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The effect of a gravitational wave on the interference pattern in a Fabry-Perot interferometer is investigated in 
a wide range of frequencies of the gravitational radiation. It is shown that there is a modulation of the 
intensity of the radiation passing through the interferometer, and the greatest contrast is achieved in the 
region of low frequencies of the gravitational waves, and also in the case when the wavelength 1 of the 
gravitational wave is related to the interferometer base length L by L = Ap, where p = 1/2, 1, 3/2, 2, 5/2, 
3... . 

PACS numbers: 04.30. + x, 07.60.L~ 

The possibility of using a Fabry-Perot interfero- In the laboratory coordinate system fixed by the form 
meter, which is an optical system consisting of two of the metrics (2) and (3), the coordinates of the free 
plane-parallel mirrors,  for detecting gravitational bodies do not change under the influence of the gravita- 
waves was discussed in Refs. 1 and 2. This possibility tional wave (see Ref. 3). 
arises because of the occurrence in such a system of 

We shall describe the phenomenon of interference in the so-called gravitational-electromagnetic resonance 
the approximation of geometrical optics, representing 

under certain conditions. In the present paper, solving 
the light ray in the form of a plane wave (see, for ex- 

the eikonal equation with appropriate boundary condi- 
ample, Ref. 4). In this case, the light wave i s  com- tions, we obtain an analytic expression for the phase 
pletely determined by the phase $, which in the pre- 

of a light ray propagating between the mirrors  with any 
number of reflections in the presence of a gravitational sence of the gravitational field satisfies the eikonal 

equation5 
wave, and on the basis of this expression we investigate 
the influence of the gravitational wave on the interfer- g*--= arl, $9 o, 

ax' axk (4 ) 
ence pattern in the Fabry-Perot interferometer (there- 
by indicating a way of measuring the effect). Since the wave i s  plane, a$/ax = a$/ay = 0, and the 

eikonal equation for a light wave propagating along the 

5 1. SOLUTION OF THE EIKONAL EQUATION z axis has, with allowance for the form of the metric 
(2). the form 

We assume that the two plane-parallel mirrors  of the 
Fabry-Pemt interferometer a r e  fixed on two free ( $ ) ' - ( I - ~  sin' 0 )  (;la= 0. 
bodies. One of them is at  the coordinate origin, while 
the other is on the z axis a t  the point with coordinate 
z = L, so that light propagates between the mirrors  It is easy to show that this equation is equivalent to 

parallel to the z axis. We assume further that a plane two equations, one of which determines the phase of an 

gravitational wave propagates at angle 0 to the z axis. electromagnetic wave propagating in the positive di- 

The metric of the gravitational wave is usually speci- rection of the z axis, 

fied in a coordinate system x'y'z' in which one of the 
axes coincides with the direction of propagation of the 
wave. If this is the z' axis, the nonzero components of 
the metric have the form and the other the phase of a wave propagating in the 

opposite direction: 
goo1=-g,,'=l, g,,'=-l+a', g,,'=-l-a', g,,'=g,,'=bf. ( 1 )  

a$ 
Going over to the laboratory coordinate system, for the 

a$ -- a~ ( 1 - : s i n ~ 0 ) - - 0 .  2 a z (7 ) 
nonvanishing components of the metric g i h  we obtain 
the expressions Here, 7 =  ct, and a is a function of the variables 7 and 

gOO-l, g"=-1-a, g'2=gz'=-b~os 0, gl'=gJ'=bsinO, *, 
g~~=-l+acos",  gzS=gsz=-i/,a sin 20, g3'=-l+a sin"; (2 ) a=a(kz-kr) =a (z-zcos 0 ) ,  

(3) where k is the wave vector and k =  w/c= 2 7 ~ 1 ~  is the 
wave number of the gravitational wave. To be specific, Here, the angle cp i s  one of the Eulerian angles that de- we shall restrict  ourselves to polarization correspond- 

termines the orientation of the x' and y' axes in the 
ing to the angle cp = 0, and we specify the gravitational plane of the front of the gravitational wave. The angle wave in the form 

cp distinguishes one of the two possible polarizations of 
the gravitational wave, and if cp = 0, then a = a', and if a=af=a OCOS k (z-zcos 0 ) .  (8) 
cp = %/4, then a = b'. In the general case, we have a 
mixture of two polarizations. In this case, the general solution of Eq. (6) [and also 
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(?)I can be readily found. It can be expressed in terms 
of an arbitrary function 

In the absence of a gravitational wave, the expression 
(9) must go over into the well-known expression for the 
phase of a plane electromagnetic wave: 

where C+ i s  a constant. Requiring that $+-- $,* as  
a,- 0, we conclude that the solution (9) must have the 
form 

kern 0 
$+=k&s-z) +C+-a,- cost - sin k (z-z  cos 0 )  + a O f + ( ~ - z ) ,  (1 1 ) 

k 2 

where f + i s  an arbitrary function. 

For the electromagnetic wave propagating in the 
negative direction of the z axis, we find similarly 

kern 0 9 - = t m ( z + z )  +C--ao -sin' - sin k (7-z cos 0 )  +aoj-(sfz) . 
k 2 

(12) 
Here, C' i s  an arbitrary constant, and f' i s  an arbi- 
trary function. 

$2. FABRY-PEROT INTERFEROMETER 

Figure 1 shows the light rays in the interferometer. 
The light ray, which i s  incident on the plane-parallel 
plates of the interferometer with base L at angle cp,, 
gives rise to the system of rays l', 2', 3'. . . , which 
pass through the interferometer, and the system of 
rays I", 2", 3". . . , which a re  reflected by it. In all 
that follows, we shall consider a plane-parallel beam 
of light which enters the interferometer at angle cp, = 0, 
so  that the trajectories of the transmitted and reflected 
waves coincide. Using the solutions (11) and (12), we 
calculate the phase of each transmitted and reflected 
ray. For this, we require that at the entrance to the 
interferometer the following condition i s  satisfied for 
the ray: 

This condition uniquely determines the phase of the 
first ray $;(T,z) propagating in the space between the 
mirrors in the positive direction of the z axis; for it, 
we obtain 

kern 0 
$,+ (7 ,  Z )  =k.,,,(z--z) -ao-cosz - 

k 2 
x {sin k ( z - z  cos 8) -sin k ( z - z ) } .  (14) 

To determine the phase of the ray propagating in the 
opposite direction, it is necessary in the general case 
to take into account the fact that the phase changes on 
reflection by n (see, for example, Ref. 4). However, 
since the total change in phase during one cycle of re -  
flections i s  2n, this will not affect the interference pat- 
tern, and we can therefore assume that the phase is 
continuous at a reflection 

Using this condition, we find 

Setting z = L in Eq. (141, we obtain the phase of ray 1' 
passing through the interferometer. Equation (15) for 
z = O  gives the phase of the reflected ray 1". By 
lengthy but straightforward calculations we can find the 
phases of any transmitted o r  reflected rays. By math- 
ematical induction, we prove the validity of the follow- 
ing expression for the n-th transmitted ray: 

kern 0 s i n k ( n - i ) L  i + c o s 0  
-2ao -{sin2 - sin - kL 

k 2 sin kL 2 
0 s  i - c o s 0  

f cos2 - - sin - 
2 sin kL 2 

$3. RESONANCE EFFECT 
In the absence of a gravitational wave (ao= O), Eq. 

(16) gives the well-known expression in the theory of 
the Fabry-Perot interferometer for the change in the 
phase $ between two successive transmitted rays: 6, 
= 2 k,,L. In this case (a, =O), 6,, which specifies the 
position of the working point on the instrumental func- 
tion of the interferometer, determines the intensity of 
the light transmitted through it. In the general case, 
the phase difference for an arbitrary pair of successive 
transmitted rays has in accordance with Eq. (16) the 
form 

where 6,,(n) is the additional advance of the phase due 
to the gravitational wave. If the greatest contrast in 
the interference pattern is to be achieved, 6,,6z) must 
not depend on the number n. Applied to Eq. (161, this 
means that $i(L, t )  must depend linearly on n. This i s  
the case if 

kL=2np, (18) 

where p is an integral o r  half-integral number: p =i, 
1, 3/2, 2,. . . . For if p is an integer, then the oscil- 
lating factor cos k(r - [n - ( 1  - cos8)/2]L) does not de- 
pend on n by virtue of the condition (18). The factors 

FIG. 1. of the form sin&nL/sinkL in this case a re  indeter- 
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minate forms of the type 0/0 which can be readily eval- 
uated. Namely, 

lim (sin knLlsin kL) =n. 
hL+EIP 

As a result, for 6,, we obtain the following n-indepen- 
dent expression: 

(19) 
If p is a half-integral number, p = (2m + 1)/2, where 

m = 0,1,2, . . . , then for 6,, we also obtain an n-inde- 
pendent expression: 

(20) 
Since 6,, << 6,, using Airy's well-known formula for 

the intensity of the light transmitted through the inter- 
ferometer (see, for example, Ref. 41, we can readily 
find the change in this intensity due to the effect of the 
gravitational wave. We have 

ANI=2Rke&, sin 8,F(0) cos k ( z + z , ) / [  (1-R)'+4R sin' (6J2) Jnp, (21) 

where R i s  the energy reflection coefficient of the mir- 
rors,  and F(8) is the directivity pattern 

F ( 0 )  =cos 0 sin (np cos 0 ) ,  p-1, 2, 3 . .  . , 
F(0)  =cos 0 ~ o s ( ~ l ~ n ( 2 r n + l ) c o s  0 ) ,  p = / ( 2 + )  - . . . . (22) 
In accordance with Eq. (21), the effect of the gravita- 
tional wave on the interferometer leads to a modulation 
of the intensity of the transmitted light with the fre- 
quency of the gravitational wave. The modulation 
depth depends strongly on the choice of the phase 6,. 
For optimal adjustment of the interferometer (corre - 
sponding to the choice of 6, on the section of maximal 
steepness of the Airy function), Eq. (21) is transformed 
to 

where Q= k,,L/(Z-R) is the Q of the Fabry-Perot in- 
terferometer. Comparing (21) and (23), we readily 
see that if R i s  near unity the difference between the 
magnitudes of the effect for optimal and nonoptimal ad- 
justment of the interferometer can be very great. For 
example, for R = 0.998 the difference between the ef- 
fects may reach three orders of magnitude. 

In Fig. 2, we show the directivity patterns F(8) for 
p = 1 (Fig. 2a, continuous curve) and p = 1/2 (Fig 2a, 
broken curve), and also for p = 2 (Fig. 2b, continuous 
curve) and p = 3/2 (Fig. 2b, broken curve). With in- 
creasing p, the number of petals in the pattern in- 
creases. Common to all values of p-both integer and 
half-integer-is the absence of an effect for coincident 
(8 = 0) and mutually perpendicular (8 = r/2) directions 
of propagation of the gravitational and electromagnetic 
waves. This result i s  in complete agreement with the 
predictions of Refs. 1 and 2. The direction of maxi- 
mum sensitivity for p = 1 and 1/2 corresponds to the 
angles 0, r50° and 0,r57", respectively, and for p = 2 
and 3/2 to the angles 8, x37", 44" and 8, = 73", 80". We 
recall that these results correspond to the polarization 
defined by the angle rp = 0 [see Eq. (511. In the general 

FIG.  2 .  

case, the pattern depends on the angle (p: 

F(0,  cp)=cos0sin (npcose )  cos2(cp-cpo), p= l ,  2 , 3 . .  . , 
F(0 ,  c p )  =cos 0 cos('/,n (2m+l)cos 0)cos 2(cp-cp,), p='/,(2m+f)=1/2,3/,. . . . 

(24) 
In accordance with the relation tan 2 9 ,  = b1/a', the phase 
rpo  in this formula determines the polarization of the 
gravitational wave, namely, rpo = 0 corresponds to  the 
polarization a' and c p ,  = r/4 to the polarization b'; in 
the remaining cases, there is a mixture of polariza- 
tions. 

The condition (18), which is an additional condition 
fo r  the interference of light waves passing through the 
interferometer (and also reflected from it) in the field 
of the gravitational wave, is equivalent to the condition 
of gravitational-electromagnetic resonance calculated 
by  ragi in ski! and ~ e n s k i i  in Ref. 6 for an electromag- 
netic wave in an annular wave tube (see also Refs. 1 
and 2). In the case of the Fabry-Perot interferometer, 
this condition distinguishes an infinite ser ies  of reso- 
nrnce frequencies which a re  multiples of the fundamen- 
tal frequency ( p  = I), for which the gravitational wave- 
length i s  equal to the base length of the interferometer 
and for  which, in accordance with Eqs. (21) and (23), 
the effect is maximal. 

Let us consider in more detail the interpretation of 
the effect. For optimal adjustment of the interfero- 
meter, the magnitude of the effect is ,  in accordance 
with Eq. (23), proportional to the combination aJ,/h(l 
- R). Now 1/(1 - R) is proportional to the number of 
double passages of the optical ray between the mirrors  
of the interferometer: l / ( l  - R) =2n. Hence 

Therefore, the effect can be interpreted as due to a 
change in the refractive index of the medium by an 
amount equal to a,/r. 

54. LOW-FREQUENCY REGION 

Let us continue the analysis of Eq. (16). We require 
fulfillment of the condition 

In other words, we shall consider the low-frequency 
part of the spectrum of gravitational waves in the fre- 

579 Sov. Phys. JETP 52(4), Oct. 1980 



quency range 

v =o-v-. 

The upper limit of this range i s  determined by the con- 
dition (25). If we set knL = 0.1, n= lo3, and L = 1 m, 
then v, = 5 x 10, Hz. After some manipulations and 
simplifications of the expression (161, we obtain 

rp,+=&dr-2(n-1) L) - (n+l)a0kehL sin' 0 cos kt.. (27) 

In terms of the metric of the gravitational wave, this 
expression can be written in the form 

where h,, is related to the metric component g3, by g3, 
= -1 + h,,. In Eq. (281, h,, is taken at the point z = 0: 
h, =a, sin2@ cos kT.  As can be seen from (27), the gra- 
vitational part of the phase # i s  proportional to n and, 
therefore, the condition (18) for obtaining a sharp in- 
terference pattern i s  satisfied for the range of fre- 
quencies (26). We can then readily find the gravitation- 
a l  advance of the phase over one double passage of the 
optical ray: 

nL 
8gr=-kU,Lhsa=-2ao - sin' 0 cos kr. 

Aem 

Further, as in Sec. 3, we can use Airy's formula to 
find the modulation of the intensity of the transmitted 
light. For optimal adjustment of the interferometer, 
we have 

AIII=Qao sin' 8 cos kr. (30) 

Comparing Eqs. (30) and (23), we see that in the low- 
frequency region determined by the relations (25) and 
(26) the Fabry-Perot interferometer has a s  a gravita- 
tional detector a somewhat greater (by r times) sensi- 
tivity (in the amplitude a,) than in the region of high- 
frequency resonances. 

The directivity pattern of the Fabry-Perot interfero- 
meter in the low-frequency region i s  determined by the 
function 

F ( B ,  c p )  =sin? 0, (31) 

and, with allowance for arbitrary polarization, by the 
function 

F(0, c p )  =sinz 0 cos 2 (cp-cp,). (32) 

The maximum is at the angle @= n/2, when the symme- 
try axis of the interferometer and the direction of the 
propagation of the gravitational wave a re  mutually per- 
pendicular (see Fig. 3). 

FIG. 3. 

The condition (25) enables us to find a solution to the 
problem in a simpler and more perspicuous manner. 
We introduce a local Lorentz coordinate system '5 at- 
tached to the body (mirror) at the coordinate origin. 
Along the worldline of this mirror, the metric will 
have the form of the Minkowski metric. We require 
that in the neighborhood of this worldline the metric 
take the form 

It i s  easy to find a transformation satisfying these con- 
ditions : 

The values of the metric h,, are  taken at the point x3 
= 0. 

In the neighborhood of the coordinate origin '5<< A, 
this neighborhood including the second mirror by virtue 
of the condition (25); the deviations from the Minkowski 
metric have the order -hx /~<<  h and, therefore, the 
contribution of the gravitational wave to the eikonal 
equation vanishes but the coordinate 2 of the second 
mirror undergoes periodic oscillations in accordance 
with (34): 

These displacements of the second mirror with respect 
to the first give rise t a a n  additional advance of the 
phase equal to -hh,&k,,. From this we obtain for the 
gravitational advance of the phase over one double pas- 
sage of the optical ray the previously obtained expres- 
sion (29), and then from it the results (30)-(32). 

$5. SENSITIVITY OF THE GRAVITATIONAL 
DETECTOR 

It is now regarded a s  realistic to construct a Fabry- 
Perot interferometer with base L = 10 m and reflection 
coefficient R = 0.998 with a laser light source. The Q 
of such an interferometer for a helium-neon laser with 
wavelength A = 6.3 x cm will be Q = 5 x 10l0. If the 
limit to the resolution of the modulation depth i s  deter- 
mined by the photon noise, a s  was the cause in the ex- 
periment using a Michelson interferometer: then 

where N is the number of photons. Let us take a mea- 
surement time of A t  = loa sec. Then for a helium- 
neon laser of power W = 10 W, 

N= WAtA. Jhc=3.2~t01', min (AIIZ) =1.8.10-*. 
em 

In accordance with (30), we find the resolution limit 
for the gravitational-wave amplitude: 

min ao=0.4.t0-". 

This value i s  somewhat lower than the so-called opti- 
mistic estimate for the amplitude of gravitational ra- 
diation expected from an event such as a supernova 
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explosion (see Ref. 8). 

In conclusion, we note that the results  obtained in  
th is  paper, in particular, Eq. (16), are valid for  the 
analysis of multipassage interferometers,  i.e., inter-  
ferometers with two interfering rays  but with multiple 
reflection in a sys tem of two or more m i r r o r s  used to 
increase the optical length of the interferometer. 
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An effective Hamiltonian is constructed for a three-body system with allowance for the electromagnetic 
structure of the particles and relativistic effects of order a' that do not depend on the spin orientation of the 
particles. This Hamiltonian and the nonrelativistic wave functions of a system of three particles with 
Coulomb interaction found in the adiabatic representation are used in a perturbation-theory calculation to 
accuracy -5 X eV of the relativistic corrections and the corrections for the electromagnetic structure of 
the nuclei to the energy levels of thep -mesic molecules of hydrogen isotopes. 

PACS numbers: 36.10.Dr. 3 1.30.J~ 

8 1. INTRODUCTION curacy required in these cases in the calculation of 
the energy levels of the p-mesic molecules, namely, 

The recent  interest  in the physical characterist ics  eV. 
of p-mesic molecules of hydrogen isotopes such as 

In the  present paper, mesic molecules are treated 
the energy levels and the i r  hyperfine s t ruc ture  a r i s e s  as sys tems of three spin particles with electromag- 
from a number of new high-precision experiments 

netic interaction, and their  dynamics is described by 
on p -  capture by light nuclei1 and, above all, investi- the SchrBdinger equation with the approximate (accurate 
gation of muon catalysis of the synthesis of the nuclei 

t o  t e r m s  of order  a') relativistic Hamiltonian obtained 
of the heavy isotopes of hydrogen.' The coupling in the in the frameworkof the formalism of Foldy and Krajcik? 
p-mesic molecules is due entirely to the electromag- 

The operators of the two-particle relativistic interac- 
netic interaction; this  makes it possible to describe 

tion a r e  constructed in the framework of Todorov's 
their  stationary states with high accuracy:*4 which, 

quasipotential approach.' The relativistic effects in 
in its turn,  increases the value of the experimental 

the Hamiltonian correspond to additive t e r m s  of two 
results  and the  reliability of their  interpretation. At 

types: diagonal and nondiagonal with respect  to the spin 
the s ame  t ime,  because the  masses  of the  p -  meson variables . 
and the nuclei are comparable, the relative contribu- 
tion of the corrections to the energy levels of the 
mesic  molecules due to the relativistic dynamics is 
about two o rde r s  of magnitude grea ter  than in ordin- 
a r y  molecules. To describe many processes with spin 
dependence1"** (such as p - capture) and especially 
the resonance formation of mes ic  molecules, the non- 
relativistic approximation is inadequate, and relativis- 
t ic  effects make a contribution at the level of the ac- 

The interactions associated with the lat ter  generate 
a hyperfine splittingof the energy levels; they have been 
considered The present paper is devoted to 
a study of the relativistic effects that do not depend on 
the spin orientation of the particles and lead only to 
shif ts  of the nonrelativistic energy levels. We consider 
in general form sys tems of three  particles with spins 
not exceeding 1, and we take into account their  electro- 
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