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A method is proposed for the investigation of the low-temperature properties of one-dimensional classical 
disordered system such as a charge density wave (CDW) in an impurity potential, or a chain of spins with 
random anisotropy. The energy and correlation radius in the ground state are calculated. A nonuniversal 
power-law behavior of the state density and of the conductivity of the CDW is observed at low frequencies, 
wherein the exponent is connected with the form of the static structural factor of the CDW. 

PACS numbers: 71.45.Gm 

This paper deals with a theoretical investigation into here cp i s  the CDW phase shift, v, is the Fermi velo- 
the low-temperature properties of one-dimensional city, Q 1; 2p, is the wave vector, x, a re  the coordinate 
classical disordered systems, such a s  a charge-den- of the impurities, and V is proportional to the potential 
sity wave,' in a random potential of weak impurities,' of the impurities (see Ref. 9); the impurities a re  as-  
or a chain of XY spins with weak random anisotropy. sumed to be identical. The quantity Q/c (c is the im- 
The study of these systems is of interest both from the purity concentration) is assumed large, s o  that Qx, are  
experimental3 and from the theoretical points of view, random uncorrelated quantities. 
since they constitute the simplest forms of systems in 
which the "frustrationw phenomenon, f i rs t  observed in 
spin-glass t h e ~ r y , ~  manifests itself. In i ts  general 
formulation the gist of this phenomenon i s  that the 
presence of a substantial disorder causes the ground 
state of the system to be formed not locally, but a t  
distances much larger than the lattice constants (in 
spin glasses these distances a r e  of the order of the 
size of the system: in our problem they a re  determined 
by the microscopic parameters). The main problem in 
the theory of systems of this kind is indeed the deter- 
mination of the properties of the ground state, and or- 
dinary perturbation theory in terms of the disorder i s  
not suitable for this purpose. 

This paper makes use of a synthesis of the "trans- 
fer matrix9? method5 and the method of the distribution 
function for systems with disorder. 6*1 In principle, 
the employed method is suitable a t  all  temperatures, 
but the concrete results of the paper pertain to T=O. 
The exposition in the main text is in the language of the 
charge-density wave (CDW). In Appendix A i t  is shown 
that the problem considered is identical with that of a 
ferromagnetic chain of classical XY spins with random 
anisotropy. The quantities determined in the paper 
(accurate to a number on the order of unity) a r e  the en- 
ergies of the ground state, the correlation radius, and 
the dielectric susceptibility of the CDW (these results 
confirm the dimensional e ~ t i m a t e ~ * ~ ) .  The low-fre- 
quency behavior of the state density and of the CDW con- 
ductivity a re  established (with the same accuracy). 
These quantities turn out to have a power-law frequency 
dependence with an exponent that is a function of the 
form of the CDW structure factor. 

1. FORMULATION OF PROBLEM 

The phenomenological Hamiltonian of a CDW in an 
impurity field was obtained by Gor'kovg: 

H = ['i,u.(~rg)'- v ~ ~ ( x - ~ ) c o s ( ~ + Q x ) ]  dx; 
A 

As noted by Fukuyama and Lee,' the behavior of the 
system depends essentially on the ratio of V and cv,. 
At V>> cv, the energy minimum is reached a t  cp, + Qx, 
= 2nn for all  points k ("strong pinning"). This case was 
investigated in detail by Gor'kov. At V << cv, ("weak 
pinning") the impurity phases cp + Qx, a r e  almost ran- 
dom, and the pinning is effected by large regions with 
characteristic dimension LC -v,(cv,~')- '/~, and con- 
taining many impurities. The estimate presented for 
Lo was obtained2v8 from the following consideration: 
the energy of deformation of the CDW over the length 
LC is of the order of v,Lc-'; the energy of binding to the 
impurities is - v(cL,)"~; these energies a r e  of the 
same order. In the present paper we consider the 
weak-pinning problem quantitatively. 

The partition function corresponding to the Hamil- 
tonian (1) is of the form 

On going from (1) to (2) we have carried out Gaussian 
integration with respect to cp(x) a t  all  points free of 
impurities. We shall use for the calculation a general- 
ization of the transfer-matrix method known for regu- 
l a r  systems. 

Let @,(cpN) be the partition function of the chain, nor- 
malized to unity and dependent on the phase cpN at i ts  
last  point xN (integration was carried out over all the 
preceding cp,(k<N). We then have for @,,,(cpN+,) 

h+,Y.,-+,(q,+,)= esp 

(AN+, is a normalization constant, and lN+, =xN+, - x,). 
In the absence of disorder, @,+,(cp) =@N(cp) and (3) re- 
duces to the Schriidinger eigenvalue problem. 

The general formulation of the problem of the ther- 
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modynamics of a disordered system consists in the 
following: 1) the partition function of the system with 
disorder is calculated; 2) the logarithm of this function, 
i. e. ,  the free energy, is determined; 3) averaging is 
carried out over the disorder. 

To realize this program, we represent @,(cp,) in the 
form 

The function gN(qN) has the meaning of the free energy 
of the chain a s  a function of the phase cp, at  its last 
point. The integral with respect to cp, is taken in (3) 
principally at 9, - cp,,, << 1 (under the nonrestrictive 
condition T << cv,). Substituting (4), we get 

(5) 
Equation (5), which contains the random parameter 

x,,,, is our fundamental relation. We note that in a 
regular system Eq. (5) would be a Riccati equation 
corresponding to the Schradinger equation for @(cp). 
By virtue of the condition V<< cv,, all the terms in the 
right-hand side of (5) a re  much smaller than EN((P), SO 

that the function ~(cp) changes little following a shift by 
one step in the lattice. (We note that a similar state- 
ment for @Jcp) would be utterly incorrect at  low tem- 
peratures. ) 

We consider next the region of the lowest tempera- 
tures, and neglect therefore the second term in the 
right-hand side of (5). Equation (5) i s  then trans- 
formed into a Hamilton-Jacobi equation (with a discrete 
imaginary "timew N) corresponding to the "equation of 
motion" 

This equation is satisfied by the extrema of the Hamil- 
tonian (I), including the configuration cp(x) correspond- 
ing to the ground state. At first glance it seems that 
the ground state can be investigated by using Eq. (6) 
itself. This equation, however, is essentially non- 
linear in cp and has therefore a tremendous number of 
solutions satisfying the boundary conditions, but lo- 
cated quite far in energy away from the ground state. 
Therefore the usual procedure of averaging over all 
the solutions of (6) with a single weight is physically 
unjustified. 

The foregoing arguments pertain in principle to sys- 
tems of all dimensionalities, but a r e  particularly im- 
portant for the consideration of one- and two-dimen- 
sional systems, where the use of the ordinary method 
leads to a physically meaningless result such as  a zero 
correlation radius. lo The change to the Hamiltonian 
Jacobi equation separates from all the solutions of (6) 
those close to the ground state. 

The use of the Hamiltonian-Jacobi equation means 
physically a definite method of solving Eq. (6): a solu- 
tion i s  constructed that is necessarily a local minimum 
of the energy and has a definite value of the phase a t  the 
last point N. As already mentioned, the random phases 
Qx, a re  independent, therefore (5) is a Markov process 
for the function c(cp). Our problem is now to calculate 

the distribution functions of the various physical quan- 
tities, and primarily the Green's function G(x, x) that i s  
connected in obvious fashion with ~(cp): 

2. THE DISTRIBUTION FUNCTION W(B) 

The basic equation (5) specifies a Markov process for 
the 2n-periodic function ~(cp), i. e., for an infinite set 
of parameters, where the "separation of the variables" 
in general form is impossible. To calculate many 
physical quantities, however, it surfices to determine 
the distribution function W(0) of the quantity given by 
Eq. (7). In this section we obtain the characteristic 
scale ,3, of the quantity ,3 and the asymptotic forms of 
W(0) at 0 >>Po (with exponential accuracy) and 0 <<Po 
(accurate to a number on the order of unity). 

1. We expand the function E,((P) in a series near the 
minimum : 

and obtain iteration equations of the type (5) for the 
parameters 02 )  and 7,. The function c(p) has, gener- 
ally speaking, more than one minimum in the period. 
Therefore the equations that we shall obtain, describe 
the parameters of one of the minima, not necessarily 
those of the absolute minimum. As a result, our 
formalism is subject to some inaccuracy, the con- 
sequences of which will be discussed at the end of the 
paper. 

To find the connection between y, and y,,,, we differ- 
entiate (5) at  the point cp =Y,,,: 

(8) 
(we recall that here and below T =O) ,  

It will be shown that the characteristic scale i s  
f i  -(cv,~')l/~'<< cv,. Therefore the second term in 
the right-hand side of (8) is small compared with the 
first. Substituting (9) in (8) we obtain 

We have neglected in the right-hand side of (10) the 
small difference y,,, - y, - (V/CV,)'/~ << 1. 

The equations for 0 =@"', 8(4), . . . , p('*) a re  obtained 
similarly: 
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( 1 1 ~ )  
etc. The reason why terms with odd derivatives 
p'2"+1', were discarded will be made clear below. 

We note that in the arguments of the cosines in (11) 
i t  is necessary to retain the small differences yN+, - y,, 
therefore i t s  presence leads to a nonzero result of the 
averaging of these terms over x,,,. The averaging 
must be carried out with the distribution P(1,) 
= c  exp(-cl,). By virtue of the condition Q/c >> 1, the 
random phase Qx, can be regarded a s  uniformly dis- 
tributed over the circle (O,2n). The averaging of the 
terms containing I,, yields the factor l/c. Averaging 
Eq. ( l l ) ,  we obtain 

t tc .  In (12) a re  introduced the quantities 
@(2n)= (-l)"'1/3'2"'. As seen from Eqs. (12), all the 
quantities p'2"' a r e  of the order of 

Each equation in (12) contains one term with + sign, 
stemming from the averaging of the term 

In the equations for fl'2n+1), the corresponding term 
contains the sine rather the cosine, i t s  mean value is 
zero, s o  that the /3'2n+1) a re  necessarily smaller in order 
of magnitude. 

The estimate (13) of the order of magnitude of c(p) 
shows that the term proportional to temperature, which 
we have discarded in (5), becomes of the same order 
a s  the remaining terms a t  T -Po. Our results a r e  thus 
valid a t  T << ( c v , ~ ~ ) ' ~ ~ .  

2. We obtain now the asymptotic distribution func- 
tion W('(P) a t  fl >>flo. [W(P) is the probability density of 
@, averaged over all the remaining Ph). ] At @>>Po the 
last  term in ( l l a )  is small, s o  that we can write for 
W(P) an equation independent of the remaining para- 
meters PC"). This is done in analogy with the deriva- 
tion of the Fokker-Planck equation 

Substituting (15) in the general equation (14) we obtain 
for  W(P) 

The solution of (16) is 

where Po is defined in (13). Equation (17) yields the 
asymptotic form of W(@) a t  p >> B, with exponential ac- 
curacy. To determine the pre-exponential factor i t  
would be necessary to take into account the last term 
of (1 la). 

The quantity W(@) determined in (17) us  the distribu- 
tion function of the quantity @ a t  arbitrary values of the 
remaining B'"'. It is easy to show that in the limit 
P >>'>Po the remaining quantities @'"' -@, so that averag- 
ing over them does not change the exponential form of 
(17). 

3. We determine now the asymptotic form of W(P) a t  
V>>O <<'(Po. In this region all  @'2n' -8 <<fro, therefore 
we can b a v e  out of (5) the nonlinear term (a~/acp)~, 
and the condition V<<@ ensures smallness of all  the 
parameters, which is needed for the validity of the 
method, on going from N to N +  1. The potential 
V cos(p + QX,) contains only one harmonic, so  that in 
the absence of nonlinear terms i t  is natural to seek 
c ( g )  in the form 

By regarding the term (ac/ap)' a s  a perturbation, it 
can be shown that the amplitudes of the higher har- 
monics a'")(n 2 2) a r e  small compared with p like 
P//30(a("-j3(fi//30)3). Therefore in the region <<Po the 
amplitude of the f i rs t  harmonic of @ coincides with the 
value @ = aZc/acp2 I., determined in the preceding section; 
i t  is this which justifies the notation used. 

We obtqin for @ the equation 

The corresponding equation for the distribution func- 
tion is 

Its solution is 

B W(B)=A7;  A-I. 
B. (21) 

 h he factor @: stems from the normalization 
J B," W(IJ)~P - 1.1 

We note that the linear asymptotic form (21) in con- 
t ras t  to the universal result (13) and (17) is valid only 
for  the concrete form V(cp)= Vcos(cp + Q x )  of the po- 
tential: if the potential has several harmonics, Eq. 
(21) is replaced by 

For  the potential 

V(rp) =-V[cos(cp+Qx) +a cos 2 (cp+Qx) 1; a<l, (23a) 

which has a small second-harmonic component, the 
exponent q is calculated in Appendix B: 
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We emphasize that (22) is an intermediate asymptotic 
value in the region V<< B <<Po, the so-called "Gaussian 
tail" of the distribution function. The region /3 << V 
corresponds to the "Poisson tail," in which W(B) 
- exp(-const/b). 

3. STATISTICAL CHARACTERISTICS OF CDW 

We obtain in this section expressions for the energy 
of the ground state E, and for the correlation radius 
R ,  in terms of the distribution function W(b). 

1. The total ground-state energy of a chain with N 
impurities is, by definition, zN(yN). The average energy 
density per lattice site is 

E,=c(E, ( T N ) / ~ > = ~ ( ~ N + I  ( y N + t )  -EN ( Y N ) ) .  (24) 

Using (5) and (9) we obtain 

Expression (25) must be averaged over x,,,, and then 
over the distribution W(B). Thus, 

Equation (26) yields a correct expression for  the 
ground-state energy of the CDW in the field of the 
impurities (the so-called pinning energy) in terms of 
the distribution function WU). Not knowing the exact 
form of W(P), we can only estimate E,: 

Of course, the estimate (27) coincides with the pre- 
viously obtained one. 

2. The correlation function of the CDW 

where g(x) and g(0) a r e  the phases in the ground state. In 
the calculation of the correlation radius R ,  the point can be 
placed a t  the end of the chain: g(x) = y,. This can change 
the pre- exponential factor in K(x), but not the value of R,. 
We obtain now the change of cos(y, - (o,) following addi- 
tion of one more impurity (we note that a t  N >>Re the 
change of cpo is exponentially small): 

Averaging (28) and bearing in mind the independence 
of yN of xN+,, we obtain 

From (29) we obtain the asymptotic form 

Recognizing that N=cx, we obtain ultimately 

The logarithmic integral on (31) is cut off a t  P - V, 
As a result, 

Under the condition ln(B,,/V) >> 1, the quantity A, is ex- 
pressed in terms of A from (21): 

3. The dielectric susceptibility x cannot be expressed 
in terms of W(P). To calculate i t  we must find the joint 
distribution function W(B, p) ,  where p is the local pol- 
arization. We shall not perform thp corresponding 
calculations, since i t  has not been possible to deter- 
mine x exactly. The estimate of x agrees with that'ob- 
tained earlier.  

4. STATE DENSITY AND CONDUCTIVITY OF CDW 
AT LOW FREQUENCIES 

The equation for small oscillations of CDW about the 
ground state is31g 

here q(x) is the distribution of the phases in the ground 
state, and u is the phase velocity of the CDW. 

We obtain now the state density p(o) for the Schro- 
dinger equation with the random potential (34) in the 
region of the "Gaussian tail" uV/v, << w << uP,,/v,. The 
existing exact methods of investigating the Schradinger 
equation with a random potential6*' a r e  valid if the cor- 
relation radius of the potential is small compared with 
the characteristic length encountered in the problem. 
In our case this condition is not satisfied, and we 
therefore proceed differently an? express p(o) directly 
in terms of the distribution function W(P) (accurate to a 
number-of the order if unity). 

The function W(@) obtained in Sec. 2 gives the distri- 
bution of p at the last  point of the chain. We now need 
an analogous distribution function a t  an a r b i t r a ~ y  point 
inside the chain [we designate this function by ~ ( / 3 ) ] .  
We choose a certain point N a t  the center of the chain 
and construct for i t  two energy-minimizing solutions 
of Eq. (5), starting from the right and left ends of the 
chain. We designate the obtained functions by cN<(s,) 
and cN>((PN). The final minimization of the energy con- 
s is ts  of finding the total energy E ~ ( ( P ~ )  = c ~ < ( ( P ~ )  + E ~ > ( ~ ~ ) .  

We a r e  interested in the region V <<@ <<Po. There- 
fore, taking (18) into account, we obtain 
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It is easy to verify with the aid of (35)-(37) and (21) 
that 

In the more general case corresponding to (22) we have 

We obtain now the connection between w(P) and the 
state density d o ) .  We write down the spectral ex- 
pansion for the Green's function G,=,(x, x)=p;' of Eq. 
(34) at zero frequency [see (7)]: 

En =vpw$/uZ a r e  the energy levels of the SchrGdinger 
equation (34). 

We a re  interested in states in the region of the fluc- 
tuating boundary of the spectrum, where the wave func- 
tions a re  well localized and the spectrum is essen- 
tially discrete. Therefore the partition function in (40) 
is of the order of i t s  f i rs t  term: 

Recognizing that the dimension of the bound state is 
E ,  -(E,/v,)"/~, we obtain from (41) 

E, (z) +2/vP; W, (5) =upduP. (42) 

Therefore the distribution function W(@) from (38) yields 
directly the state density P(w) for the average length 
of the bound state (see e. g., Ref. 7, p. 304), I; -v,P,-' 
- Rc: 

is the characteristic pinning frequency. 

We ultimately obtain for the state density p(w) per 
lattice site 

C -l;w,-up, is the Debye frequency of the CDW oscil- 
lations. 

To calculate the conductivity a(w) connected with the 
CDW, it  must be noted that (see Refs. 2 and 9) 

i.e., i t  differs fromp(w) by integration with rsspect tox, 
which introduces a factor on the order o' Ihe dimen- 
sion l(w) of the state with energy w. Djcognizing that 
l(w) - V ; ~ ~ E - ' ~ ~ ( W )  -uwmf, we obtain 

o2 u(0)-const,. 
00 

(44) 

[We have left out of..':) al l  the constant factors that 

do not depend on the impurities. ] 

In the case of a potential V(cp) of general form we 
obtain with the aid of (39) 

We emphasize once more that the results (43)-(46) 
pertain to the intermediate frequency region Vu/v, 
<< w << w,. In the region w << Vu/v, the states a r e  
formed on account of low-probability fluctuations on 
the "Poisson tail," therefore 

5. DISCUSSION OF RESULTS 

We have developed here a method that permits a 
quantitative approach to the investigation of the ground 
state of one-dimensional classical ordered system 
which substantial disorder (by substantial disorder is 
meant one that alters qualitatively the properties of the 
ground state). In addition to the considered problem of 
the charge -density wave, the results a re  directly appli- 
cable to a one-dimensional planar magnet with random 
anisotropy (see Appendix A) and in general to any one- 
dimensional system with a random field that interacts 
with a zero-gap mode of the phonon type. 

The original results of the paper a r e  represented by 
formulas (45) and (46) for the state density and for the 
CDW conductivity at low frequencies. The exponent q 
depends on the form of the interaction potential 
V(cp + QXX of the impurity with the CDW phase. For a 
potential containing a single harmonic, q = 1, and in the 
presence of a small second-harmonic component [see 
(23a)l the exponent is given by (23). In the considered 
case of weak impurities the interaction potential 
V(cp + Qx) is directly proportional to the modulation 
bp(p + Qx) of the charge density of the CDW, there- 
fore the coefficient a in (23) is directly the ratio of the 
amplitudes of the second and f i r s t  Bragg peaks con- 
nected with the CDW superstructure. Thus, a direct 
connection (23) is predicted between the form of the 
structure factor of the CDW and the behavior of p(w) 
and o(w) at low frequencies. 

It should be noted that the function o(w) -w2 was ob- 
tained earlier by Fukuyama and Lee. This result was 
obtained with the aid of an impurity diagram technique, 
with all the diagrams with crossing dashed lines dis- 
carded (the effective-medium approximation). In our 
problem this approximation is utterly unjustified, since 
the discarded diagrams a re  of the same order a s  the 
retained ones. Therefore the agreement between the 
result obtained by this method and our result [formula 
(44)] without the use of perturbation theory is quite sur- 
prizing and worthy of a separate investigation. We 
note, incidentally, that this agreements holds only for 
the case of a potential with a single harmonic, (V(cp) 
= V coscp); for an arbitrary potential the answer con- 
tains the nontrivial exponent, whereas the method of 
FUuyama and Lee2 would yield the earlier result q =  1. 



As noted in the derivation of the distribution function 
W the solution used by a s  for the balance equation is 
one of the local energy minima (not necessarily the 
absolute one). This calls for a certain refinement of 
the region of applicability of our results. The expres- 
sions obtained by us for p(w) and u(w) constitute the 
contributions made to these quantities by the phonon 
modes localized in the random potential produced be- 
cause the system selects any one of the local energy 
minima. In addition to the phonons, the system should 
contain excitations of the soliton type, which transfer 
the distribution of the phases from one local minimum 
to another. Since the characteristic times for such 
excitations should be quite large (especially a t  low tem- 
peratures), i t  is meaningful to  formulate the problem 
in such a way that the solitons need not be taken into 
account at all. To obtain the characteristics of the 
system it  would then be necessary to average over the 
possible metastable states in which the system can 
turn out to be. Actually, however, there is no special 
need for this, since our results depend not on the con- 
cretely chosen phase distribution that realizes the local 
minimum, but only on the equation that this distribution 
satisfies. Since the result is obtained by us  unambig- 
ously, i t  should be the same for any of these local 
minima, s o  that there is no need to average over them. 

When total equilibrium thermodynamics is con- 
sidered, account must be taken of the soliton contribu- 
tion, and this limits the region of applicability of our 
results. Consider, for example the heat capacity of 
the system at  low temperatures T << wo. The contribu- 
tion of the phonon states with density p(w) from (43) is 

We estimate now the density of the soliton state: the 
characteristic scale of the function E((P) is of the order 
Po,  s o  that the probability of finding to minima of ~ ( c p )  
that differ by w in energy is of the order US;'. This 
probability is normalized to a length of the order of 
R, - Z ) ~ P ; ' .  

The presence of solitons leads thus to a state density 
that is finite a t  w = 0 and has a value per lattice site 

We note that our solitons a r e  similar in many respects 
to the two-level excitations considered in Ref. 11. 

The corresponding contribution to the heat capacity is 

the heat capacity therefore takes the form (47) a t  the 
temperatures 

As seen from (48), the existence of a region where 
our analysis is valid for full-equilibrium thermody- 
namics is the result of the classical character of the 
CDW, a s  expressed by the condition u <<- u, (Ref. 1). 

It should also be noted that a t  T # 0 there should exist 
a finite conductivity u(0) a t  zero frequency and a sin- 
gular dielectric susceptibility ~ ( k )  - (R$)* a t  small 

momenta [the last effect was considered by Brazovskii 
for the case of strong pinning, but the existence of 
finite p,,,,(O) was not taken into account]. These phe- 
nomena a r e  due entirely to excitations of the soliton 
type. 

In conclusion, the author thanks L. P. Gor'kov and 
V. L. Pokrovskii for numerous discussions of the work. 

APPENDIX A 

The energy of a chain of classical planar spins with 
random anisotropy of second order is of the form 

(A. 1) 

where S, = (S cosO,, S sin@,); 5, = (cosa,, sincu,); a, is a 
random phase uniformly distributed over a circle. 
Changing over to the variable cp, = 2@,, we obtain 

JSz 
1 = - - +  - $z cos ( v . - 2 ~ ) .  

8 
(A. 2) 

Comparing with (2), we see  that the considered prob- 
lems a re  identical, apart  from the substitutions 
cv, - 1/4 JS2, V - 1/2DS2; the weak-pinning condition 
cv, >> V corresponds to weak anisotropy D << J. A 
ferromagnet with a Heisenberg (three-component) spin 
can also be treated by the proposed method; the dif- 
ference lies in the fact that i t  becomes necessary to 
consider a function ~ ( 0 ,  cp) that depends on two angles 
rather than one. 

APPENDIX B 

We seek E((P) corresponding to the potential (23a) in 
the form 

ex (cp)  = - Z N  C O S ( ( P - . I N )  - ~ Y N  cos 2 ( q - y S )  (B1) 

and obtain the asymptotic form of W(z) a t  z <<Po. The 
equations for y,, z,, and y, a re  obtained in analogy with 
(10) and (19): 

Z N + ~ = Z N  C O S  ( m r + t - . I r )  +V C O S  ( r s + r + Q ~ n - + s ) ,  (B. 3) 
Y N + L = ~ N  C O S  ~ ( ~ N + I - Y N )  4-V C O S  ~ ( ' ~ N + I + Q x N + I ) .  (B. 4) 

The corresponding equation for the distribution function 
f l z ,  Y) is 

i+4a2 
y )  9'1 = 0 (B. 5) 

Integrating (B. 5) with respect to y we get 

here 

wr(z)= J ~ ~ ( z , Y ) ~ Y ,  w ~ ( z ) = J B ( z , Y ) Y ~ ~ Y ;  

in the derivation of (B. 6) we used the condition a << 1. 

It will be shown that W2(z)=Az2W(z); therefore Eq. 
(B. 6) has the solution 
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W(s) =const .zq; q=1-4az-16azA. (B. 7) 'H. F u k u ~ a m a  and P. A. Lee. Phys. Rev. B17, 535 (1977). 
3 ~ .  J. Gunning, A. J. Heeger, J. F. Schcegolev, S. P. Zolo- 

For  a final determination of q we must find A in the tukhin, Sol. State Comm. 25, 981 (1978). J.-J. Andre, 
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Magnetization and magnetostriction measurements have been made on the intennetallic compound DyCo, , 
in strong pulsed magnetic fields (up to 250 kOe), at temperatures close to the spin-reorientation transition that 
is observed in this compound and that is of the easy-plane, easy-cone, easy-axis type. The experimental data 
are compared with theoretical relations obtained by consideration of a model of a two-sublattice ferrimagnet, 
each sublattice of which has its own magnetocrystalline anisotropy; the uniaxial anisotropy constants of the 
sublattices have different signs and are comparable in magnitude with the intersublattice exchange 
interaction. It is shown that such a model describes the magnetic properties of DyCo, , in strong fields; values 
of the anisotropy constants of the sublattices are obtained from the experimental data. It is significant that in 
the analysis of magnetization curves it was necessary to allow for a noncollinear magnetic structure that 
occurs in strong fields, and also for a dependence of the value of the magnetic moment of the Dy sublattice on 
direction. 

PACS numbers: 75.30.Cr, 75.80. + q, 75.30.Gw, 75.50.Gg 

INTRODUCTION which causes the high Curie temperatures3 (about 1000 
K) of these compounds. The R-Co interaction is about 

The compound DyCo,,, like other rare-earth com- an order of magnitude weaker; the exchange interaction 
pounds RCo,, has a hexagonal crystallographic struc- within the R sublattice can a s  a rule be neglected. 
ture of the CaCu, type (space group PG/mmm). This Thus the REM atoms constitute a paramagnetic system 
structure may be regarded a s  consisting of alternating located in  an effective field produced by the Co sublat- 
layers of cobalt atoms, placed perpendicular to the tice. The compounds RCo, with light REM have ferro- 
hexagonal axis; the atoms of the rare-earth metal magnetic ordering; those with heavy, ferrimagnetic. 
(REM) occupy hexagonal positions in every second - - - 

layer."') Adecisive role in the formation of the magnet- A distinctive feature of many RCo, compounds is the 
ism in RCo, is played by the Co-Co exchange interaction, fact that a t  low temperatures their uniaxial magnetic 
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