and j,, is the "diffusion" flux, equal to 

-- 
Here fo =.fjO' +flO'. 

-- 
The quantities B and D were defined above [see (12) and 
(1 3)]. At vi = v2 = v the flux j,, describes the diffusion 
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(-Vn) and the thermal diffusion (-VT). In the case vl 
# v2 of interest to us, an additional flux ar ises  and is 
proportional to the intensity gradient. It is possible to 
derive similarly an expression for the transverse "dif- 
fusion" flux j,: 

- uvt d f o  at:" 10 afo 
jL=- I--...- (1 -2) j's(dy+--)du.. (28) 

-- V I  ay  -- hwv, d y  

If Io<<Awv, then the total "diffusion" flux can be re- 
duced to the form 

Introducing the population difference m=nl -nz, i t  is 
convenient to rewrite (29) in the form 

j .=-Vno(D)-Vm(AD>. (30) 

The quantities (D) and (AD) a re  defined a s  follows: 

(D)=(D,+D,) /Z,  (AD)=(D,-D,) /Z.  

Expression (30) describes the effect of drawing in the 
resonant particles into the beam and expelling them, 
respectively (at vl+ v2), an effect observed in Ref. 14 
for the case of an intensity distribution that is inhomo- 
geneous in the transverse direction. It follows from 
(13) that absorption gives r ise  to an analogous effect al- 
so  for the longitudinal diffusion (along the beam). In 
the more general case (IU/EW - v) the diffusion remains 
anisotropic. 

In pulsed excitation of resonant particles, an addition- 
al flux is produced and is proportional to the rate of 
change of the intensity with time. This flux adds up with 
j,, and takes a t  ZU/EW << v; vf << u the form 

Expression (31) is valid a t  UT > 1, where T is the char- 
acteristic time scale of the intensity variation. The 
equation for the radiation intensity is 

a1 
-=-I! a ( f , - f i )du=-Ix (n ,  I ) .  
ax 

In (32), f, can be replaced by the homogeneous solution 
do' (if Z/X and xol << 1 ). 

To close the system of two-fluid hydrodynamics equa- 
tions we must add to (16), (32), and (32) the condition 
that the total pressure be constant: 

- 
n.T+M v.'f dv.==eonst. (33) 

-- 
In the case v,/v< 1 the condition (33) can be written in 
the form 

5. EXAMPLES OF HYDRODYNAMIC FLOWS 

Interest attaches to problems involving the distribution 
of the concentrations of the resonant and buffer parti- 
cles in a closed cell, internal flow of gas in a tube from 
one vessel to another, and other problems. 

We consider the f i rs t  problem, neglecting the varia- 
tion of the radiation in tensity over the cell length (xL 

<< 1, L is the cell length). From the particle-conser- 
vation condition we have the boundary conditions on the 
walls (u is along the x axis) 

If the condition n(x)<<nc i s  satisfied, then the problem 
reduces to a solution of the linear equations (26) with 
boundary conditions (35). After a characteristic time 

(at Pe > 1,  where Pe =uL/D,, is the Peclet number), a 
stationary distribution is established: 

here no is the initial concentration of the resonant par- 
ticles. If n(x)-a,., then the expressions for the velocity 
u and for the diffusion coefficient Dl, no longer hold, in- 
asmuch a s  the model described above neglects the col- 
lisions of the resonant particles with one another. A 
qualitative solution of the problem can be obtained by 
taking into account the relations u =uovB/v,; Dl, = (v2)/v, 
(uo is obtained from the solution of the problem of a 
small admixture of resonant particles). As a result we 
get 

n ( x )  =nr ( I f  e'"-'J'd)-l, (3 7) 
where xo =L(1- 81, d =D,,/uo = L / P ~ ;  8 is the initial 
fraction of the resonant particles. At B Pe > 1 the de- 
gree of separation of the gases becomes exponentially 
large. Thus, the fraction of the resonant particle at x 
= 0 is n (0)/n eSe" "' , and the fraction of the buffer 
particles a t  x = L is nB ( ~ ) / n  00 ea*. 

It is easily seen that in such a flow the boundary layer 
near the wall has a constant thickness h of the order of 
the mean free path 1. Depending on the difference be- 
tween the degrees of diffusion reflection for the excited 
and unexcited particles, a s  well a s  between the accom- 
odation coefficients of the vibrationally excited mole- 
cules, the flow velocity in the boundary layer can be 
either larger o r  smaller than the velocity of the main 
flow." When this velocity decreases, the characteris- 
tic dimension over which a radical change takes place in 
the particle density is determined by the expression d 
=DI,/(uo), where (u,) is determined by the mean value 
uo(y) over the cross section. A particle located in the 
boundary layer will leave this layer after a diffusion 
time "rel  and will be carried away by the stream. The 
return motion will bring it back into the boundary layer, 
resulting in an effective decrease of the velocity by an 
amount ~ u / u  - -h/(~,t)"~, with the time t taken to be 
(L/uo, R~/D,). Here R is the cell radius. As a result 
we obtain for the relative decrease of the velocity 

This decrease has practically no effect on the conclu- 
sion that the gas becomes highly purified. 

We consider now the distribution of the density of the 
resonant particles with account taken of the radiation 
a b s ~ r ~ t i o n . ~ '  We confine ourselves to the case n <<nE 
andI<I,. AtI<I ,  we have u - I  and x=on,  and the 
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problem reduces to an investigation of the solutions of 
the equation 

Here = &n(x)dx; uo is the velocity a t  x = 0. The sta- 
tionary distribution of the density in a closed cell is 
given by 

8% - n,( i+e)et  n = - -  
az et+e ' (39) 

Here 5 =xono(l +E);  c = u o / ~ ~ n ~ ;  the quantity c is con- 
nected with the initial density h )  and with no by the re- 
lation 

Under the condition Doh)/u < 1, 5 > 1 we obtaini0' c 
= exp(Pe - u(n)L). Let us check the obtained distribution 
for stability. Linearizing Eq. (38) for perturbations of 
the type e-rtu(<)(&e"+1)'i/2, we obtain 

Here X=r/D[ono(l +&)I2; 0 5smgL(1 + c ) z  L'; the 
boundary conditions for Eq. (40) a re  of the form u(0) 
=u(L')=O. It is easy to show that the value X = O  lies 
below the ground state of Eq. (go), since i t  is impossi- 
ble to construct from the solutions of the equation a t  X 
=o  

a combination that satisfies the boundary condition on 
one of the ends and reverses sign in the interval (0, L'). 
The obtained distribution is thus stable. 

For gas flowing through a tube from one vessel to an- 
other, we must seek solutions of the system (26) and 
(32) with the flux j. We then have in place of (35) 

un=Danlaz+j. 

As a result of the solution we get 

where 

At q = 0  expressions (41) and (43) go over into the solu- 
tion of the problem of the distributions of n and u in a 
closed cell. If the densities of the resonant particles a t  
5 =Oho) and 5 = Lt(n1) a re  given, we can obtain from 
expression (41) at < =L1 the reduced value of the flux q. 
The flux reverses sign upon reversal of the sign of 

At a fixed flux (v> 0), y vanishes on a finite length <,, 
- (1 +E)'/& q (at c > 1 and L' > 1). This means that the 
flow becomes nonstationary in this situation. 

Neglecting diffusion, we can find for the problem (26), 
(32) a nonstationary solution that reduces in this case to 

the equation 

Changing over to new variables 9 = - 1; j(t)dt, = eqV; 
and 

We reduce (44) to the form 

a v / a ~ + v a v / a ~ = o .  

Equation (45) has solutions of the typei5 

v=F (7-z l v )  ; F (T) = exp 
0 

where t(7) is the inverse of ~ ( t ) .  Solutions of this type 
can be subject to discontinuities of v(x, 7).  This means 
that the particle density 

becomes infinite over a finite length after a finite time. 
Thus, if u(0, t) =uo =const and n(0, t) =no(l +unouot)-' 
a re  specified a t  x =0, then a singularity a t  x > 1 Je ap- 
pears for the times t > t, =(ex - lK)/uo, 1, =on0)-'. When 
diffusion is taken into account, the singularity vanishes, 
but the obtained solutions point to instability the flow. 

Considering perturbation of the type e4wt"" with wave 
vector satisfying the conditions no<< kc< (nou /~) i / z ,  we 
obtain from the system (26) (32) 

o (k) '=oa(k)  f i r .  

Here 

~ ' ( k )  =ku, r=2xOu. 

The instability ( r  > 0) arises when the resonant particles 
move in the direction of propagation of the wave (along 
k) and is due to the fact that the fluctuation perturbation 
& of the density (e.g., i t s  increase, accompanied by a 
decrease of the velocity by virtue of the continuity of 
the flow) leads to a change in the radiation intensity that 
determines the drift velocity (in this case the intensity 
decreases and the velocity of the perturbed section 
slows down even more). The instability is of the drift 
type, and during the time that the particles drift out 
over a length L the perturbations increase by a factor 
eZKoL. The instability is not dangerous if xgL s 1. In 
addition, i t  is convenient to work in the 1 > I ,  regime, 
where the velocity depends little on the intensity. 

In conclusion, the authors thank L. A. Bol'shpv, E. P. 
Velikhov, A. P. Napartovich, V. D. Pis'mennyi and G. 
I. Surdutovich for interest in the work and for helpful 
remarks. 

APPENDIX 

1. We consider the question of the velocity of the res- 
onant particles with account taken of the finite time of 
rotational relaxation. In the homogeneous case, the 
system of equations [which generalizes (7) and (8)] is of 
the form 
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Here jo is the rotational quantum number of the reso- 
nant transition, v a r e  the frequencies of the rotational P ' relaxation in the a-th vibrational state, 

The quantities nil and nz,, which a re  equal to the p o p -  
lations on the rotational sublevels, a re  determined by 
the relations 

The populations on the vibrational levels n, a r e  connect- 
ed with n ,  ,,: 

ni = C n,$)j. 
I > 

The drift velocity is determined by the expression 

nu- ( I - : ) j v h d v .  

Solving the system (A.1) and (A.2), we get 

l o  
f ; (v )=  Wm ( V ; ~ ~ + ; ; D ~ ) / & .  (A.3) 

Here 
v a  vr(i-kb) 

V1 (kh+- - -  
VR, vrtvi* 

v r r ( 1 - U  (VI+V;+VII ,+VJ~ 
] 

1 
- 

- 2 ) + (v.+v.) (v;+v.+v J 
, (A.4) 

I0  
D;=v~+v, + (~1+~r+vru+va) 

(A.5) 

For n2 we have 
10 " a ] r ] - ' .  (A.B) 

fro(v1+vru) 

The quantity D3 is defined by the expression 

To simplify the results, we put vRi = V R ~  =VR and vi = v2. 
=v  in the expressions for D l ,  D2 and D3. In this case 
we obtain for the velocity u 

If v >  VT +21o/~co, we get from (A.8) 

In the case of slow rotational relaxation VR << v, we ob- 
tain from (A.9) the old result (18), and the drift velocity 
is proportional to kjo-the fraction of the resonant par- 
ticles of the rotational sublevel. 

If VR >> VT but VT >> klOvR, we obtain from (A .9) (I-1,"') 

u - ( I  - $ ) g v , ,  

The saturation power being 1" '- ~ov,/2(o). For the 
case of rapid rotational relaxation kfOvR >> VT we have 
for the drift velocity (I-z:~') 

u -  ( l - $ ) s v T .  

The saturation power is determined in this case by the 
expression 

i.e., i t  is larger by l/kfo times than in the case of slow 
rotational relaxation. 

In the case when the width A& of the source spectrum 
exceeds the distance between the components of the vi- 
brational-rotational absorption spectrum (which is split 
for polyatomic molecules), i t  is necessary to retain in 
(A.1) and (A.2) the terms that take into account transi- 
tions from many rotational states. In the limit k,vR >> v, 
i t  turns out that the drift velocity is determined by ex- 
pressions (1 4), (1 I), and (1 2), in which l o  should be re- 
placed by 

The summation extends here over all  the components of 
the absorption spectrum, k, is the fraction of particles 
on the n-th sublevel, the function C~(A/A&) (normalized 
to unity) describes the line contour of the incident radia- 
tion, A. is the detuning of the centers of the line con- 
tours of the source and of the rotational-vibrational 
band, 6, is the distance from the center of the band to 
the position of the n-th component of the absorption 
spectrum (in the case of a diatomic molecule n = j  and 
6, = 2Bj, and B is the rotational constant; the summa- 
tion is from -- to *). In the limit kvT << AO - 6,, 
(I?, 6,) < AL <Ao it can be found that the direction of the 
drift velocity is given by 

where no is obtained from the condition 6no=Ao. Thus, 
in the case of a broad source spectrum the direction of 
the drift velocity is determined by the derivative of the 
envelopes of the absorption spectrum (k,oj,). 

')AS noted by the authors of Ref. 1, this phenomenon can be 
used for laser separation of the isotopes of one element. 

2 )~c tua l ly  the particle can be excited after many collisions, 
a t  which case it acquires the same directional displacement 
after a time -re,. 

3 ) ~ h e  authors of Ref. 1, in our opinion, have inappropriately 
named the effect predicted by them "light-induced diffusion," 
Obviously, the diffusion can only decrease the magnitude of 
the effect (see Sec. 5). 

"since the wave functions of states 1 and 2 a r e  intermixed in a 
resonant field, in the general case the quantities vl and vz 
a re  determined by the scattering cross sections ui of the 
buffer particles by these states in the absence of a field (see, 
e.g., Ref. 11); in this case Av /v-(al-uz)/bi +az). 

5 ) ~ h e  two-level approximation (or the more general case, des- 
cribed in the Appendix, of two rotational bands) is, of course. 
an idealization. The theory becomes much more complicated 
when account is taken of the excitation of many vibrational- 
rotational states. 

6 ) ~ o  simplify the derivations, the arrival term due to the 
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quenching i s  written in Eq. (8) in model form. Correct allow- 
ance for the quenching would lead to an additional difference 
between the transport frequencies of the collisions in the ex- 
cited and the unexcited states, which can only enhance the 
considered effect. 

' ) ~ t  is precisely this case which is  considered in Ref. 1, but 
in the numerical example formula (4) of Ref. 1 was used a t  
a 1/6. 
')In a number of cases i t  may turn out to be convenient to use 

Knudsen flow through a capillary, if the indicated difference 
in the degree of diffuse reflection is not small, and the 
quenching of the vibrational excitation is  produced by colli- 
sion with the wall. 

')If the source has a broad spectrum that overlaps several 
vibrational-rotational transitions, it is  necessary to take 
into account in the hydrodynamic equations the evolution of 
the spectral distribution of the intensity. In this case a 
self-consistent problem arises, in which the velocity depends 
on the spectral distribution of the radiation (see the Appen- 
dix), and this distribution changes in the course of absorption 
in the medium in which the drift  fluxes a re  excited. 

'')If the velocity uo is  directed opposite to the wave vector of 
the radiation (against the beam), then it is  necessary to make 
in (39) the substitutions & -4, Pe -- Pe. We have then C 
-Pe/(Pe +(nhL) -1(Pe >u(n)L);no-uO/uD >>n(L) (n). 
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Rotational relaxation of isotope-substituted molecules and 
excited complexes produced in muon catalysis 
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The cross sections of electron-rotatonal transitions produced in collisions of isotope-substituted molecules 
with atomic particles are expressed within the framework of the adiabatic approximation in terms of the cross 
sections of the transitions in the corresponding homonuclear reactions. The general formulas are used to 
calculate the rates of rotational relaxation of the excited complexes produced in muon catalysis of nuclear 
reactions. The relaxation rate is determined mainly by transitions with odd change of the rotational quantum 
number, which are forbidden in homonuclear molecules. It is shown that under experimental conditions the 
relaxation de-excitation of the complexes is much faster than their breakup into the initial products, thus 
producing favorable conditions for the nuclear fusion reaction. 

PACS numbers: 31.70.Hq, 34.50.H~ 

1. INTRODUCTION tally ,' calculated theoretically ,2 and u s e d  to r e g i s t e r  
HD molecules  in  planetary a t m o s p h e r e s  a n d  in in te r  - 

Replacement of one of the  nuclei in a homonuclear stellar medium. 
molecule bv i t s  isotope leads  to  a number of new ef- 
fects.  The  appearance of a dipole moment  and of a vi- An analogous effect is presen t  in the  physics  of a tom-  
brational-rotational emiss ion  spec t rum h a s  been f r e -  ic collisions, namely rotat ional  t rans i t ions  with odd 

quently investigated (for homonuclear molecules ,  the  change of t h e  rotational quantum number,  which are 
corresponding t ransi t ions are forbidden by the selec- s t r i c t ly  forbidden i n  a homonuclear molecule (if we  

tion r u l e s  in the dipole approximation). For the  HD d is regard  the  low-probability p r o c e s s e s  accompanied 

molecule such  a spec t rum w a s  observed experimen- by a change of the  nuclear  sp in  of the molecule).  Col-  
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