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The problem of electron conductivity in a random potential is reduced to the problem of thermodynamics of a 
nonlinear tensor a model. The method of replicas is used and classical anticommutative fields are integrated. 
The symmetry of the tensor depends on the presence of magnetic and spin-orbit interactions. 
Renormalizability is demonstrated for the two-dimensional case and the Gell-Mann-Low function is 
calculated. This function is used to determine the dependence of the diffusion coefficient on the frequency or 
on the size of the system. 

PACS numbers: 66.30.Dn 

1. INTRODUCTION - We shall use the Grassman variables a t  the inter- 

A quantum particle subjected to a random potential 
may become localized or  may escape to infinity.' In 
the three-dimensional case localization occurs only 
when the degree of disorder is sufficiently high. In the 
one- and two-dimensional cases this effect may occur 
for disorder which can be as weak as we 
This is due to the dependence of the nature of classical 
diffusion on the number of dimensions. In the one- 
and two-dimensional cases a diffusing particle may 
pass very near the initial point after a sufficiently long 
time. In the three-dimensional case the probability 
of return is low. Therefore, in the former two cases 
a particle is scattered many times by the same center 
no matter how weak is the random potential. In the 
three-dimensional case such multiple scattering is im- 
portant only if the potential i s  sufficiently strong. In 
all  cases when multiple scattering is important we 
can expect quantum interference to result in localiza- 
tion. 

Direct calculations of the quantum corrections to the 
conductivity were reported by Gor'kov and two of the 
present authors5 and by Anderson et aL6 These calcu- 
lations showed that such corrections appear a s  a result 
of the interaction of the diffusion modes. Therefore, 
i t  is important to provide a description of the inter- 
action of diffusion modes by an effective Lagrangian. 
Attempts to introduce such a Lagrangian phenomeno- 
logically have been made many time~.~-'O All these 
authors have used the replica method'l in which a ran- 
dom system is replaced by N thermodynamic systems, 
the partition function is averaged over the random 
potential, a l l  the necessary quantities a r e  calculated, 
and then N is allowed to tend to zero. 

All these investigations7-lo differ in respect of the 
symmetry of the collective variable Qua which de- 
scribes diffusion. In a recent paper, Wegnerlo showed 
that Q u a  is a 2Nx2N matrix and the effective Lagran- 
gian has a high symmetry 0(2N)/O(N)xO(N). There- 
fore, the Lagrangian describes the interaction of N = 
Goldstone modes. The principal weakness of these in- 
v e s t i g a t i o n ~ ~ - ' ~  is that a t  the intermediate stage after 
averaging over the random potential the procedure 
yields the Hamiltonian of a gas of Bose particles with 
an attractive interaction. Therefore, all  the quantities 
a r e  described formally by diverging integrals. 

mediate stage s o  that after averaging we obtain the 
Hamiltonian of a Fermi gas with attraction. This 
theory is free of the shortcomings of Refs. 7-10. The 
effective Lagrangian of the diffusion modes can now be 
derived in the same way as the Ginzburg-Landau func- 
tional in the BCS theory. This Lagrangian has  the 
S(2N)/S(N)xS(N) symmetry [S(N) is a symplectic 
group]. We shall find the effective Lagrangian allowing 
for an external magnetic field, a s  well a s  for scatter- 
ing by magnetic impurities and the spin-orbit inter- 
action. In a l l  these cases we shall show that the theory 
is renormalizable in a two-dimensional space and we 
shall calculate the Gell-Mann-Low functions in the 
one- and two-loop approximations. 

2. DERIVATION OF THE FUNCTIONAL OF 
INTERACTING DIFFUSIONS 

The nature of immersion of an electron in a random 
field of impurities can be studied simply by finding the 
correlation function of the density p(r, t): 

where ( . . .) denotes averaging over the distribution of 
impurities; K ( w )  is  a two-particle Green function which 
can be expressed in the usual way in terms of retarded 
G~ and advanced GA one-particle Green functions: 

Here, x = r ,  a!, where r i s  the coordinate and a! is  the 
spin variable; E ,  and cp, a r e  the eigenvalues and the 
eigenfunctions of an electron in an impurity field: 

The problem is to average Eq. (2) over the distribu- 
tion of impurities. Us~a l ly , '~  the Green functions a r e  
expanded a s  a perturbation theory ser ies  in terms of 
the random potential HI and each term of the ser ies  is 
averaged. Diffusion is then obtained by summation of 
ladder diagrams. The effects of the interaction of dif- 
fusions can be calculated by summing a rapidly growing 
number of diagrams, the majority of which cancel out. 
Moreover, in an analysis of a diagram ser ies  we cannot 
employ the usual field theory methods, because it i s  
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necessary to ensure the absence of closed loops in the 
diagrams. The method of replicas" allows us to use 
field theory methods. Then, diffusions behave as 
Goldstone modes in the "replicaJ' Hamiltonian. In 
many cases it is  found that the important distance ex- 
ceeds the mean free path. These cases a r e  described 
by the Lagrangian of interacting diffusions. 

In the replica method a Green function is expressed 
in terms of a continuum integral of boson fields. Aver- 
aging over the impurity distribution gives the Hamil- 
tonian of a Bose gas with attraction. This Hamiltonian 
does not have a stable ground state. The use of the 
continuum integral of Fermi  fields makes i t  possible 
to avoid this difficulty. Classical fermion fields a r e  
described by the following Grassman anticommutative 

Integration with respect to the Grassman variables is 
described by 

It follows from the above formulas that 

Using the representation (6) we can express a Green 
function in terms of a continuum integral 

The replica method makes it possible to describe the 
average (over the positions of impurities) of the ratio 
of two integrals in the form of the ratio of the averages 

The correlation function of the density K ( w )  can be 
expressed in the following form using Eqs. (2), (7), 
and (8): 

Instead of a double se t  of variables x and u, it is  
convenient to introduce a spinor I): 

where C is the charge conjugacy matrix 

In terms of spinor notation, Eq. (10) can be rewritten 
in the form 

L=t Jdz@(x) (H,+U(r) +'/,"A) $ ( z ) ,  (1 3) 

where A is the diagonal matrix with the elements A,, 

and U(r) i s  the impurity potential. In the calculation 
of the averages over the distribution of impurities the 
potential U is regarded a s  a random quantity, dis- 
tributed in accordance with the Gaussian 6-correlated 
law 

where u is the density of states and T is the transit 
time. This assumption is obeyed quantitatively in the 
case of small-radius impurities with a weak potential. 
In general, we can show that all  the results remain 
valid also after a redefinition of the constants. 

After averaging, Eq. (13) can be rewritten in the 
form 

where 

The dgrangian (15) is  similar to that which is used 
in the theory of superconductivity. The metallic phase 
in the theory of localization corresponds to the super- 
conducting phase. The order parameter in the theory 
of localization i s  the zero-trace tensor Q - ( J I F ) .  Dif- 
fusion modes correspond to slow changes in Q .  These 
slow changes in Q can be calculated by rewriting the 
interaction term in the form 

+ ($P,$P,) (+Pt-alpPx+J + ($P,$P%-q) (@P,lpP.+J I * (16) 

where regions with small values of q a r e  treated 
separately. 

Using the operation of charge conjugacy and applying 
the anticommutation rules, we can show that the first  
two terms on the right-hand side of Eq. (16) a r e  equal. 
The third term alters slightly the value of C. The ex- 
ponential function of the fourth power of J ,  can be 
written conveniently in the form of a Gaussian integral 

(1 7) 
where the matrix Q satisfies the conditions 

Q=Q+, c*Q'c=Q+. (1 8) 
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The Hermitian nature appears always for arbitrary fluctuations. 
values of $ and $and the second condition in Eq. (18) 
follows from the fact that J, and $ a r e  linked by the 
charge conjugacy ope rations. 

The elements Q,, a re  quaternions, i.e., they a r e  
2 x 2  matrices of the Q =Q"T, type, where 

The conditions (18) mean that all  the quantities Q:, a r e  
real  numbers and Q,, can be written in the form 

Bearing in mind that Q varies slowly, we can inte- 
grate fermion fields and obtain an expression for the 
correlation function of the density in the form of a con- 
tinuum integral with respect to Q 

K ( o )  = j DQ~-' ~r  [ ( i - A )  ( l - r , )Q(r )  ( f + A )  ( i+r , )Q(r l )  1 

The free energy F is 

It is clear from Eq. (23) that TrQ gives r ise  to a 
small correction to E. If we ignore these corrections, 
we can regard Q a s  a trace-free matrix. If & ~ / f i > > l ,  
then the free-energy minima a re  important in the in- 
tegral (22). The conditions for the minima a r e  

The solution of Eq. (24) for w +  0 is of the form Q =A. 

In the case of low values of w the free energy for all 
Q's satisfying the condition Q2 = I  differs little from the 
minimum value. All such zero-trace matrices can be 
written in the form 

where U is  an  arbitrary unitary quaternion-real ma- 
trix. If we assume that Q is homogeneous over a large 
region and expand it in terms of small deviations from 
equilibrium, we obtain the following expression for 
the free energy 

nv ionv + - 6 ~ . 6 ~ - . }  + J Tr AQdr. 
42 

We have to distinguish longitudinal variations of 6j 
which disturb the condition Q2 =1 and transverse (ro- 
tational) variations which conserve this condition and 
obey 

The longitudinal variations of Q alter greatly the free 
energy and, therefore, we can ignore the longitudinal 

Homogeneous transverse fluctuations do not a l ter  the 
free energy a t  all  in the limit of low frequencies and 
only the gradients Q contribute to  the free energy. In 
the case of small gradients, it follows from Eqs. (26) 
and (27) that 

where D = V ~ T  is the diffusion coefficient. The expres- 
sion (29) is  the functional of the free energy of inter- 
acting diffusion modes. The matrix U in Eq. (26) can 
be written in the form 

In Eq. (30), B is an arbitrary quaternion-real matrix. 
If the interaction between the modes is unimportant, 
then U differs little from unity and the free energy can 
be expanded as a ser ies  in powers of B. Retaining only 
the quadratic terms, we obtain 

Using Eqs. (31) and (22), we find that the correlation 
function of the density is 

3. LOWERING OF SYMMETRY 

The free energy of Eq. (29) is symmetric under the 
transformations of Eq. (26). The high symmetry is due 
to  invariance under time reversal, when a particle is 
replaced with a hole. The symmetry is manifested by 
the invariance of Eq. (29) under unitary transformation 
of each quaternion. If we allow for the spin degrees of 
freedom, we have to add to the symmetry a lso  the in- 
variance under rotations in the spin space. The sym- 
metry under time reversal is  broken by an external 
magnetic field o r  by the scattering on magnetic im- 
purities. Magnetic impurities and the spin-orbit inter- 
action break the symmetry under rotations in the spin 
space. The Hamiltonian allowing for a l l  these inter- 
actions has the form 

Here, A is the vector potential; T, is defined by Eq. 
(19) and i t  appears because the u, x Hamiltonian is ex- 
pressed in terms of $ and 3; V,, is the spin-orbit in- 
teraction in the absence of impurities; U,, is the im- 
purity spin-orbit interaction; Us is a random magnetic 
field created by magnetic impurities. 

For  convenience, we shall assume that all  these in- 
teractions a r e  weaker than conventional scattering and 
can therefore be considered independently. Repeating 
the derivation of Eq. (29) in the presence of an external 
magnetic field, we find that the expression for  the free 
energy becomes 

F= yJ dr T ~ { D  ( VQ +<F[Q, ~ ~ 1 ) '  +2 ioAQ] .  (35) 
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It is clear from Eq. (35) that in addition to the gradient 
term the free energy contains a constant term pro- 
portional to A' which does not vanish for  homogeneous 
Q. If we substitute Eq. (20) in Eq. (35), we can see  that 
no constant terms appear in the matrix D. This cor- 
responds to the case when the magnetic field does not 
destroy diffusion. In A the constant term does not 
vanish and this means that fluctuations of A can be ig- 
nored in the range of the longest wavelengths. 

When the Hamiltonian is independent of the spins, all  
the above results can be applied separately to the spin- 
up and spin-down particles. In general, it i s  necessary 
to regard x and x a s  spinors and + and as bispinors, 
described by the formulas 

The matrix Q satisfies Eq. (18) where the charge 
conjugacy matrix i s  defined by Eq. (36). In the case of 
scattering by magnetic impurities it is  necessary to 
average over the random fields Us. After such aver- 
aging we can show that Eq. (15) contains an additional 
term 

After integration over the Fermi  fields, this term in 
9' gives rise to  the following constant term in the free 
energy 

Equation (38) can be written in a more convenient 
form if we use spin quaternions Q =Q, +Qa: 

Equation (39) shows that a t  long wavelengths we can ig- 
nore fluctuations of Q, and a lso  fluctuations of A,. We 
a r e  then again left with conventional diffusion. 

In the case of a sufficiently weak spin-orbit inter- 
action we find that Eq. (15) acquires an additional term 

After integration with respect to I) the function 4P,, 
transforms into an expression for the additional spin- 
orbit contribution to the free energy 

Equation (40) is derived allowing for the possible 
anisotropy of the spin-orbit interaction. 

Equation (40) shows that a l l  fluctuations of the vector 
components Q a r e  unimportant a t  long wavelengths. 
However, in addition to  fluctuations of Do, fluctuations 

of A, a r e  a lso  important. This is due to  the fact that 
the spin-orbit interaction conserves the symmetry 
under time reversal. The matrix Q then becomes 

where all  the Qi's a r e  unit matrices in the spin space. 
It follows from Eq. (41) that in the spin-orbit case the 
matrix Q is not real with respect to quaternions. 

We thus find that in the language of Goldstone modes 
a magnetic field, magnetic impurities, and spin-orbit 
interaction act as characteristic anisotropies of dif- 
ferent symmetry. In the range of moderately long 
wavelengths the number of Goldstone modes is large 
and when the wavelength is increased some of them lose 
their Goldstone nature s o  that a t  the longest wavelength 
these modes a r e  represented by diffusion and possibly 
by fluctuations of A,. 

4. INTERACTION OF DIFFUSION MODES 

At the end of Sec. 2 we have shown that the correla- 
tion function of the density has the diffusion form in the 
Gaussian approximation. Corrections to  the correlation 
functions due to the interactions can be allowed for by 
including terms of higher order in B. Using Eq. (30) 
and the expression for the free energy functional (29), 
we obtain the free energy to within @: 

1  I  +- 272' Tr( lB,  ai1[6+, oil) $ - 6%. Tr [ B ,  Zl[B+, 21 

In further calculations it is convenient to expand the 
matrix B in terms of the complete se t  of B matrices 

where T, is  given by Eq. (19) and 

s o = l ,  s t ,  ?, ,=ior. 2, S. 

The condition of charge conjugacy CTBTC =B+ with the 
matrix C, given by Eq. (36), means that Baa and B,, 
a r e  real, whereas B,, and B,, a r e  imaginary matrices. 

Using the expansion (43) we can write the part F, 
quadratic in B in the form 

Fz=2nv ~r ( - i o + ~ . + ~ . , )  B,,~B.? . (44) 
E 

In Eq. (44), B A  a r e  the coefficients in the expansion 
of the functions B,,(r) in terms of eigenfunctions of the 
Hamiltonian describing a particle in a magnetic field 
and E, a r e  the eigenenergies: 

where H i s  the magnetic field. 

Expanding the commutators in Eq. (42), we can cal- 
culate the quantities (i =1,2,3) 

4 2 2  
X,,=X,,=O, x , i=x, i= - + - - - 3t, T., zj:" 
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In the first  approximation, the correlation functions 
a r e  governed by Gaussian integrals and a r e  given by 

In this approximation the correlation function B is 
identical with the correlation function Q. Using Eq. 
(47) and going to the limit N =0, we can obtain correla- 
tion functions of the density (DoD,*), of the spin density 
(DD*), and also of the triplet and singlet A: 

The energy F,,,  describing the interaction between 
modes has the following form in the absence of a mag- 
netic field: 

We shall calculate the correlation function of the 
density using the theory of perturbations relative to 
F, , .  Separating the most diverging (at large distances) 
terms and using the formulas in Eq. (47), we obtain 

Equation (49) contains all  the known effects of the 
f i rs t  order in respect of the interaction of diffusion 
modes. In the absence of symmetry-breaking inter- 
actions, the correction to the diffusion coefficient in the 
two-dimensional case is proportional to l n w ~  (Refs. 
4-6). An external field truncates these l~gar i thms, '~  
in the same way a s  magnetic impurities." If allowance 
is made for the spin-orbit interaction, the sign of the 
correction to D is reversed.17 In the three-dimensional 
case the contribution of long-wavelength fluctuations is 
proportional not to the logarithm but to the square root 
of the frequency. 

5. RENORMALIZATION GROUP 

In the preceding section we have shown that the inter- 
action of diffusion modes is described in all the in- 
vestigated cases by the nonlinear u model18e19 

where 6 = nvtw/2. 

The matrix Q in Eq. (50) obeys the conditions 

In the case of potential scattering by nonmagnetic 
impurities and spin-orbit scattering we can assume 
that the matrix Q consists of 4N2 quaternions satisfy- 
ing the conditions (18)-(20) and (41). In the model 
which allows for the scattering by magnetic impurities 
o r  for the interaction with a magnetic field the matrix 
Q consists of 4N2 complex numbers. This form differs 
slightly from that used in the preceding section, where 
the spin structure of each element has been important. 
However, since only the diagonal element of the spin 

matrices contribute a t  long wavelengths, this dif- 
ference is removed by a suitable redefinition of t. 

We shall investigate the model described by Eq. (50) 
in a space of dimensions 2 +& using the renormaliza- 
tion group method, similar to that employed by 
Polyakov18 in the vector model. We shall represent the 
matrix Q in the form (22), where U is a unitary matrix 
consisting of r N  complex numbers in the magnetic 
case o r  of 4N2 quaternions of suitable type described 
by Eqs. (20) and (41) in the nonmagnetic case and in the 
spin-orbit scattering case. 

Following the renormalization group method, we shall 
divide the matrix U(r) into a product of fast Uo(r) and 
slow D(r) parts: 

U(r)=Uo(r)B(r) ,  (52) 

where Uo(r) and C(r) satisfy the same conditions as U. 

Substituting Eq. (52) into Eq. (50), we reduce the 
expression for  the free energy (50) to  

Qo=Uo+AUo, A=VC.U+. 

We can easily demonstrate that the matrix Qo satisfies 
the conditions (20) and (41). 

We shall integrate Eq. (22) using the free energy 
given by Eq. (53) and use the fast variable Qo(r). After 
integration, the energy F in Eq. (53) becomes modified 
to  F,,  describing slow fluctuations 

The functional integral with respect to Qo in Eq. (54) 
can be calculated subject to  the restrictions of Eq. (51) 
by parametrization of Eq. (30), where B is an arbi- 
t rary  matrix composed of N 2  quaternions whose form 
is described by Eqs. (18)-(20) and (41) or  of N 2  com- 
plex numbers in the magnetic case. 

Expanding Qo in terms of the matrix W, we reduce 
the energy functional F to  

F=F,+F,+F,+O; 

1 
Fz= tj (Tr (AAAW2A) + Tr (AWA) "Id ,  

In Eq. (55), is given by 

Q=U+AU. 

The quantity cP contains terms of higher order in W. 
There a r e  no terms linear in W because W varies 
rapidly. It is assumed that W ,  differs from zero for  
Xko< k< k, and that W ,  -0 for k<  Xko, where ko is the 
truncation parameter and 0 <  X<1. Integration is 
carried out over the momentum range k2 >> ij. 

In the lowest order in t the integral of the exponential 
function in Eq. (54) can be reduced to 
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where (. . .), denotes averaging with the functional F, 
from Eq. (55).  

The averages in Eq. (56)  can be calculated using the 
formula 

In the calculation of Gaussian integrals we can easily 
verify the relationship 

In Eq. (58) ,  P is an arbitrary matrix consisting of P i ,  
quaternions of the type described by Eqs. ( 2 0 )  and ( 4 1 )  
or of complex numbers in the magnetic case. The co- 
efficient (Y in Eq. (58)  depends on the model and is given 
by 

- 1, potential scattering, 

0, magnetic case, 

1, spin-orbit scattering. 

The averages which include a large number of the 
matrices B a r e  calculated using the Wick theorem. 
Applying the formulas in Eq. (581, we can now calcu- 
late ( F : ) ,  and (F,),. It should be pointed out that each 
of them contains terms of a form different from the 
unrenormalized energy F,  but their sum reproduces 
exactly the free energy 

Equation (60)  shows that our theory is renormalizable 
in the first  order. This equation allows us to find the 
form of the Gell-Mann-Low function, which we shall 
write down for a space of the dimensions 2 +&: 

dt  -- 
d l n k  

-$ (1) = 2 $"in; 
"-1 

d l n  B N t  
= E ( t ) = - .  

d l n k  4 

It is clear from Eq. ( 6 2 )  that in the limit N - 0  in the 
first  order with respect to t  the function vanishes 
[ ( t )  - 0. This property is retained in a l l  orders with 
respect to t  for N - 0 and it is associated with the law 
of conservation of the number of particles in elastic 
collisions. 

Following exactly the same procedure we can calcu- 
late also the Gell-Mam-Low function in higher orders. 
Terms of the order of t 3  in this function can be found 
by counting the number of diagrams of the correct 
order in t  shown in Fig. 1. Some of them include quad- 
ratic divergences which a r e  canceled out by a contribu- 
tion from the Jacobian. Logarithmic terms appear due 
to integrals of the type 

FIG. 1. 

In some terms the integration is carried out over the 
range Ak,< k , ,  k,< k,, whereas in others it is carried 
out over the range Aka< k,,  k,, I k, +&I < k,. Direct cal- 
culations demonstrate that terms of the order ln2X 
cancel out. The first  order of 1nX is absent from each 
of the calculated integrals. This corresponds to the 
case when terms of the order of t do not appear in the 
Gell-Mann-Low function of Eq. (61)  and the coefficient 
P3 vanishes in Eq. (61) .  This result was obtained ear- 
l ier  by one of the authorsz0 in the practically important 
case of N =O. 

It should be pointed out that this result is in conflict 
with the answer obtained by Brezin e t  a1.19 Since 
Wegnerlo refers  to the work of Brezin et al.,lg his @ 
function of a phase-invariant ensemble also differs 
from the result P ,  =O. We may put forward the hypo- 
thesis that P(t)=O for N =O in the case of scattering by 
magnetic impurities and on application of an external 
magnetic field. 

In the potential scattering case we have an unstable 
fixed point 

which corresponds to the mobility threshold. In the 
limits E - 0  and t * - 0 ,  this clearly corresponds to 
localization of all  the states in the two-dimensional 
case. 

In an external magnetic field when allowance is 
made for the scattering by magnetic impurities there 
a r e  no fixed points in the range of validity of the theory 
t<< 1. Therefore, in the magnetic case an electron is 
localized in a two-dimensional system only when the 
degree of disorder is sufficiently high. 

An interesting possibility appears also in the case of 
the spin-orbit interaction. In this case we can see 
from Eq. ( 6 1 )  that the effective charge tends to zero for 
E =O and N = 0 :  

In Eq. (61)  for the case of potential scattering of 
spin-free particles and spin-orbit scattering the co- 
efficients in front of t z  and P(t) have the same absolute 
values for N = O .  If we compare the model spin-free 
Hamiltonian ( 5 0 )  with the Hamiltonian for real parti- 
cles (23) ,  we can see that in the spin-orbit scattering 
case the correction to the diffusion coefficient has the 
opposite sign and is half the value in the potential 
scattering case. 

The same result was obtained by a different method 
by Hikami e t  a1.l' Anderson e t  aLZ1 put forward the 
opposite hypothesis that, because of invariance under 
time reversal, the spin-orbit interaction should not 
affect electron localization. It follows from the 
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formulas in Eq. (49) that, in general, the corrections 
t o  the diffusion coefficient appear due to fluctuations 
with spins of zero and unity. The spin-orbit inter- 
action suppresses spin fluctuations and, therefore, it 
influences the result. 

CONCLUSIONS 

We have seen that the problem of electron conductivity 
in a random field of impurities is equivalent to the 
problem of thermodynamics of a tensor field which is 
shown to be renormalizable. The Gell-Mann-Low 
function is found for the two-dimensional case and this 
function can be used to  determine the dependence of the 
effective diffusion coefficient (and, consequently, of 
the conductivity) on the frequency and size. At finite 
temperatures the frequency should be replaced with the 
reciprocal of the energy relaxation time. 

An external magnetic field, magnetic impurities, and 
spin-orbit interaction alter the effective energy of a 
tensor field and its symmetry. Therefore, the con- 
ductivity depends on temperature, frequency, size, and 
magnetic field. The nature of this dependence changes 
in the presence of the spin-orbit interaction or  of mag- 
netic impurities. 

One of the authors (A. I. L.) is grateful to S. Hikami 
for  stimulating discussions. 
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