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It is shown that the cooling of neutron matter may be accompanied by a phase transition from one anisotropic 
supemuid state to another with very different physical properties. Such phase transitions must have a 
significant influence on the evolution of neutron stars. 
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In this note, I wish to draw attention to a curious ef- 
fect that may be observed in neutron matter at densities 
pz 1.5x l O I 4  g/cm3 and temperatures T -log OK, which 
a re  characteristic for the interior regions of sufficient- 
ly young (T < 1000 years) neutron stars. '  I a m  refer- 
ring to a phase transition from one anisotropic super- 
fluid state to  another, in which the gap in the excitation 
spectrum has a qualitatively different angular depen- 
dence. Since the form of A as a function of the direc- 
tion of the momentum affects the thermodynamics of 
neutron matter, the intensity of the emitted neutrino 
flux: and so forth, such a phase transition must in- 
fluence the evolution of the neutron s tar  and, in parti- 
cular, lead to a change in i t s  cooling rate. 

It is known that a neutron liquid with density slightly 
greater than the nuclear can be in one of three different 
superfluid states corresponding to triplet pairing.' Be- 
cause of the presence of strong spin-orbit interaction, 
the spin and orbital angular momenta of the Cooper 
pairs in these states a re  parallel, so  that the total an- 
gular momentum of a pair i s  always 2. In this case, 
the order parameter i s  isomorphic to a symmetric 
fourth-rank spinor, which can be representeg in the 
form of a symmetric traceless 3 x 3 matrix A. The 
complex numbers A,, transform like the components of 
a vector under rotations of both the spin space (first 
index) and the configuration space (second index). The 
Landau expansion for the free -energy density of the 
neutron liquid has the form2 

(1) 
Since we a re  dealing with a strongly coupled system, 
the calculation of the coefficients in the expansion (1) 
from f i rs t  principles can hardly lead to reliable re- 
sults. Therefore, the only sensible alternative i s  to  
study the thermodynamics of neutron matter in the gen- 
era l  case, i.e., without prior particularization of the 
values of PI, &, and 4. Such an analysis was made by 
Sauls and Serene2 without allowance for critical fluc- 
tuations. Noting the analogy between the present prob- 
lem and that of phase transition to the superfluid state 
with d pairing, which had been solved earlier by Mer- 
min,' Sauls and Serenea determined the structure of the 
order parameter for the three regions of values of the 
constants 4 that correspond to  the different superfluid 
phases. These regions a r e  shown in Fig. 1 (in the co- 
ordinates x, =&/Pa and y, = &/@. The matrices A 
corresponding to them have the form 

where A, is the amplitude of the gap and b is the degen- 
eracy factor. The specific degeneracy of the order pa- 
rameter in region 111" when allowance i s  made for the 
sixth-order invariants in the expansion (1). In this 
case, a minimum of F corresponds to b = -4 (for more 
details, see Ref. 2), s o  that the angular dependence of 
the gap in the excitation spectrum has here the quite 
definite form 

I AIII (0, ~p) I a 

-1+3 cos '0. 

For regions I and 11, the corresponding expressions a re  

A basic difference between the last two functions and 
(3) is that they have nodes, whereas 4,, vanishes no- 
where. Therefore, the thermodynamic and various 
other characteristics of a superfluid neutron liquid will 
depend strongly on the position-inside region 111 (see 
Fig. 1) or  outside it-of the point representing the sys- 
tem. 

In the framework of Landau's theory, the position of 
the point is strictly fixed, since the values of the pa- 
rameters /3, are  uniquely determined by the values of 
the corresponding coupling constants of the neutron- 
neutron interaction. In this situation, i t  is obvious that 

FIG. 1 .  Phase trajectories of the renormalization-group 
equations (5). The Roman numerals label the regions of the 
x-y diagram corresponding to different anisotropic super- 
fluid states. The hatched line bounds the region in which the 
fourth-order form in the expansion (1) of the free energy is 
positive definite. 
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a s  the temperature decreases the neutron liquid must 
go over into one of the three possible superfluid states 
and remain in i t  for all T < T,. But Landau's theory 
holds only at temperatures sufficiently f a r  from T,, 
since i t  completely ignores the critical fluctuations of 
the order parameter. We must therefore consider 
whether allowance for these fluctuations changes the 
behavior of our system in the critical region, and if so, 
then how. 

To answer this question, we must establish how the 
effective coupling constants y,, vary a s  T- T,; the 
dressed charges yv play the same part in the region of 
strong fluctuations a s  the constants 8, in the region of 
applicability of Landau's theory. The evolution of the 
charges is described by the renormalization-group 
equations. The Gell-Mann-Low functions which occur 
in these equations were calculated recently in the low- 
es t  approximation in y,, by Bailin, Green, and Love.4 
However, we shall not consider here the renormaliza- 
tion-group equations for  the charges themselves, since 
in the present problem it  is only their ratios x =  y,/y, 
and y = ys/yZ which a re  important. The "equations of 
motionn for x and y can be readily obtained from the 
results of Ref. 4. These equations a re  

where n is the reciprocal correlation radius and c is 
a positive constant. The phase trajectories of Eqs. (5) 
are  shown in Fig. 1. It is readily seen that there a re  
among them lines which leave the stability zone of the 
Hamiltonian from a region of the x-y diagram which is 
not the same a s  the one in which they begin (these a re  
the trajectories which intersect the boundary between 
regions I1 and 111). In such a situation, we know that 
the system can go over into the low-temperature state 
predicted by Landau's theory not only directly but also 
by passing through an intermediate phase, which is 
thermodynamically stable in a certain range of tem- 
peratures solely on account of the interaction of the 

critical fluctuations. 5*6  The intermediate phase in !his 
case is the superfluid phase with order parameter q,, 
and angular dependence of the gap of the form (3). As 
a result, a phase transition is possible in the neutron 
liquid from one anisotropic superfluid state to  another 
with physical properties very different from the first. 

Examining F'ig. 1, we conclude that the probability of 
this phenomenon is small; for only a small part of r e -  
gion I1 has the property that the phase trajectories 
which begin in i t  enter region III. However, the real 
situation may be more favorable. The point is that the 
renormalization-group equations (5), which we have 
taken a s  basis, a re  themselves approximate; they a r e  
derived in the lowest order in the charges, which a re  
not small in the asymptotic region; in addition, the de- 
rivation of these equations ignores the anisotropy of the 
fluctuation spectrum. Therefore, the true phase t ra-  
jectories may be significantly different from the ones 
shown in F'ig. 1. Accordingly, in the exact theory the 
"phase space" of the trajectories which intersect the 
boundary of regions corresponding to different super- 
fluid phases may be greater. 

' ' ~o te  that in all three regions there is  a trivial degeneracy 
of the order parameter due to the presence of a gauge 
group and the rotation group. 
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