
volume of the unit cell is quadrupled in the low-sym- 
metry ordered phase, then a phase transition directly 
into an ordered phase is impossible, and a sequence of 
two P T  must take place. If, however, the space group 
C: (2=4)  established experimentally for RbCN below 
110 K is correct, then the CN groups in this phase should 
be ordered relative to two equilibrium positions, and 
somewhere a t  low temperatures there shouldbe a second 
PT into a fully ordered phase, in which the unit-cell 
volume should be least double the cell volume in the CS4 
(2 = 4) phase. It should be noted that an absence of a 
PT at  low temperatures, by virtue of quantum tunneling 
effect, can likewise not be ruled out. 

In our opinion, the PT in the RbCN crystal calls for  
a thorough experimental study. It is also of interest 
to obtain experimentally an answer to the question of 
the existence of a second P T  in the CsCN crystal. If 
the CN groups in this crystal remain disorderd down 
to T =0, this may be evidence of strong tunneling of 
the C and N atoms relative to the "head-tail" states. 

In conclusion, the authors a re  deeply grateful to V. G. 
Vaks and A. P. Levanvuk for a discussion of the re- 
sults. 
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We consider the influence of electron-phonon interaction on the band width and on the values of the exohange 
integrals in magnets containing ions with orbital degeneracy (Jahn-Teller ions). The case of electrons on a 
doubly degenerate level, which interact with a nondegenerate phonon mode, is investigated in detail. The 
analysis is based on the Hubbard model with phonons taken into account. It is shown that a polaron 
narrowing of the bands takes place and depends, generally speaking, on the manner of occupation of the 
orbitals. Those terms of the effective exchange Hamiltonian which correspond to virtual transitions without a 
change in the orbital state are not significantly renormalized, while terms that include transitions between 
different orbitals acquire, on account of the phonons, exponential suppression factors that depend on the 
temperature. This leads to a strong decrease of the effective exchange integrals with temperature, as observed 
experimentally in a number of magnetic dielectrics with Cu2+. 

PACS numbers: 71.38. + i, 71.70.Gm 

1. INTRODUCTION degeneracy. The ions whose ground state turns out to 
be degenerate in a crystal field of sufficiently high 

An interesting special class of magnetic substances symmetry a r e  called Jahn-Teller (JT) ions (these in- 
comprises compounds in which the state of the mag- clude, e.g., the ions Cu2+, Mn3*, and CrZ+ in an octa- 
netic ions is characterized by orbital as well a s  spin hedral surrounding). According to the Jahn-Teller 
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theorem,' an atom configuration in which orbital de- 
generacy is realized i s  unstable. The symmetry of the 
indicated substances i s  therefore usually lowered and 
the degeneracy i s  lifted, corresponding in another con- 
text to ordering of the orbitals. For the case of double 
degeneracy, which is the one considered below, the or- 
bital state can be characterized by a pseudospin ? =  1/2 
(thus, in the case of the e, orbitals the state with r=  1/ 
2 corresponds, e.g., to the orbital d2,z-,z-yz, while the 
state with r2= - 1/2 corresponds to dZz_,,). The ex- 
change interaction in magnets with J T  ions depends sig- 
nificantly on the type of ordering of the orbitals (the 
magnitude and even the sign of the exchange integral 
J,, a r e  determined by the value of the correlation func- 
tion ( ~ ~ 7 , ) ~  Ref. 2). In the same substances, there can 
occur also unique effects of strong influence of the 
electron-lattice (JT) interaction on the exchange, and 
in particular a temperature dependence of J,. Experi- 
ment has revealed in some CuZ' compounds a fivefold 
decrease of the effective exchange integral with in- 
creasing T.,-= 

The purpose of the present study was to examine the 
distinguishing features of exchange interaction in mag- 
netic dielectrics with J T  ions when account i s  taken of 
the influence of the lattice vibrations on the degenerate 
electronic states. The principal mechanism of the ex- 
change interaction in magnetic dielectrics with ions of 
transition metals i s  superexchange.' A consistent de- 
scription of the superexchange i s  possible within the 
framework of the Hubbard model.7 In the case of one 
electron per center, in the absence of degeneracy, this 
mechanism leads to antiferromagnetism that i s  de- 
scribed by the Heisenberg Hamiltonian 

2tZ 
H.,, = -x sfsf, " ci.i> 

where t i s  the integral of the transition of the electron 
from center to center, U is the Coulomb interaction of 
two electrons on one center, and the symbol (i, j )  de- 
notes summation over the nearest neighbors. In J T  
magnets, the exchange interaction can also be examined 
by starting from a generalization of the Hubbard model 
to include the case of degeneracy of the o r b i t a k 2  The 
corresponding exchange Hamiltonian then depends both 
on the spin operators s and on the pseudospin operators 
7, i.e., it describes simultaneously both the spin and 
the orbital ordering. Its schematic form is 

( J =  t 2 / U ;  Hr does not contain spin operators). General- 
ly speaking, He,, is strongly anisotropic in the vari- 
ables 7. The magnitude and sign of the spin-exchange 
parameters i s  determined by the type of the or- 
bital ordering. It should be noted that allowance for 
only the exchange mechanism of the orbital ordering 
leads to quite nontrivial types of orbital s t r u c t ~ r e s , ~  
which, (e.g., in the case of KCuF, and K'CuF,), agree 
well with those obtained in experiment. 

Besides the exchange interaction, however, a most 
important role i s  played in J T  magnets also by the 
interaction between degenerate electronic states and 

the lattice. This i s  precisely the cause of the local J T  
effect-the lowering of the symmetry of the surrounding 
of an individual ion and of the cooperative J T  effect- 
the lowering of the symmetry of the crystal a s  a whole 
a s  a result of the interaction of the local strains.' 
Usually it is  this mechanism which i s  invoked to ex- 
plain the cooperative ordering of the orbitals in con- 
centrated systems. It i s  therefore most important to 
consider simultaneously the two interactions (superex- 
change and electron-phonon) within the framework of a 
unified model, for the purpose of clarifying the influ- 
ence of the phonons on the electronic properties of the 
corresponding compounds, and particularly on the mag- 
nitude of the effective exchange integrals. 

This paper contains such an analysis and shows that 
when account i s  taken of the electron-phonon interac- 
tion in the degenerate Hubbard model, two effects 
arise: 1) the effective pseudospin interaction of the 
type ri7,, due to superexchange,' is  supplemented by 
the J T  interactions; more importantly, 2) the electron- 
lattice interaction leads to a renormalization of the ex- 
change integrals. This renormalization depends, gen- 
erally speaking, on the concrete characteristics of the 
electron-lattice interaction (degeneracy of the corre- 
sponding phonon modes, dispersion of phonons and of 
electron-phonon interaction constants) a s  well a s  on the 
temperature. In essence, these effects in the J T  sys- 
tems a r e  close analogs of the polaron effects, in par- 
ticular, the modification of the exchange integrals is 
analogous to the polar on suppression of the off-diag- 
onal matrix elements. 

The actual analysis was carried out in this paper for 
a model with a nondegenerate phonon mode. In this 
case our result reduces schematically to  the fact that 
in the exchange Hamiltonian (2) 

i.e., the exchange integrals a r e  renormalized and ac- 
quire small factors (similar to the Ham suppression 
factors known in the theory of the J T  effect, see Ref. 
8). The net result i s  that the effective "magnetic" ex- 
change integral decreases and becomes also strongly 
dependent on the temperature (more accurate relations 
a r e  given in the text below). 

The plan of the exposition is the following. In Sec. 2 
we analyze the influence of the electron-phonon inter- 
action within the framework of the nondegenerate Hub- 
bard model. This analysis, which i s  simpler than in 
the degenerate case, illustrates the main features of 
the employed method and the character of the results. 
It is  also of independent interest, since divergent views 
have been published on this question. In Sec. 3, the ef- 
fect of the electron-phonon interaction a r e  considered 
by starting from the degenerate Hubbard model in the 
case T =  0; we investigate both the case of local pho- 
nons, when their dispersion can be neglected, and the 
general case of arbitrary dependences of the phonon 
frequency w and of the electron-phonon interaction 
g(k) on the wave vector. In Sec. 4 we study the case of 
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nonzero temperatures and in Sec. 5, finally, we sum- 
marize the main results and compare them with the 
real situation in compounds with J T  ions. 

2. POLARON EFFECTS IN THE NONDEGENERATE 
HUBBARD MODEL 

We consider first the role of the electron-phonon 
interaction in the case of a nondegenerate Hubbard 
model with one electron per center. When the phonons 
are taken into account, the Hamiltonian takes the form 

Here a;,, a,, a re  the operators of the creation and an- 
nihilation of electrons a t  the site i, with spin projec- 
tion u, n,,= a;ia,,, b+k and b,are the phonon operators, t 
is the integral of the transition of the electrons between 
neighboring centers, U is the energy of the Coulomb 
repulsion of two electrons a t  one center, and g,(k) is 
the electron-phonon interaction constant. The last term 
in (4) describes in fact the polaron effects-the change 
of the lattice configuration and of the energy of the 
states with changing number of electrons on the ion. 

In this section we confine ourselves to the simplest 
case of constant w and g, when the electron-phonon 
interaction can be written in the form Zg(b;+ b ,)n,, 
where b;  and bi  are  operators corresponding to loc- 
alized vibrations. The generalizations to the case of 
an arbitrary dispersion law is quite simple; we shall 
discuss this question in the analysis of the degenerate 
Hubbard model. The corresponding problem was con- 
sidered in a number of papers9-ll; it was found that the 
result depends substantially on the ratio of the energy 
parameters of the model (the Coulomb repulsion U, the 
phonon energy Aw, the polaron-shift energy E, =gz/Aw).  
However, even in the simplest (and most realistic case 
U>>Aw and U>> E, there a re  discrepancies in the re- 
sults; nor has a single convenient expression been ob- 
tained for the exchange integrals with account taken of 
the polaron effects. 

To assess the role of the electron-phonon interaction, 
we carry out first, following Ref. 9, a canonical trans- 
formation of the Hamiltonian (4), which eliminates from 
the Hamiltonian the terms linear in the phonons: 

The transformation (5) is equivalent to the phonon-op- 
erator shift transformation 

The transformed Hamiltonian, apart from an ines- 
sential constant, is of the form 

It is  seen that the transformation of the single-center 
terms reduces to a renormalization of the Coulomb 
interaction. As for the first term, which describes 
electron transitions from center to center, allowance 
for the electron-phonon interaction leads here to a 
change in the transition matrix element ;= t exp(-E,/ 
Aw) (polaron narrowing of the band).' 

We consider in greater detail the change of the ex- 
change integrals under the influence of the interaction 
with the phonons. In the absence of phonons, the Hub- 
bard Hamiltonian reduces a t  t << U, in second-order 
perturbation theory in t / ~ ,  to the Heisenberg antiferro- 
magnetic Hamiltonian (1). The derivation of the effec- 
tive exchange Hamiltonian He,, in the presence of pho- 
nons is carried out in fact in similar fashion. The ma- 
trix elements should satisfy the condition 

where I ru,), I a,) are  two arbitrary wave functions of the 
2N-fold spin-degenerate ground state of the Hamiltonian 
a;= i?,+ H,,, and correspond to one electron per center 
and to the absence of phonons, while E, is the energy of 
the ground state of the Hamiltonian fi; (hereafter as- 
sumed to be zero). After simple transformations we 
obtain 

(&lH..,lab) = - tZC<~ln, ,+n, ,esp[h(b,+-b,)-h(b,+-b,)]  
(' 1) 

1 
X7e\p[-A(b:-b,) + E.(b,*-b,)]u:.a,.*lab), a, (8) 

where X = g/Aw and 

( In) is a state with n phonons). In the derivation of (8) 
and (9) we used the equalities 

(A is a function of the phonon operators). Hence 

The sum in (11) contains the same combinations of 
the electron operators a s  in the case of the usual Hub- 
bard model without ph~nons .~  On going over to spin 
operators (using the formulas a;a+ = $+ s*, a;a+ = $ - s*, 
a ja ,  = s', a;a+ = s') we obtain from (ll), apart from the 
constants, the antiferromagnetic Heisenberg Hamilton- 
ian 

((.I) 

Using the identity 

1 - - = Je-n=dz, (14) 
a 

0 

we can transform J into a more compact form: - 
J = ~ Z  d~ exp {- (U-2E.) z-2hB(l-e-*'")} 

" 
503 Sov. Phys. J E T P  52(3), Sept. 1980 K. I. Kugel' and D. I. Khomskii 503 



This form i s  valid a t  U> 2EB, when the denominator in 
(12) does not take on negative values. It is  seen that a t  
large U, when the main contribution to the integral i s  
made by the region near x =  0 and it suffices to  retain 
the f i rs t  two terms of the expansion em"'= 1 -Ewx, the 
expression in the curly brackets of (15) is  equal simply 
to -Ux [we recall that A'= E , / E w = ~ ~ / ( E w ) ~ ] .  This 
means that in this limit the exchange interaction is 
practically not renormalized, J =  t2/u. 

From (15) we obtain also the next corrections to this 
result. At large U ( U s  EB,Ew) we get 

On the other hand, in the case of U<<tw (which can be 
realized for the so  called excitonic polaronslO) we can 
neglect the exponential in the curly brackets of (15); 
we then obtain 

J=tze-2"/('U-2Es). (17) 

These results agree with those obtained in Ref. 9, but 
differ somewhat from those given in Ref. 11, where 
J =  t2/(u - 2EB) was obtained in the limit Ew << U; this 
is  apparently due to the insufficiently correct procedure 
of averaging over the phonon states in Ref. 11. 

The results can be easily understood also from the 
qualitative point of view. The process of the virtual 
transition of an electron between neighboring centers, 
a process responsible for the exchange interaction, can 
proceed in two ways: in the first, the lattice in the 
intermediate state (wherein there a r e  two electrons on 
one center and a hole on the neighboring one) manages 
to relax to a new electronic state; in the second, virtual 
rapid transition proceeds in accord with the Franck- 
Condon principle for a frozen lattice. 

In the f i rs t  case, which i s  realized a t  U<<Ew, the 
energy increment due to the phonons can be expressed 
in the form 

~,~=ho(b+)(b)+gn((b+)+(b)). (18) 

The mean values (be), (b) a r e  obtained from the con- 
dition that the energy be a minimum, 

Therefore in accord with (18) Eph= -g2n2/iiw= -EBn2 
and the energy difference between the intermediate 
state (Fig. lb)  and the ground state (Fig. la)  amounts to 

The matrix element of the transition acquires in this 
case an additional factor 7 = te'~', due to the fact that the 
lattice deformation i s  different in the initial and inter- 
mediate states (the analog of the polaron narrowing of 

FIG. 1. Energies of the states of a pair  of centers  for elec- 
t rons  on nondegenerate levels, with allowance for the electron- 
phonon interaction: a) one electron per  center; b) empty and 
doubly occupied centers  in electron transitions with complete 
restructuring of the lattice; b') the same in transitions in a 
frozen lattice (in accord with the Franck-Condon principle). 

the band). Therefore in this case the exchange integral 
is  equal to 

~ = t ~ ~ - ~ ~ /  ( u - 2 ~ ~ ) .  

In the second case (fixed lattice) the phonon mean val- 
ues a r e  a t  all  time equal to the initial ones for n =  1, 
( b+) = (b) = -g/Ew [see (19)]. Then the phonon energy in 
the intermediate state, given by (18) with the same (b), 
is equal to EPh= E, for an empty center (n= 0) and E,, 
= U - 3E, for a doubly occupied center (n= 2), see  Fig. 
lb'; the matrix element t, on the other hand, is not r e -  
normalized. As a result we have 

3. DEGENERATE HUBBARD MODEL WITH PHOTONS. 
T=O 

a) When considering the Hubbard model in the case of 
degeneracy of the electronic states it i s  necessary in 
principle to take into account the same type of interac- 
tion with the phonons as in the absence of degeneracy. 
This interaction does not have any distinguishing fea- 
tures in the degenerate case; just as in Sec. 2, it can 
be shown, e.g., that a t  U >> E, and U >> Ew it does not 
lead to a renormalization of the exchange integrals. 
However, in the presence of degeneracy, one other 
interaction that is typical of this case appears, namely 
the interaction with that phonon mode which leads to 
lifting of the degeneracy. It is precisely this interaction 
which i s  responsible for the J T  effect, and, a s  will be 
shown below, determines the specifics of the degen- 
erate case. 

We consider for simplicity the interaction between 
electrons on doubly degenerate orbitals and a nonde- 
generate phonon mode. The Hamiltonian of the model 
is  of the form 

where, in contrast to (4), the transition integrals t;?', 
the Coulomb interaction U,,,, a s  well as the electron 
operators depend on the orbital indices a and a', which 
take on values 1 and 2. The last  term describes the 
electron-phonon interaction that lifts the degeneracy. 
This is precisely the interaction that i s  taken into ac- 
count when the cooperative J T  effect is considered [in 
this case i t  is frequently written down directly in the 
pseudospin representation, g?(b++ b), Ref. 81. 

The specifics of the considered case and the charac- 
t e r  of the results can be qualitatively explained with a 
simple scheme, in analogy with the procedure used in 
Sec. 2. The increment to the energy due to  the phonons 
[analogous to  (18)] can be written in the case of double 
degeneracy in the form 

Eph-Ao(b+)(b)+g(n, -nz)  (<b+>+(b>) ,  

where n, and n, a r e  the average numbers of electrons 
on the orbitals 1 and 2, respectively. The energy-min- 
inurn condition yields 
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From this we get for the energy of the equilibrium 
states (reached in slow virtual processes) 

E,,,=-En (n,-n,)" EEs=g2lho. (22) 

The energy difference between the ground state of the 
pair of centers and the nearest excited states now de- 
pends therefore on the character of occupation of the 
orbitals (see Fig. 2). In the case of two electrons on 
two orbitals (Fig. 2b), this difference is E:,, - E, 
= U,+ 2EB, while for two electrons on one orbital (Fig. 
2c) we have EC,, -E,= U1 - 2EB. We see thus that inter- 
action with the phonons leads to different renormaliza- 
tions of the individual terms of the Coulomb interaction 
(this result will be derived rigorously below). 

On the other hand, if the virtual transitions proceed 
in accord with the Franck-Condon principle, then, us- 
ing the same reasoning a s  in Sec. 2, we can verify that 
the energies of the intermediate states take on the val- 
ues indicated on Figs. 2b' and Zc', and the energy dif- 
ferences of the excited and ground states a r e  equal to 
EZ, - E,= U,+ 4EB and Eceic - E,= U,. 

However, the main distinguishing feature of the de- 
generate case is not the indicated modification of the 
Coulomb interaction, but the dependence of the exchange 
integrals on the occupation of some particular orbitals. 
It can be shown that an exponential suppression of cer- 
tain matrix elements i s  possible even in the case of 
transitions that occur in a fixed lattice. 

In the degenerate case, for virtual transitions, the 
initial and final states of the center do not necessarily 
coincide. Some terms of H e f f  contain the operators 7: 
and describe transitions in which the lattice point i re- 
turns to the initial state with the same deformation, and 
for these terms the situation i s  the same a s  in the ab- 
sence of degeneracy. In our case, however, there a re  
also transitions into another orbital state, with a dif- 
ferent deformation (these terms contain the operators 
7';); for these transitions, even a t  U>>tiw, suppression 
factors appear on account of the overlap of the differ- 
ent oscillator functions of the initial and final states 
(the Ham suppression factors). It is the strong depen- 
dence of these factors on the temperature which leads 
to the decrease of the exchange integrals with tempera- 
ture. 

We proceed now to a successive analysis of the ef- 
fects indicated above. 

FIG. 2. Energies of states of pair of centers in twofold orbital 
degeneracy with allowance for the electron-phonon interaction: 
a) one electron per center; b),c) possible states in transitions 
with complete restructuring of lattice; b1),c') the same for 
transition in a frozen lattice. 

b) We investigate first  the case when there is no dis- 
persion, w k =  w, g&) =g the analysis procedure is 
the same a s  in Sec. 2. We carry out f i rs t  a canonical 
transformation that eliminates from (20) the terms lin- 
ear in the phonon operators. These transformations 
take the form (5), where the matrix i s  given by 

As a result of the transformation, the single-center 
part of the Hamiltonian (20) takes the form 

We have used here the notation Ull = U2,= Ul, U12= U,. 
Thus, allowance for the phonons in H, was reduced, a s  
would follow from the qualitative arguments presented 
above, to a Coulomb-interaction renormalization that 
depends on the type of the occupation of the orbitals. 

We examine now the transformation of the first  term 
of the Hamiltonian (20), namely HI, which describes 
the transitions of electrons from one center to another. 
We obtain the Hamiltonian matrix element 

corresponding to electron transition between eigen- 
states of the initial Hamiltonian H in the presence of 
one electron per center: 

~=(0la, ,R,aj~+IO), (25) 

where 10) is  the vacuum state, in which there a r e  
neither electrons nor phonons, i.e., a,,, (O)= 0, b,  10) 
= 0. The nonzero matrix elements in (25) a r e  the fol- 
lowing: 

M = (0 ( ai,,e-ŝ a:,ajmesaj~, 10). (26) 

Using expression (23) for the matrix $ and taking (10) 
into account, we obtain, after carrying out the corre- 
sponding commutations, 

Using again the last identity of (lo),  we arrive a t  the 
result 

M=e-", R=g/Ao. (28) 

It can thus be assumed that within the limits of the con- 
sidered aggregate of matrix elements the effective tran- 
sition integral (width of the band) is renormalized in 
the following manner: 

I,,=LtijaPe-? (29) 

The fact that the renormalization (29) does not depend 
on the type of the orbitals a and f l  i s  a consequence of 
the absence of dispersion. As will be shown below, in 
the case of an arbitrary dispersion law the different 
t:! a r e  differently renormalized. 

We consider now the exchange interaction. Just  a s  in 
the preceding section, we construct an effective Ham- 
iltonian in second order of perturbation theory in t/U 
[see (7)]. The only difference from (7) is  the increase 
of the multiplicity of the degeneracy of the states 1%) 
and (a,): now these a r e  two arbitrary functions of the 
4N-fold degenerate ground state of the Hamiltonian & 
=a,+ H,,. Using (9) and (10) we can obtain, in analogy 
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with (8)-(12), the following expression for the effective 
Ham iltonian: 

where U,,,= Ul - 2E, or U,+ 2EB, depending on the type 
of the intermediate state, and the summation i s  over 
all the spin and orbital indices i and j of the nearest 
neighbors. 

The matrix elements of the electron operators take 
the same form a s  in the case of the absence of pho- 
nons,' and only their coefficients a r e  renormalized. 
As indicated above, it is convenient to change from the 
electron operators to the operators of the spin s and 
pseudospin r. The electron-operator products a;,,a,,,. 
are  set in correspondence with the products 7s in ac- 
cordance with the standard rules: 

( a = &  ! = I )  +'l2+zZ, (2,2) -+'I,-T', (1,2)  +z+, @,I) +T-, (31) 
(o=t,  o'=t)--'/2+sz, (+, +)='/,-sz, (t ,  +)+sf ,  (4, t)+s- .  (32) 

Thus, for example, 

We have used here the same symbols for the axes in the 
s and T spaces; to prevent misunderstandings, how- 
ever, it must be borne in mind that the axes in T space 
a r e  in no way connected with the axes x ,  y, and z of 
the crystal. 

The obtained two-spin Hamiltonian has a rather com- 
plicated form (if the relation between the transition 
integrals t?! is not spelled out concretely) 

In (33), S:'' a r e  various types of the sums over rn and 
n in (30); the superscript in the parentheses shows 
whether the corresponding sum contains Ul or U,. 

Equation (30) contains three types of sums over the 
phonon occupation numbers m and n. Using again the 
identity (14), we can reduce these sums to the form 
(for each U,, ,) - 

j exp{-U,x*212(e-"*' 7 1) )dz=~:,:', 
0 - 

e x p { - ~ , ~ - 2 h ' } d x = e " ~ ~ , = ~ ~ " ,  (34) 
0 

where the upper signs pertain to S,, and the lower to 
S,. Similar expressions for s:~),s~), Sj2) a r e  obtained 

by replacing fil = Ul - 2EB by a,= U,+ 2E,. 

We consider the most frequently realized case U 
>> E,, Aw. At the indicated relations between the pa- 
rameters we have 

The values of S?, SF) a r e  given in (34). It i s  thus seen 
from (33)-(35) that, in accord with the qualitative rea- 
soning presented above, the coefficients of the terms 
that contain rZ and do not alter the original state remain 
practically unrenormalized, whereas the coefficients 
of the terms with rr and 73 undergo a substantial re- 
normalization (-em4"). For the crossing terms of the 
type rLrX the situation is intermediate-the suppression 
factor is proportional to e-~l'. 

c) We consider now the possible change of the situa- 
tion for an arbitrary phonon dispersion law w and 
electron-phonon interaction g(k) [see (20) ] . The analy - 
sis  procedure is not changed fundamentally in this case. 
At first, using the canonical transformation (5) with a 
matrix 3 now given by 

we obtain a Hamiltonian similar to (23), with 

and a phonon term of the type 

to which, however, there i s  added an additional term 

In the language of 7 operators, (37) can be written in 
the form 

This is the usual form of the interaction Hamiltonian 
considered when the cooperative J T  effect is de- 
scribed.' 

Thus, allowance for phonons with arbitrary disper- 
sion law within the framework of the degenerate Hub- 
bard model enables us to describe not only the super- 
exchange, but also the ordinary JT  interaction. The 
polaron narrowing of the band i s  given by the expres- 
sions 

2 1 
TI,- = t,,aa exp {- I.' sin2 l- k(Ri-R,) } , 

k 

where A,=g(k)/Fiw,. In the absence of dispersion (X, 
= A )  the tr: renormalization does not depend on the 
orbital indices a and B, see (28). In the opposite lim- 
iting case, A: = A26(k), we have 
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The integrals of the transitions between identical or- 
bitals a r e  not renormalized [the transitions take place 
in fact between identical states of a uniformly de- 
formed (k = 0) crystal]; the t:,! for different a and ,9 
are  strongly suppressed, since the corresponding tran- 
sitions a re  accompanied by a change in the type of the 
uniform deformation. 

The different character of the renormalization of 
t:; and of ef leads to the appearance of additional sin- 
gularities in the effective exchange Harniltonian com- 
pared with (33). The obtained effective Hamiltonian 
differs from (33) in the following: the Hamiltonian 
terms that have previously contained the phonon coeffi- 
cients S::;" now contain S,':;') a s  the coefficients of 
(t")', while the transition integrals (tU)', ( t  ")', t llt 22 

have different coefficients ,Z:;i2'. On the other hand, 
the terms with S:1*2) remain unchanged. For the coef- 
ficients themselves, we obtain in place of (34) the ex- 
pressions 

m 
,$('I - 2 

I,, - \ exp { - ~ , z f  - - C h , z ( ~ f i ~ k = ~ t ) ( ~  + c o s k ( R , - ~ ~ ) ) } d r ,  
0 - N  

where again the upper signs pertain to S, and the lower 
to S,; C:" and cp) differ respectively from SP' and Sf '  
in that there is a minus sign in front of cos k0(R, - Rj). 

In the absence of dispersion C = S and these expres- 
sions go over into those considered above. In the oppo- 
site limiting case, when only the components with k = 0 
differ from zero, i.e., 

we have - 
s,!:'= exp{-P,x=t4h2(e-""" T 4 ) )  ds, (42) 

0 

where w =  w(O),g=g(O), ~ = g ~ / l i w .  

The expressions for S:", S f )  a r e  equal, apart from 
the coefficient of X2, to the analogous expressions in 
the case of absence of dispersion (34). Therefore at 
U>> ED,  just a s  in (34), S, and C, a r e  hardly renor- 
malized, while S, has an exponential factor (e'8X2). 
A new element is here the absence of renormalization 
of the coefficient C, of the Hamiltonian terms corre- 
sponding to the change of the orbital state, which do 
not have the combinations of t" and t 22 a s  factors [in 
analogy with the band width, see Eq. (40)] 

The modification of the exchange interaction on ac- 
count of the JT effect was also considered by Vekhter 
and Kaplan12; the idea of our approach is quite close 
to that of theirs, although the actual results do differ. 
In fact, our paper and Ref. 12 consider different initial 
systems: in our case orbital and magnetic ordering 
can coexist (a situation realized in a number of com- 

pounds of transition metals), whereas in the case con- 
sidered in Ref. 12 these types of ordering compete with 
each other and a r e  mutually incompatible (as is the 
case in a number of rare-earth compounds). 

4. DEGENERATE HUBBARD MODEL WITH PHONONS. 
FINITE TEMPERATURES 

a)  We investigate first the temperature dependence of 
the band width with allowance for the polaron effects. 
It i s  necessary in fact to obtain the temperature mean 
value of those matrix elements of the Hamiltonian 4 
which correspond to transitions between the eigenstates 
of the initial Hamiltonian H (or, equivalently, 2 )  in the 
presence of one electron per center. 

We assume that the electronic states with doubly occu- 
pied and empty lattice points lie high enough in energy, and 
carry out the averaging only over the phonon occupation 
numbers. In the preceding section, in the calculation of the 
band width, we have considered matrix elements of the type 
~ = ( 0 l a , , , k ~ a ~ ~ , 1 0 ) ,  where 10) i s  a state in which there 
a r e  no electrons on the sites i and j. At T t 0, if we 
regard A= a,,,&a;, a s  an operator whose temperature 
mean value is taken, the temperature-averaged ex- 
pression for the matrix element of the transition takes 
in the case of dispersion the form 

/O,{n,}) i s  a state in which there a re  no electrons in 
sites i and j, but at the arbitrary site I there a re  ex- 
cited n, local phonons, with n, running through values 
from zero to infinity. 

With this definition, the density matrix contains in 
fact only the phonon part of the Hamiltonian, inasmuch 
a s  (a 1 1 a) = 1, where ( u) is a certain electronic 
state, and 

10, (n,} ) =e-*dr 10, (n , }  ), (44) 

i.e., the electronic part of the Hamiltonian produces in 
the numerator and the denominator identical factors 
that cancel out, therefore 

( i l f )~  = t zB  (m+n) T ( { m ,  T I ) ,  0 la,arre-S^a:w 
m, n=a 

ajBoes-a~m 1 0 ,  {m, n)) / ( g e - n - n  . (45) 
n=a 

Here 10, {m, n)) is a two-center state in which there 
a re  no electrons but there a re  m phonons on the site i 
and n phonons on the site j, i.e., the band-width prob- 
lem was reduced to the single-center problem. 

Carrying out the corresponding commutations and 
representing the wave function as  a product of the 
electronic and phonon functions, we obtain 
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The phonon mean values that enter in (46) and be easily 
calculated (see the Appendix), and are equal to 

[ hob+' , (l-e-nw~r Sp exp(*h(b+-b))exp (- T)] 
(47) 

From this we obtain directly an expression for the ef- 
fective width of the band: 

This result can be generalized also to include the case 
of an arbitrary phonon dispersion law. Expressions 
similar to (39) a re  obtained, but with the temperature 
factor coth(h'w/2~) in the argument of the exponential 

A temperature dependence of the type (48) and (49) is  
typical of polaron band narrowmg13 and is not peculiar 
to JT systems. For example, just a s  for ordinary 
polarons, in the limit of high temperatures, T> h'w, 
the argument of the exponential increases linearly with 
temperature: 

A distinguishing feature of JT systems is the different 
character of the renormalization of t Oa and t12 [see 
(41)]. This distinguishing feature is retained also at 
T#O. 

b) We proceed now to consider the temperature de- 
pendence of the exchange integrals. The problem is to 
find the temperature mean value of the effective Ham- 
iltonian obtained in second order of perturbation theory 
in t/U. In this case, a s  above, we assume that the 
nearest excited electronic state lies high enough in en- 
ergy, and we take the trace only over the phonon states. 
According to the definition of the effective Hamiltonian, 
we can write 

We begin, a s  before, with the case of no dispersion. 
If we take out from under the trace sign all the elec- 
tronic operators, then the general form of the temper - 
ature-dependent coefficient in ( H,, ), becomes 

Here B,=X(b;-b,), I{nz}), as  above, is the phonon state 
in which n, phonons a re  excited on any arbitrarily taken 
site I ;  the energy of this state, which enters in the de- 
nominator of (51) is equal to E,=C,~~CW,. 

Since the expression in the denominator of (51) need 
not necessarily be positive, it is convenient in the cal- 
culation of the sums over the phonon terms to employ 
not the Laplace transformation (l4), but the Fourier 
integral 

We then obtain 

J i j  ( T )  = tG6t$' (1  - r"'lT)2 
-m 

x r, exp 
- t iu(ni  + nj )  

( " 5 ,  nj I exP (& Bi k Bj) (52) 
ni, Y-0 

X exp [ i h  (bi+bi - ni )x ]  exp [ i h  (bj+bj - nj ) ]  exp (+ B, f Bj)  I nj, n i ) .  

It turns out that when account is  taken of the signs of 
B,  and B,, only three variants of terms are  possible 
[these terms actually constitute a generalization, to 
finite temperature, of the coefficients S,, S,, and S, 
in the exchange Hamiltonian (34)] - - 

i s ~ ,  = p S ciz sign xei"~:,, ( z ) ,  S, = 5 &sign xeiGc1 ( X I  C. ( X I ;  

-m -m 

Calculating the phonon mean values (see the Appen- 
dix), we obtain ultimately 

~ , , . ( z )  = exP { - 1 2 ( 1 ~ e ~ f i ~ = )  [ I  (55) 

The upper signs in (54) and (55) pertain to C,, and 
the lower to C,. At U>> E,, using the asymptotic ex- 
pression for Fourier integrals,14 we obtain, accurate 
to terms of first order in EB/U, 

The corresponding integrals for S, can be calculated 
exactly: 

s:"=.--- exp (-2hz CB-), fio SI"'= ---- 
2T Ui-2Es 

(57) 
It is  seen that the coefficients of the terms with 73; 
in the exchange Hamiltonian (33) (a S,) remain prac- 
tically unchanged with increasing temperature, while 
in the terms corresponding to the change of the orbital 
state (proportional to S, o r  S,), the argument of the 
exponential in the suppression factor acquires the fac- 
tor coth(lw/2~). At high temperatures (T >>fiw) these 
exchange integrals decrease with temperature like 
exp(-A, ~/fiw). 

Similar results can be obtained also when account is  
taken of dispersion: the Hamiltonian terms containing 
exponential factors of the type eyh2 decrease addition- 
ally with increasing temperature in analogy with (56) 
and (57). 

5. DISCUSSION OF RESULTS 

Thus, it was shown above that the exchange interac- 
tion in magnetic dielectrics with JT  ions a re  substan- 
tially renormalized when account is  taken of the inter- 
action with phonons, an interaction peculiar to these 
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systems. The principal effect is  here of the same 
physical nature a s  the phenomenon well known in pola- 
ron physics and in the J T  effect, that of the suppres- 
sion of the off -diagonal matrix elements a s  a result of 
non-orthogonality of the corresponding lattice states. 
In the absence of dispersion, when the problem actually 
reduces to the one-center problem, allowance for the 
electron-phonon interaction leads simply to the fact 
that in all  the expressions, e.g., in exchange interac- 
tion (33), the diagonal operators 7' a r e  not renormal- 
ized, while the off-diagonal operators rX, T~ or T+, 7- 

acquire a small factor 7%- e-z~zTx. On the other hand, 
when the dispersion i s  taken into account, no such 
simple connection i s  obtained, and both the band width 
and the exchange interaction a r e  modified in a more 
complicated manner. 

The true "magnetic" exchange integral (the total co- 
efficient of the term si.s,) obtained by averaging (34) 
over the corresponding orbital state, i s  decreased by 
the J T  interaction even a t  T =  0. Of greater interest, 
however, is the noticeable change of the exchange inte- 
grals with temperature, which takes place here a t  T 
=Rw,. This should be reflected in the magnetic prop- 
ert ies of the corresponding systems. Generally speak- 
ing, the temperature dependence of the exchange inte- 
grals i s  also the result of the variation of the orbital 
ordering [of the correlation functions (T~T,) in (34)] with 
temperature. The corresponding change is appreciable 
a t  temperatures of the order of the temperature of the 
cooperative J T  ordering T= Tc= E,, and is relatively 
slow (the correlation functions decrease like E,/T at 
high temperatures). The sign of this effect, generally 
speaking, is not definite and depends on the concrete 
details of the orbital ordering in the particular com- 
pound. On the other hand, the mechanism considered 
in the present article produces a much stronger tem- 
perature dependence and, as a rule, weakens the ex- 
change interaction with temperature, particularly 
strongly a t  T- Rw,. Inasmuch a s  X 2 =  E,/kw= VJT/R@, 
the polaron effect is most significant particularly a t  
V,, > gw, in the temperature region T-Rw,< T,= E,, 
i.e., a t  temperatures lower than those a t  which the 
first  mechanism i s  effective. 

The J T  stabilization energy E, can be estimated from 
the temperature of the cooperative JT transition in con- 
centrated systems or,  e.g., from the EPR spectra: a t  
a temperature T - E, the character of the spectrum 
changes. These estimates yield, in typical cases, val- 
ues E, = 300-500 K for the CuZ' ion. At the same time, 
the characteristic values of the phonon frequencies a r e  
tlo,s 300 K, s o  that X = E,/Rw,= 1 + 2. 

A strong decrease of the exchange integral (by a fac- 
tor of five with r ise  from liquid-nitrogen to room tem- 
perature) was experimentally in KFuCl,. 
2HzO; a similar although weaker change was observed 
also in (C,H,NH,)&uC1, and KzCuF, (see Ref. 4). It is  
interesting that these effects a r e  observed almost ex- 
clusively in systems with J T  ions, although the speci- 
fics of the JT effect have s o  far  not been invoked to ex- 
plain them. The explanation given in Ref. 4 does not 
seem convincing to  us; it reduces in fact to allowance 

for the thermal expansion of the lattice (on account of 
the excitation of the optical phonons), which is patently 
insufficient for such a strong 4T). 

The concrete character of the change of the exchange 
integral with temperature depends on the type of the or-  
bital ordering for the given pair of ions, and can be dif- 
ferent for different pairs; as the final result, the ex- 
change integrals, say for the nearest and non-nearest 
neighbors, can vary differently with temperature, 
leading to changes in both sign of the internal field and 
the very type of magnetic ordering. This mechanism 
differs from Kittel's exchange-inversion mechanism 
usually considered in these cases.15 

The foregoing analysis was carried out for the case of 
a nondegenerate phonon mode. Actually in J T  systems, 
e.g., on the basis of 3d ions (CuZ+, Mn3') one frequently 
encounters a situation wherein the degenerate electron- 
ic states interact with the doubly degenerate phonon 
mode E, In this case the electron-phonon interaction 
acquires the form g [ra(b;+ bl)+ rY&+ b , ) ] ,  rather than 
the one contained in (20). Although an exact analysis 
cannot be carried out in this case (cf. Ref. 8), the main 
conclusions should qualitatively remain in force: the 
diagonal matrix elements remain unchanged and the 
off -diagonal elements acquire small factors of the 
type e -~~ ' .  Such factors appear more readily both a t  
the operators rX (they a r e  nondiagonal with respect to 
the interaction ~#(b;+ bl), and a t  ra [on account of the 
rX(b;+ bz) interaction]. As a result, the answer should 
be even more symmetrical than (33), and, roughly 
speaking, the entire part of the exchange integral in 
which the orbital operators 7 a r e  contained acquires 
a common small factor -e-CX2, which in turn decreases 
with temperature. 

APPENDIX 

According to (46), it i s  necessary to calcuate the fol- 
lowing trace: 

Here $,(p) is  the eigenfunction of the harmonic oscil- 
lator, 

$. ( p )  = (n'"n!2") -'r3e-p''2H ( ) - P .  (A.2) 
where H,(p) i s  a Hermite polynomial. In (8.1) we used 
the standard representation of b+ and b in terms of di- 
mensionless coordinates and momenta: 

b+= ( q - i p ) / ~ ,  b= ( q + i p ) / ~ ' " .  (A.3) 
Using for the calculation of the sum over n the known 
expression16 

we obtain, after simple operations, the relation (47). 

Similarly, the expression for C,(x) in (54) can be re- 
written in the form 
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C, (x) = (I-e-'*IT ) <nIe-'Irn> <mleBIn) 
m,n-0 

x mp [-,an (* + ix) + inurn]. 

Using now, just a s  in the calculation of the width of 
the band, the representation of the matrix elements 
6~ letB Im) in terms of the eigenfunctions JI,,(p) of the 
harmonic oscillator, we get 

Using the following relation for the sum over Hermite 
poly nom ia1s16 

and carrying out the corresponding integrations, we 
obtain (55) and analogously (56). 
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