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Surface oscillations of a normal Fermi liquid are analyzed using the Landau phenomenological theory. A 
scheme is formulated for describing surface effects using a kinetic equation with a self-consistent field; this 
scheme is based on successive separation of surface parts of various characteristics of a liquid. Boundary 
conditions on a free surface are derived. An expression is obtained for the surface tension. Oscillations of a 
Fermi liquid are studied under hydrodynamic and collisionless conditions and the distributions of the density 
and current in the presence of such oscillations are found. 

PACS numbers: 62.10. + s 

1. INTRODUCTION clude the quantum te rm arising because of the nonlocal- 

Khodel' et ~ 1 . ~ ' ~  used the Fermi  liquid approach3 a t  
absolute zero to develop a theory of surface oscillations 
of a Fermi liquid and they applied this theory to nu- 
clear vibrational states. The theory describes suc- 
cessfully low collective nuclear states but consider- 
able difficulties a r e  encountered in the derivation of 
simple analytical expressions in the macroscopic limit 
of a large system such a s  liquid 'He. It is important 
to s t ress  that this approach does not require formula- 
tion of any boundary conditions on the free surface of a 
liquid.  omi in' formulated a scheme for describing 
surface phenomena in the collisionless case on the 
basis of a kinetic equation with a self-consistent field 
and certain boundary conditions on the free surface: 
the condition of specular reflection of quasiparticles 
and the ordinary hydrodynamic boundary condition with 
surface tension. Therefore, it would be interesting to 
investigate how these boundary conditions appear in a 
more general approach and also to describe surface 
phenomena not only in the collisionless case but also 
allowing for collisions. 

Our aim is to develop a simply quasiclassical theory 
of surface oscillations of a normal Fermi  liquid de- 
scribing the dynamics of this liquid in the hydrodynamic 
and collisionless cases, and capable of dealing with 
surface phenomena in liquid ' ~ e .  We shall use the 
Landau phenomenological theory of a Fermi  liquid.' 
We shall formulate a description of surface phenomena 
using a kinetic equation with a self-consistent field. 
We shall derive boundary conditions on the free sur- 
face and these will be identical, apart from unimportant 
corrections, with the conditions used by s om in.' 

We shall obtain an expression for the surface tension 
which will be somewhat approximate: i t  will not in- 

ity of the relationship between the density of the sys- 
tem po(r) and the self-consistent field Uo(r) (Refs. 1 and 
2). This occurs because of quasiclassical description 
given by a kinetic equation gives a poor description of 
the surface where po(r) and Uo(r) rapidly vary with the 
coordinates. However, the quasiclassical approach 
holds very well in the interior of a large system if 
k <<p, (k  is the oscillation wave vector and p, is Fermi  
momentum) and it  describes the dynamics of surface 
oscillations. Thus, a l l  the inaccuracy of the quasi- 
classical approach reduces to the inaccuracy in the cal- 
culation of just one theoretical constant which is the 
surface tension. 

We shall consider oscillations of a Fermi  liquid in 
the hydrodynamic and collisionless case and find the 
distributions of the density and current in the presence 
of such oscillations. In the hydrodynamic case (WT << 1) 
the spectrum of surface waves is identical with the 
spectrum of capillary waves in viscous hydrodynamics, 
which is to be expected, and the motion of the liquid is 
described by laws of hydrodynamics. In the collision- 
less  case (wr >> I), we shall show that there a r e  two 
surface branches. The f i rs t  low-lying branch is a con- 
tinuation of a capillary hydrodynamic branch and is 
found to be simply damped. The second higher branch 
is a quantum analog of the Rayleigh surface waves in a 
solid6 and it  is considered in detail in Fomin's paper.' 
This second branch exists only if the constant in front 
of the f i rs t  harmonic of the effective interaction is Fl 
> 6, i. e., if transverse zero sound can travel in the 
system. 

Application of the results obtained to liquid 3 ~ e  shows 
that both capillary and Rayleight oscillations a re  
strongly damped in 'He under collisionless conditions. 
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The Rayleigh oscillations a re  damped because the velo- 
city of transverse zero sound CI is close to V,. This 
is due to the Landau damping mechanism, i. e., the 
decay of a collective mode into particle-hole pairs. 
A surface mode is a wave packet of plane waves whose 
spectral composition is found, for given values of w 
and k, only from the requirement of disappearance of 
oscillations in the interior of the liquid. The compo- 
nents of a packet for which the ratio s = w/qV, (q is the 
wave vector of a plane wave in a packet) is less than 
unity experience the Landau damping. Therefore, the 
damping of the whole wave packet is governed by the 
relative weights of the components with s < 1. 

2. KINETIC EQUATION FOR A SYSTEM WITH A 
FREE SURFACE 

In this section we shall derive the boundary condi- 
tions which should be satisfied by the distribution func- 
tion on a free surface. We shall consider a Fermi 
sea bounded by the surface x = O  (the liquid is in the 
half-space x > 0) and we shall describe this system 
using the Landau kinetic equation5: 

where n(p, r, t) is the distribution function of quasipar- 
ticles in the sea, Z(n) is the collision integral, 

Here, g(p, r; p', r') is the effective interaction between 
the quasiparticles; d7 = 2dp/(2d3; the dependences on 
the spin variables (a and a') a re  not given explicitly. 

The equilibrium solution of the kinetic equation is 
pV2rn+Uo ( p ,  r )  -p -' 

no ( p ,  r )  = [exp { I + l I  * 

where y is the chemical potential and the self-consis- 
tent field Uo(p, r) i s  defined in terms of no(p, r )  by Eq. 
(3). In view of the selected geometry, the equilibrium 
distribution function no(p, r )  and the self-consistent po- 
tential Uo(p, r )  vary rapidly with the coordinate near 
x = 0, ranging from some finite value at x > 0 to zero 
for x < 0. 

We shall consider small spin- symmetric deviations 
from equilibrium n =no + 65. Then, the linearized 
equation for 6?z(p, r )  is 

a6ii dOi i  a n ,  a6O a U ,  a6ii a n ,  a 6 0  
-+V-+--------=t(fjii), (5) 

a t  ar  ar a p  3 1  a p  a p  a r  

where L ( ~ R )  is the linearized collision integral 

Or ( p ,  I ,  t )  = 5 F ( p ,  r ;  p', r ' )  6 i i ( p P ,  r', t )  dr' dr', (6) 

v = = -  anO(p'9 r ' )  dr' dr,, + P P a p ,  
m a ( r )  rn 

(7) 

rn*(r) is the effective mass which generally has differ- 
ent values inside and outside the medium. 

We shall point out that, in contrast to Eq. (21, V is 
defined in terms of the equilibrium distribution func- 
tion. In Eqs. (6) and (7) the signs of summation with 
respect to the spin, Tr,. , are omitted because here and 

later we shall consider only perturbations which a r e  
spin- symmetric. 

We can easily demonstrate that Eq. (5) is transla- 
tionally invariant, i. e., that a simple shift the whole 
system by the distance 6R, 

is a solution of this equation. 

Equation (5) shows that a Fermi liquid with a free 
surface can be regarded a s  a system which is in some 
external confining field (equilibrium self-consistent 
field of the system) which is generally velocity-depen- 
dent. Then, the effective mass of a quasiparticle exci- 
tation is a function of the coordinates. However, in 
order to simplify the solution of the kinetic equation, 
we shall reduce theinfluence of this field to the bound- 
ary condition and use its characteristic coordinate de- 
pendence. This reduction i s  also of theoretical inter- 
est because it allows us to understand how surface ten- 
sion appears in such a liquid. 

We shall study free oscillations of our semi-infinite 
system 

6i i (p ,  I ,  t )  =6ii(p,  x, k )  exp (-iot+tkr,), (8) 

where k={0, k,, k d  and r1={0, y, z}  are vectors lying in 
the plane of the surface. Substituting Eq. (8) into the 
linearized kinetic equation (51, we obtain 

where 

6U ( p ,  z, k )  = 5 9 ( p ,  x;  p', x'; k )  6fi(pr, x', k )  ds' dx', (10) 

i. e., it is defined in terms of the k component of the 
effective interaction 

It should be noted that if the effective interaction is 
6-like, 7- b(r - r') then Ak) = d o ) ,  i. e., this inter- 
action is independent of k and 6 ~ ( p ,  x,k) = (an, /ax)b~is  
a solution of Eq. (9) for any value of k when w =O. 
Such a solution describes static deformation of the li- 
quid surface characterized by a wave vector k and a 
deformation amplitude 6X (6X = const). It follows that 
in this interaction the spectrum of surface waves is 
trivially degenerate: w(k) = 0 and the surface tension 
of the system vanishes. For this reason we shall con- 
sider a weakly nonlocal interaction. 

For simplicity, we shall assume that the effective 
interaction is Gaussian in respect of (r - r'), and we 
shall retain only the first two harmonics in respect of 
the angle between p and p': 

where PF is the Fermi momentum; Y, is the parameter 
which governs the nonlocality of the effective interac- 
tion and is of the order of l/pF, i. e., it is of the order 
of the average distance between the particles; y O b )  
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andFl(p) a r e  the interaction constants for the zeroth 
and first  harmonics, their dependences on the density 
of the system p implying that they a r e  generally differ- 
ent for the medium and vacuum and a t  the surface of 
the system a r e  in some way interpolated with respect 
to the density (see, for example, Refs. 2 and 3). The 
actual form of such interpolation is unimportant for 
our purpose. Using the expression for  the interaction 
(121, we find that fo r  k <<p, 

It should be mentioned that the representation of ~ ( k )  
in the form of an expansion in t e rms  of a small param- 
eter ( k ~ , ) ~  is only a consequence of the smallness of the 
nonlocality parameter Y, of the effective interaction. 
The convenience of the Gaussian form of the interaction 
(12) is simply that the coefficients in front of 1 and in 
front of ( k ~ ~ ) ~  [see Eq. (13)] a r e  proportional to the 
same quantity .F(k = O), which simplifies subsequent 
operations. However, a l l  these results can also be 
obtained for any other weakly nonlocal effective inter- 
action. Since the correction due to the nonlocality is 
only small compared with unity in Eq. (13), we shall 
include this correction only in those cases when the 
main term of the expansion (131, which i s ~ ( k = O )  van- 
ishes exactly. 

It is clear from Eq. (9) that i t s  solution is 6ii -dno/dc 
(E = p2/2m + U,). We shall seek this solution in the 
form 

or, on the basis of the above discussion 

where 6 X  (6X = const), is the amplitude of a surface 
oscillation, 

dno an, dn, aUo 6 n = - f ,  -=-- 
de a~ de a x  ' 

where the last expression follows from Eq. (4). Cor- 
rect determination of the function f requires application 
of an additional condition which means that f does not 
include parts proportional to  a  ax. Therefore, we 
shall assume that 

J f d~ dX=0. (15) 

It follows from Eq. (14) that a change in the self-con- 
sistent field also splits into two-bulk and surface- 
terms: 

dno 
6U(p ,  x, k )  = S S ( ~ = O ) -  f dr' dx' 

de 

the macroscopic characteristics of the system a r e  in- 
troduced above and they a r e  the bulk perturbation of the 
number of particles p' and the particle flux j: 

dmo 
p f (x .k )=S  ~ f d r ,  (18) 

Equations (16) and (17) a r e  derived using the self- 
consistency condition which follows from Eq. (3): 

a U,  an, - a x  = j 9 - (k=o) -dz r  axr dxg ,  

and also ignoring the nonlocality of the effective inter- 
action in the bulk term [see Eq. (1711, since allowance 
for this nonlocality in the bulk simply produces small 
corrections -(krJ2. 

Substituting Eqs. (14) and (16) in Eq. (91, we obtain 

where the collision integral L(f) is defined in the natu- 
r a l  manner: 

Equation (21) is derived using 

an, a r ( -ax)  = ~ X ~ L  (no)  =o. 
ax 

We shall now utilize the fact that the function a ~ , / a x  
represents a sharp surface peak (at x -O), whose 
width is of the order of the diffuseness of the edge of 
the system -l/p,, and vanishes inside and outside the 
system. Therefore, in the medium (x > 0) the term in 
the second set of braces in Eq. (21) disappears leaving 

On the other hand, in the region of the surface diffuse- 
ness the term with aUo/ax predominates so  that here 
Eq. (21) reduces to 

We note immediately that -iw6X=Qo is the amplitude 
of the surface oscillation velocity. We shall assume 
that x = 0 in Eq. (23) and divide this equation by (aUo/ 
ax),,,, and then integrate with respect to dp, between 
-p, and p,. We must bear in mind that Uo(p, x) is an 
even function of p, and all  the terms in Eq. (23) a r e  
odd with respect top,, s o  that they vanish after such 
integration. We thus have 

f (p,)  -f ( -p , )  =-2p,ao+6Cr(p,) 

liv, 
- 6 U ( - p = ) + ~ ~ ( k r , ) ' ~ a 0 .  (24) 

Substituting ~ q .  (17) in Eq. (24), we obtain 

9-, (x=O) 
f (b) -f ( - P = )  =ZP= [-ao + 

pF2 
(25) 

In Eq. (25) we have ignored the unimportant term 
-(kyc 12. 
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We now multiply Eq. (25) by p,dno/dc and integrate: 

A simple calculation yields the equation for j,(x =O): 

here, 

PO ( z )  = j no ( P ,  4 d r  

is the equilibrium density of the system, 

m'(x) = ( l+F,m'po/pRz)  m 

is the effective mass." It follows from Eq. (26) that 

j.(z=o) =nrp,(z=O)DU~. (2 7) 

Finally, substituting j,(x =0) in Eq. (25), we obtain the 
first boundary condition of the x = O  surface: 

a 0 

f(p.1 - / ( - -PA  =-2p= l+,/ ,F,(z=O) , (2 8) 

where Fl = (3m*po/p:).Fi. This boundary condition has 
a very clear physical meaning: it is the condition for 
specular reflection of quasiparticles from the x=O sur- 
face. 

We shall now derive the second boundary condition. 
It is known' that the kinetic equation (1) yields the fol- 
lowing equation for the conservation of the momentum 
flux: 

. a  a 
- j i  + -4,=0, 
d t  ark 

(2 9) 

a an a n  au 
- r I k , = j p i ( , - v , - - - )  or, 

ap, ark d r  , ark 
(30) 

where &{(r) is the momentum flux tensor. 

We shall linearize the momentum flux tensor rela- 
tive to 65: 

a an  asu asii an,  asu a s i i a u ,  -a. ark = j P ,  (--+-v,------) dr .  (31) 
ark ap, an ap ,  ark ap, arb 

Next, separating the distribution function 62 into the 
bulk and surface term (14), we shall represent in 
the form of two terms: bulk and surface. We shall de- 
fine the bulk momentum flux tensor by 

Using this definition, we can easily transform Eq. (29) 
to 

We shall consider Eq. (33) in the region of the tran- 
sition (surface) layer x - 0. We can easily show that 
the boundary condition for specular reflection (28) 
makes the nondiagonal components of the bulk momen- 
tum flux tensor II, = II, = 0 vanish in the transition lay- 
er .  Therefore, 

an,- an, --- 
ax,  a~ 

at x-0. We shall now find n,, in the direct vicinity of 

the surface on the side of the liquid, i. e., at  x =+O. 
We shall do this by integrating Eq. (33) with respect to 
dx from --w to +O in such a way that the integration do- 
main covers the whole of the transition layer. We then 
note that since ano/ax and au0/ax vanish outside the 
transition layer, integration in the expressions con- 
taining these quantities can be extended from -- to +. 
Using the expression j, =-iwmpobX in transition region 
[see Eq. (27)], and the orthogonality condition (l5), we 
obtain the second boundary condition 

II, (x=+O) =-k'a6X+02MsGX, (34) 

"an,  au, 
a---*l2rG2 j --dr&, 

- - a x  a x  

where the integral in Eq. (36) is taken over the diffuse 
edge region (-d, d), where d -l/p,. 

In the coordinate-time representation the boundary 
condition (34) appears a s  follows: 

Without the last term, Eq. (37) is the ordinary hydro- 
dynamic boundary condition on the surface of a liquid, 
where a i s  the surface tension. The last term in Eq. 
(37), which contains a2/at2, reflects the fact that the 
surface layer is not only characterized by an elasticity 
a but also by a certain mass (we can see from the defi- 
nition that M s  is the mass per unit surface area). It 
follows that the surface mass increases on increase of 
diffuseness of the edge of the liquid. However, in al l  
the cases considered above this inertial term is unim- 
portant and, therefore, we shall ignore it. 

The expression (35) obtained for the surface tension 
is somewhat inaccurate: it does not include the quan- 
tum term associated with the nonlocality of the rela- 
tionship between the density po(x) and the self-consis- 
tent field Uo(x) (Refs. 1 and 2). This is a consequence 
of the fact that the quasiclassical expression for the 
equilibrium distribution function (4) provides a poor 
description of, the surface of our system. The condi- 
tion of validity of the quasiclassical approach ( a~ / ax ) /  
ml'fl' << 1 is not obeyed in the surface region. In 
reality, this parameter is of the order of unity in the 
transition regions of nuclei and liquid ' ~ e .  However, 
this is the only shortcoming of the quasiclassical ap- 
proximation. On the other hand, Eq. (35) represents 
generalization of the classical term inthe surface ten- 
sion to the case m*/m * 1  hodel el' et a1."2 considered 
the case m* = m). 

3. SOLUTION OF THE KINETIC EQUATION 

We shall now give the final formulation of the prob- 
lem of finding free surface oscillations of the Fermi 
liquid. We shall consider the linearized kinetic equa- 
tion 
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in the half-space x > 0, where the perturbation of the 
density p' and the particle number flux j a r e  given by 
Eqs. (18) and (19). The linearized collision integral 
in the 7 approximation is selected in the same way a s  
in the work of Khalatnikov and Abrikosov,' v is the col- 
lision frequency 

We shall seek the solution of Eq. (28) which decreases 
in the limit X-OO and which satisfies the following 
boundary conditions a t  x = O  [see Eqs. (25) and (34)]: 

We can see that this formulation of the problem is 
fully equivalent-with the exception of the collision in- 
tegral on the right-hand side of the kinetic equation 
(38)-to the formulation adopted by  omi in.' For  com- 
pleteness, we shall briefly consider the type of solu- 
tions that a r e  obtained in this formulation. 

Equation (38) can be solved conveniently by a method 
suggested by Landaue in an investigation of the penetra- 
tion of an electric field into a plasma. The kinetic 
equation (38) is reduced to a system of integral equa- 
tions for the functions pl(x, k) and j(x, k), defined in the 
half-space x > 0. Then, defining additionally the func- 
tions pt(x, k) and j&, k) a s  even and the function jx(x, k) 
as odd in the half-space x < 0, this system of equations 
is reduced to the form convenient for solution by the 
Fourier transformation method: 

and j(q) is defined similarly. Here, q ={qX, k}, and 
pt(x, k) and j(x, k) a r e  understood to be the quantities 
extended to the half-space x < 0. A similar method for 
solving Eq. (38) in the collisionless case was used by 
~omin. '~herefore,  we shall give the final results with- 
out going into details of the solution method. 

Solution of Eq. (38) subject to the condition of de- 
crease in the limit x-w and the subject to the bound- 
ary  condition of specular reflection (39) gives the fol- 
lowing results: 

where wl = w + iv, s = wl/VFq, Fo and Fl a r e  the dimen- 
sionless Fermi-liquid constants, ex is a unit vector in 
the direction of the x axis, 

Equations a0(s) = 0 and AI(S) = 0 define respectively 
the velocities ofpropagation of the longitudinal (co) and 
transverse (cl) sound: co =sOvF, cl = slVF (see Refs. 7 
and 9). It is clear from Eqs. (42) and (43) that the 
propagation of a density perturbation and of the poten- 
tial component of the current is governed by a pole of 
the longitudinal sound, whereas the propagation of 
the solenoidal part of the current is governed by a pole 
of the transverse current. The expression for the 
Fourier component of the even continuation to the half- 
space x < 0 of the momentum flux tensor &,(x, k) is of 
the form 

The spectrum of surface waves can be found by cal- 
culating the quantity 

c+ 

dqx 
II,(x=0, k) = L ( q )  

-- 
(48) 

and substituting i t  in the boundary condition (40). 
Omitting simple but time-consuming calculations, we 
shall give the final results for the two cases: hydro- 
dynamic (w/v << 1) and collisionless (w/v >> 1). The 
distribution of the current in the presence of oscilla- 
tions will be described by means of two scalar poten- 
tials, p(r) and 9(r), and these a r e  used to describe 
the current and the curl of the current a s  follows: 

j (r)=[V[ke. l lQ(r)+Vq(r) ,  (49) 
rot j(r)=-[ke.lAQ(r). (50) 

We can see that the potential p(r) describes the poten- 
tial part of the current and d r )  describes the solenoi- 
dal part of the current. 

1. In the hydrodynamic limit w/v << 1 we find, a s  ex- 
pected, the hydrodynamic spectrum of capillary waves 
in a viscous liquid: 

where t =+(I + 8 ~ 1 ) @ / ~  is the kinematic viscosity7 and 
the branch of the square root on the right-hand side of 
Eq. (51) is found by postulating that i ts  real part is 

553 Sov. Phys. JETP 52(3), Sept. 1980 Yu. B. lvanov 553 



positive. The distributions of the density and current where Kl(z) is the first-order Macdonald function. 
in these oscillations a r e  The second branch of surface oscillations corre- 

sponds to high-frequency waves of the same type a s  the 
(52) RPyleigh waves in a solid! These waves a r e  similar 

q(r) =-mp,%,k-' exp(ikr,-kx), (53) to those studied by  omi in.' 

(r) =2rnpO%. 1 I e r p  [ - (kz-i;)'h z] -exp(-kx) exp(ib,), (51) The author is deeply grateful to V. M. ~ a l i t s l d i  and 
o 1 V. A. Khodel' for a valuable discussion of the topics 

where considered above. 

is the velocity of hydrodynamic sound? 

In the long-wavelength limit k2 << w/5, the spectrum 
"we can easily see that the expressions given here not only 

is hold at  x = O  but for any value of x within the diffuse edge of 
ok3 

"2 = [ I - ~ ~ ( F ) ' *  I"-] -. the system. In particular, the expression for the effective 
moo mass shows how this mass changes from the value in the 

The liquid then behaves a s  incompressible [an addition- interior to the value in vacuum, where it i s  equal to the 
particle mass m . 

a1 small factor w/kc appears in pl(r)] and its motion is 
potential: 

In the limit of short wavelengths k2 >> W/S, the spec- 
trum of capillary waves becomes damped, w =-iok/ 
2mpo5, and the motion of the liquid becomes compres- 
sible and rotational. 

2. In the collisionless limit w/v >> 1 there a re  two 
branches of surface oscillations. The spectrum of the 
first low-lying branch is found from 

and is purely danped. The distributions of the density 
and current in this case of perturbation of the Fermi 
liquid a r e  

Po 9 1 0  p' (r) ='/* -- 
1+Fo v, (kx) K,(kx) exp (ikr,), 

~ ( r )  =-mpo910k-' exp(ikr,-kx). 

(k.4 @ (r) =imp0Uo - exp (ikr,-kz) , 
kg 
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