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An integral-equation method is used to examine the processes of reflection and refraction of a weak probe 
wave at the interface between two media, one of which contains a subsystem which is in a superradiating 
state. The electric polarizability is calculated for an atom in the medium which is acted on simultaneously by 
the field of the probe wave and that of the coherent oscillations, leading to a shift of the resonance levels of the 
atom. Formulas are found for the reflection and transmission coefficients of the interface between vacuum 
and a superradiating medium, and also the laws of reflection and refraction, which differ from the Fresnel 
laws. 

PACS numbers: 42.65.Cq, 41.10.H~ 

1. The propagation of powerful nanosecond and pico- terval between the activation of the exciting laser 
second resonant laser  pulses through a medium cause sources. 
i t  to go into a superradiating state,' which is character- 
ized by specific features of the kinetics of i ts  deexcita- 
tion by emission of electromagnetic radiation and of the 
intensity of the radiation and its  angular distribution, a s  
affected by the shape of the emitting volume and the di- 
rection of the exciting pulses. Passage of an optical 
medium into a superradiating state is also possible as 
the result of spontaneous emission, under conditions in 
which the atoms a re  in an excited state (photon ava- 
lanche, see Ref. 2). A medium in which a particular 
superradiative effect (self-induced transparency, light 
induction and echo, photo avalanche, optical nutation, 
stimulated light induction) i s  produced decidedly alters 
the character of the Raman scattering (RS) of weak 
(probe) nonresonance radiation in the medium. 3*4  The 
probability of Raman scattering in a medium which is 
in a Dicke pure state1 have been calculated by Walls5 
and by Makhviladze and Shelepin," and those for a me- 
dium in a mixed state have been calculated by Nagibar- 
ov and the ~ r i t e r . ~  In recent years the idea of probing 
the coherent oscillations in a medium by means of the 
RS of weak radiation has been successfully developed in 
the method of stationary and nonstationary active spec- 
troscopy of Raman scattering (ASRS).' 

In the present study the coherent oscillations in the 
medium were excited by powerful resonance radiation 
with frequency w,, and the necessary conditions were 
satisfied for the occurrence of the appropriate super- 
radiative processes. These processes were sounded 
with a weak probe wave of frequency w which did not 
coincide with any of the frequencies in the spectrum of 
the atoms. The intensity of the probe wave was such 
that it did not excite nonlinear effects, but i t s  scatter- 
ing could be observed during the time of occurrence of 
the superradiative process. The frequency of the scat- 
tered radiation was the same a s  the frequency w of the 
probe wave, i.e., the scattering process did not change 
the state of the medium (Rayleigh scattering compo- 
nent). For definiteness we shall consider a situation in 
which two resonant laser pulses with frequency w, ex- 
cite in the optical medium a light echo with i t s  maxi- 
mum intensity a t  the time 27, where T is the time in- 

The scattering of the probe wave is observed during 
the entire time of the formation of the light echo and of 
i t s  decay. The process of the scattering of the probe 
wave has the characteristic features of a superradia- 
tive process and can be called Rayleigh superscatter- 
ing. We shall here take into account the boundary ef- 
fects at the vacuum-superradiating medium interface. 
We shall also indicate the possibility of using this 
method to study the behavior of the dielectric constant 
of a superradiating medium in the region of i ts  absorp- 
tion bands, which obviously will be different from the 
dielectric constant in the absence of the exciting 
pulses. 

2. Let us calculate the electronic polarizability of 
an atom in the optical medium, subjected to the simul- 
taneous action of powerful resonance radiation with 
frequency w, and of the probe wave with frequency w. 
Let cp,, cp, be states of the atom with frequencies w,, 
w, such that W, - w, = w,. The resonance radiation leads 
to mixing of the states cp, and cp,, and so we write the 
wave function of the atom in the field of the two waves 
in the following way: 

where kf m are  indices of the remaining states of the 
atom. The coefficients a, depend on the time and on 
the parameters of the resonance action on the system 
(the electric field strength of the exciting radiation, 
the duration of i ts  action, the coupling of the atom with 
the dissipative subsystem, etc.). The coefficients a,,,, 
and b,, can be found if we substitute Eq. (1) in the 
Schradinger wave equation for the atom in the external 
field and obtain the terms of first  order in the ampli- 
tude E, of the probe field. The mean value of the elec- 
tr ic dipole moment of the atom in the state (1) takes the 
form 

where summation over all  repeated indices is under- 
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stood; 4,. are  the matrix elements of the electric di- 
pole moment of the atom for the wave functions p, and 
cp,; A,. is the second-order density matrix which is 
constructed with the coefficients a, and describes the 
behavior of the resonance subsystem of the atom in the 
field of the powerful wave. The tensor GaB),,,,,,, is 
symmetric in the indices ar and B and can be put in di- 
agonal form by a suitable choice of the coordinate axes. 
Far  from resonance, if the approximation equation 

is satisfied, we can separate the time factor in the 
components of the tensor (~,),,,. Then we get the 
following formula fo r  the part  of the quantity (2) that 
depends on the field of the probe wave: 

To calculate the quantity (3) i t  is necessary to know 
the density matrix A,, . We now consider, a s  we have 
proposed to do, the case of the action of two powerful 
laser pulses of durations At, and At, on the system of 
atoms, with a time interval T between the times at 
which they a re  turned on. It is assumed that 

At,, At,<T,, T,,  T,', T , ' 4 r t T 1 ,  T,,  (4 ) 

where T, is the longitudinal relaxation time of the sys- 
tem of atoms, and T,, T; a r e  the respective times of 
irreversible and reversible transverse relaxation. lo 

At a time t after the turning off of the second exciting 
pulse, 

p ( t )  =4 ( t ) p , P - ' ( t ) ,  9 ( t )  = e ~ ~ [ i t r - ~ % , t ]  

x e ~ ~ [ i ~ - ' ( % ~ ~ ' + % , ) ~ t ~ ] e x ~ [ i h - ~ % ~ r ] e x ~ [ i ~ - ' ( % ! "  +%,)At l ] ,  
(5) 

where po is the equilibrium density matrix of the atom; 
X, is the Hamiltonian operator of the atom in the ab- 
sence of alternating external fields; Xy' , 8':' are  the 
Hamiltonians for the interaction of the atom with the 
fields of the first  and second exciting pulses. We con- 
sider the exponential operators in Eq. (5) as functions 
of the matrices, and by using the method for calculating 
such operators,1° we get the density matrix p(t) in gen- - 
era1 form. We separate in it the terms corresponding 
to the light-echo signal with maximum intensity a t  the 
time 27, which a re  of the form 

echo echo 
plz ( t )  = (pa ,  ( t )  ) '=-'/,i sina 8, sin 20, (p!:' 

where k, and k, are  the wave vectors of the first and 
second exciting pulses, r is the radius vector of the 
position of the atom in the medium, and El and E, a re  
the amplitudes of the electric fields of the exciting 
pulses. In the case of isotropic atoms we have 

echo echo- echo- ( 0 )  
=a,, -azz -aecho=CLecho exp[- i (k , -2k , )r+io ,  ( t - 2 r )  ]+ C.C. , 

3. The electric field intensity of the probe wave 
obeys the integro-differential equation1' 
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~ ( r , t ) = E , ( r , t ) + l r o t r o t ~  (8 ) 

where E, is the intensity of the external field, R 
= I r - r' 1, and D is the electric dipole moment per unit 
volume a s  a function of the field E. Since the field of 
the probe wave is weak, we have 

where N is the number of atoms per unit volume. 

Noting the expression (7) for the polarizability of the 
atom, we write the condition for phase synchronism 

where k, is the wave vector of the probe wave in the 
medium, and is the wave vector of the scattered 
wave. As can be seen from Eq. (lo), the coherent os- 
cillations with the wave vector k,, can greatly alter the 
direction of the Rayleigh superscattering, and conse- 
quently the directions of the reflected and refracted 
waves a t  the interface vacuum-superradiating medium. 
Owing to this we consider the following types of pro- 
cesses at the interface (Fig. 1). 

Case a. Suppose a plane wave with wave vector k, 
and frequency w is incident on the vacuum-superradiat- 
ing medium interface. The process of reflection and 
refraction at the interface produces two plane waves 
with the respective wave vectors k, and k, = k, - k,,, 
with the direction of the wave k, connected with ob- 
served direction of the refracted wave. The wave vec- 
tor k, coincides with the direction of the refracted 
probe wave in the equilibrium medium in the absence of 
the exciting pulses. The wave of polarization in the 
medium is of the form 

where n(w) is the index of refraction of the superra- 
diating medium at the frequency o. 

The solution of the equation (8) reduces to the cal- 
culation of the integral 

aG aQ 
3, = j ( Q ~  - G ~ ) H ,  k = ~ / c ,  (12) 

2 

where a/av' denotes differentiation along the outward 
normal to the interface C, and G = e i m / ~  (see Ref. 11). 
The components of the unit vector s, of the incident 
probe wave a re  

I 

FIG. 1. 



where 8, i s  the angle of incidence and y z  is the plane of 
incidence. 

We shall suppose that the plane of incidence coincides 
with the direction of propagation of the coherent oscil- 
lations. Let the resultant vector 4 be directed into the 
medium along st. Then we get for the components of 
st the following equations 

where 6, is the angle of refraction of the probe wave in 
the superradiating medium. Using the principle of 
stationary phase," which holds for distances r much 
larger than the wavelength, we get 

where the angle cp is determined from the equation 
n sing, = sincp. 

From the extinction theorem and Eq. (15) follows the 
refraction law connecting the angle of incidence 8, with 
the angle of refraction 8,: 

l+nz sin2 0, 
cos 0, = 

l+sin2 cp or 8; =- 
(I-n2 sin' 6,)'" cosZ cp 8, 

where s is a unit vector with the components sy = -sincp, 
s, = 0, s, = -coscp. From Eq. (16) we get 

Let q, = sinhAi; then 8, = iA,, i.e., the angle of r e  - 
fraction i s  imaginary. The concept of complex angles 
is sufficiently fully analyzed in the optics of laminar 
media,12 and in the general case the wave vector kt can 
put in the following form: 

kr= (o/c) (n-ix) (a,+ib,) = (o/c) (n-ix)s,, (18) 

where st is a complex vector with unit square (g -b; 
= 1, a, .bt = 0) which allows for the fact that the direc- 
tion N, of the propagation of the wave (the planes of 
equal phase) does not always coincide with the direction 
K, in which it i s  damped (plane of equal amplitude); n 
is the index of extinction of the superradiating medium 
at  the frequency w .  The components of the vectors Nt 
and K, can be found from the system of equations 

from which we get the following values of the compo- 
nents: 

N,I=na,,t+xb,t=xqi, Nzt=na.t+xb.t=-n(l+q~)"z, 

K,,=xa,,-nb,,=-nq, , KZ,=xazt-nbZt=-x(I+q:)". 
(20) 

Far from resonance we can set  n = 0 and find that for 
a definite mutual position of the directions of propaga- 
tion of the probe and coherent oscillations in the me- 
dium, when the vectors s, and st lie on both sides of the 
normal to the interface (Fig. l a )  a situation ar ises  in 
which the direction of propagation of the refracted wave 
is perpendicular to the interface of the two media and 
directed into the medium for arbitrary angles of inci- 
dence (isotropic penetration of the interface vacuum- 
supe rradiating medium). 

Let us find the formula connecting the amplitude of 
the incident probe wave, E,, and that of the refracted 

wave, To = 4nk%&, using the extinction theorem: 

 rot rot I,. (21) 

Performing the differentiation of the expression (15), 
we get the following formula: 

1 sin(p+Ot) 
Eoi = Z cos q sin 0, [T.--8i(8,T0) 1 .  

Let us  examine the case when the observations a re  
located outside the medium (z > 0). The calculations 
of the amplitude E, of the reflected wave a re  similar, 
except that in the relevant equations we must replace 
z f = - r w i t h z f = ~ .  Then 

1 sin(cp-0,) 
Ear-- T cos cp sin 0, [To-~~(8vTo) 1, 

where the unit vector sr determines the complex direc- 
tion of the reflected wave with the components (8, is 
the angle of reflection) 

In an analogous way we find the vector components 
Nry Nr,, Kry, Kr,: 

i.e., the real direction of the reflected wave i s  along 
the z axis for an arbitrary angle of incidence of the 
probe wave on the vacuum-superradiating medium in- 
terface (isotropic reflection). 

Since the electronic polarizability (7) depends on the 
time, oscillating with the frequency of the resonant 
subsystem, the amplitude of the wave of electronic po- 
larization in the medium, Eq. (1 l ) ,  must be averaged 
over the frequencies of the resonating atoms with al-  
lowance for the nonuniform broadening of the spectrum 
line, a s  i s  done in the theory of light echoes.'' Then 
the amplitude of the passing wave must include a de- 
pendence on a time factor d(t) ,  which takes i ts  maxi- 
mum value at t = 27 and falls to zero in a time interval 
larger than the time for  obliteration of the phase 
memory. Furthermore Eq. (221, which gives the rela- 
tion of the incident and passing waves, must be nor- 
malized to allow for the fact that a s  the phase memory 
fades out in the superradiating medium cp- 8, and the 
processes a t  the interface of the two media come to 
obey the Fresnel laws. 

Using Eqs. (22) and (23), we find the transmitting 
p o w e r g  and the reflecting power A of the vacuum- 
superradiating medium interface: 

Substituting the expressions (22) and (23) in Eq. (26), 
we find that r + R  = 1 only for cp = 8,. For all other 
angles, even when x = 0, this equation is not satisfied; 
this indicates that there i s  additional absorption in the 
medium, owing to the fulfillment of the spatial condi- 
tions (10). For the components of To and E', perpen- 
dicular to the plane of incidence we get the absorbing 
power in the following form: 

4n s i d  0, cos 0, cos cp (cos q-cos 03) 
A, = cos 0, sina(p+e1) (27) 

Case b. This case is trivial, since the formulas for 
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the directions of the reflected and refracted waves, and 
also the corresponding amplitudes, a re  identical with 
the well known formulas of the optics of laminar 
media. 11* l2 

DISCUSSIONS OF RESULTS AND CONCLUSIONS 

The dielectric properties of a superradiating medium 
a r e  determined by the direction of propagation of the 
exciting pulses, and also by the relaxation processes 
that promote the obliteration of the phase lattice in the 
medium. As can be seen from Eq. (7), the electronic 
polarizability of the atom depends on the wave vectors 
of the exciting pulses, the coordinates, and the time. 
Consequently, an optical medium composed of such 
atoms i s  inhomogeneous and anisotropic and changes in 
the course of time. Unlike the traditional method for 
describing wave -propagation processes in an optical 
medium with dielectric constant having a sinusoidal 
dependence on the  coordinate^,'^ we assume in the 
present work that the dielectric constant does not de- 
pend on the coordinates, but that at the interface of the 
two media the incident wave (of frequency w and wave 
vector k,) is totally extinguished and i s  replaced by 
another wave with the frequency w and the wave vector 
k, given by Eq. (10). Furthermore, besides the usual 
locations of the wave vectors of the reflected, passing, 
and incident waves (Fig. lb) we consider the case a 
(Fig. I) ,  which i s  possible if we note that the wave 
vector of the scattered wave is complex even for n = 0 
owing to the requirements of the synchronism condi- 
tions (10). 

This process of Rayleigh superscattering can be used 
to determine numerical values of the optical constants 
of a superradiating medium at a resonance frequency 
w, a s  functions of the angle of incidence of the probe 
wave on the interface between vacuum and the superra- 
diating medium. In fact, using the relation (10) and the 
formulas (20), we find a system of equations for deter- 
mining the indices of refraction, n,(w,), and of ab- 
sorption, no(wo), of the medium brought into the super- 
radiating state by two exciting pulses directed in a defi- 
nite way: 

where a,,, a,,, b,,, b ,  are  the components of the real  
vectors a,, %, b,, b, which determine the complex di- 
rections of the exciting pulses in the medium. Their 
values can be found easily from the boundary conditions 

that the tangential components of the electric field 
strengths must be continuous: 

p=l - (n.'-%,')sin2 8,' n,'xo2 sin' 8,, , s =  
( n , ' + ~ ~ ~ ) ~  (n,'+x,') ' 

na sin Oli XI sin 8,' 
a,, = - b,, - ----- , 

noz+xa' ' nOl+x,' 

where el, is the angle of incidence of the first exciting 
pulse on the interface. The values of a,, and b, are  
obtained f rom Eq. (29) by replacing el, with O,,, where 
O,, is the angle of incidence of the second exciting 
pulse. 

Starting from Eqs. (10) and (20), we also obtain a 
condition connecting the angles of incidence of the ex- 
citing pulses and of the probe wave: 

2 sin 8,,-sin 0 , ,=(o/o , )~in8~.  (30) 

To calculate the quantity q j  in Eq. (28) one must 
choose the sign in Eq. (17). The proper choice can be 
found unambiguously by measuring the reflecting power 
of the vacuum-superradiating medium interface and 
comparing with Eq. (26). 
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