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A model is proposed for the description of the energy spectrum of the electrons in the case of crystals with 
dislocations. In contrast to the Shockley-Read model [W. Shockley, Phys. Rev. 91, 228 (1953); W. T. Read, 
Phil. Mag. 45, 775 (1951)], the analysis includes the "indirect" exchange, i.e., the effect of quantum- 
mechanical mixing of the wave functions of the electrons localized in the dislocation core with the electrons of 
the nearest atoms that contain no broken bands. The calculation leads to an irregular dependence of the state 
density on the energy in the dislocation bands. The result is used to discuss experimental data on the 
microwave conductivity of semiconductors with dislocations. 

PACS numbers: 72.10.R. 72.20.Dp, 72.30. + q 

INTRODUCTION 

Recent experiments show without any doubt that the 
presence of dislocations in semiconductor and insula- 
tor crystals leads to the onset of new electronic states 
in the forbidden band of the energy spectrum. A num- 
ber of essential questions connected with the electronic 
dislocation spectrum itself, however, i s  still unclear : 
is this spectrum a system of local levels, a one-dimen- 
sional band, or a system of several bands ? What a r e  
the widths of these bands and the degree of localization 
of the electrons in the dislocation states? All these 
questions a re  fundamental in the construction of a dis- 
location theory and for the understanding of the in- 
fluence of dislocations on the physical properties of 
solids. 

Experimental results on dislocations3 electron para- 
magnetic resonance and on dislocation electric con- 
d u ~ t i v i t y ~ - ~  give grounds for assuming that the disloca- 
tion spectrum consists of several hands. Other evi- 
dence in favor of a complex structure of the spectrum 
i s  provided by the data on the photoconductivity8-'O and 
lumine~cence"-'~ of crystals with dislocations. There 
is  no doubt that the choice of one model or another for 
a theoretical description of the spectrum involves the 
question of the degree of overlap of the wave functions 
of the electrons in the dislocation cores. 

At the present time, the most widely accepted is the 
classical Shockley-Read (SR) theory, based on the mod- 
e l  of a dislocation chain of broken chemical bonds along 
the core of the dislocation line. In the SR theory, ac- 
count i s  taken of the interaction of the electrons only 
along the dislocation chain. In the present paper, on 
the contrary, we attempt to take into account the quan- 
tum-mechanical effect of mixing of wave functions of 
electrons localized along the dislocation line with the 
volume wave functions of the electrons of the atoms 
neighboring on the dislocations and having no broken 
bonbs, i. e. , to take into account the so-called "indi- 
rect" exchange phenomenon. The need for this pro- 
cedure seems to us particularly important, because 
in the case of the simplest 60' dislocation in the dia- 
mond lattice the distance from an atom located in the 
dislocation core to the nearest neighbor inside the cry- 
stal  i s  less than the distance between the nearest neigh- 

bors in the direction along the dislocation chain. 

We use in the present calculations an approximation 
in which the width of the volume bands i s  assumed to be 
much larger than the width of the forbidden band. To 
describe the bottom of the conduction band and the top 
of the valence band we use the results of the calculation 
of the spectrum of the volume states.15-l7 

As will be seen from the results, allowance for the 
indirect exchange leads to irregularities in the depen- 
dence of the state density on the energy inside the dis- 
location bands. This result itself could cast light on 
some experimental data, especially on the microwave 
conductivity of crystals with dislocations. We recog- 
nize, however, that in the construction of the theoreti- 
cal model itself we have made assumptions whose 
adequacy is difficult to estimate. In particular, a very 
serious problem in our model i s  that of a correct quan- 
titative allowance for the Coulomb interaction energy of 
the electrons belonging to one site. This and a number 
of other considerations prompt us to assume that the 
theoretical result obtained in the present paper can SO 

far be discussed only in connection with the available 
experimental data. 

1. THE MODEL HAMlLTONlAN 

We write the Hamiltonian of a crystal with disloca- 
tions in the form 

+ ( ~ ~ ~ ~ a , f , , ~ b ~ ~ + ~ ; ~ b ~ ~ ~ a ~ ~ ~ ~ ) .  (1 
nblo 

The first term in (1) corresponds to volume states 
whose wave functions a r e  smeared over the entire cry- 
stal; ~ , ( k , l )  is  the energy of the volume states; n i s  the 
number of the band, k i s  the projection of the quasimo- 
mentum on the dislocation direction; I i s  the set of 
quantum numbers describing the transverse motion; 0 
i s  the electron spin; a,:,, and a,,,, a r e  respectively the 
electron creation and annihilation operators; the second 
term describes the dislocation states (DS) with wave 
functions &(r)  localized in the transverse direction a t  
distances on the order of the interatomic distances, 
but delocalized along the dislocation; b,', and b,, a r e  the 
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operators of electron creation and annihilation in the 
DS. The energy F, (k) of the dislocation electrons is 

E ( k )  =ed+2Vd cos (ka)  fun.+ (2e2/ea) ( n o - l )  In (RIR') . (2 

The first two terms in this formula describe a one-di- 
mensional dislocation band for non-interacting elec- 
trons; c, is  the energy level of the state localized on 
an isolated dangling bond, i. e.  , a state with a wave 
function cp,(r) localized near the dangling bond i; V ,  i s  
the matrix element of the overlap of the states with 
wave functions cpi(r) and cp, +,(r); a i s  the distance be- 
tween the dangling bonds. 

The third and fourth terms in (2) take into account in 
the self-consistent field approximation the Coulomb 
energy of the electrons captured by the dislocation. The 
following initial charge distribution was postulated in 
their calculation: the total number of electrons bound 
by a dislocation on a single dangling bond is no, and the 
number of electrons localized on the bond i (i .e. ,  in the 
state cp,) is1' n. As will be seen from the solution, n 
< n o  because not a l l  the electrons bound by the disloca- 
tion a r e  localized in the state cp,. The difference no 
- n  is  distributed over a wider region than the cp, local- 
ization region. This is  in fact a direct consequence of 
allowance for the mixing of the DS with the volume 
states [third term in (I)]. 

The term Un (U i s  a constant that characterizes the 
Coulomb repulsion of the electron in the state cp,) i s  
obtained only in the quantum theory, while in the clas- 
sical theory it corresponds to the self-energy of the 
electron and i s  therefore simply omitted; e is the elec- 
tron charge; c is the permittivity; R i s  the Read rad- 
ius, i .e. ,  the radius of the cylinder over which the pos- 
itive charge of the ionizing minute donors that screen 
the dislocation is uniformly smeared out: 

where N ,  i s  the donor density. We choose R '  such that 
in a circle of radius a (this is  approximately the dimen- 
sion of the state cp,) there a re  localized n of the no par- 
ticles, therefore 

Rr=a(n,/n) 'h. 

The distribution parameters n and no will be determined 
self-consistently . 

The third term in (1) describes the mixing of the DS 
with the volume states. The coefficients Vnkl a r e  the 
matrix elements of the overlap of the volume states 
with the wave functions qnk,(r) and of the DS with the 
functions qk (r  ). Generally speaking they a r e  not small, 
since they do not contain terms corresponding to the 
overlap between nearest neighbors in the lattice. For 
example, they a r e  even large compared with V ,  , since 
V ,  corresponds to overlap of nearest neighbors along 
the dislocation, but in the complete lattice they a r e  the 
second-nearest neighbors (we have in mind here and 
below only 60" dislocations in a lattice of the diamond 
type). 

An important characteristic of the model Hamiltonian 
a r e  the functions c,,(k) and c,,(k), which describe re-  
spectively the dependences of the lower edge of the con- 
duction band and of the upper edge of the valence band 

FIG. 1. Dependence of the energies of the conduction-band 
bottom E,, and of the valence-band top E,, on x = k a  (k is the 
projection of the quasimomentum along the [110] direction. 
a-Gr ( x )  for Ge, b-A,, ( x )  for Si, c-&,,,(x) for Ge and Si. 

on the quasimomentum projection along the dislocation. 
According to this definition we can write 

eel ( k )  = min en< (k ,  k,), (3) 
(nclk,) 

e., ( k )  = max E , ~  (k ,  k,) . 

The extrema in (3) and (4) a r e  sought over the range of 
variation of n and k,. To find these functions it is  nec- 
essary,  for each fixed k,  to draw in k-space planes 
perpendicular to the [I101 direction a t  a distance k from 
the origin. The region of variation of k, is  that part 
of this plane which lies inside the Brillouin zone. 

Thus, to determine c , , ( k )  and ~, , (k)  we must know 
cn(k, k,) a t  all  points of the 13rillouin zone. No such in- 
formation i s  available in the published calculations of 
the band structure. Only the function c,(k, k,) along de- 
finite directions and the values of c,(k,k,) a t  certain 
symmetry points a r e  k n ~ w n . ' ~ - ' ~  Analysis of such nu- 
merical results makes it possible to establish qualita- 
tively the form of the functions c,,(k) and c,,(k). As 
will be made clear below, the most important i s  the 
form of these functions a t  those points where they have 
extrema. Fortunately, the behavior of c,, (k) and c,(k) 
a t  these points can be determined with sufficient ac- 
curacy. We confine ourselves hereafter to an inves- 
tigation of the dislocation spectrum in Ge and Si. The 
functions c,,(k) and c,,(k) for them a r e  shown in Fig. 1. 

2. SELFXONSISTENCY EQUATIONS 

The operator equation for the single-particle Green's 
function i s  

[e-H+i6 sign (e-er)  ] G ( e )  -1, , (5) 

where cF  is the Fermi energy. 

Representing the Green's function in matrix form 
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and solving the system of equations that follows from 
(5) and (6) for the matrix elements of 6,  we obtain 

k'o. 6,.8,. 
G" (')- 8-8 (k) -Z(e, k) 4-18 sign (8-eR) ' 

where the self -energy part  i s  

We represent  it in the form 
Z(e, k)=A(e, k) -iA(e, k) sign (8-er), 

where A and A a r e  defined as 

IV I' P 0 A ( e ' k )  A(~,~)=CP-=-J  - - ~ E I  

" 1  
e-e,(kl) n -_ e-e' 

In (11) use was already made of (10). All the informa- 
tion on the spectrum of the volume s ta tes  and on the 
value of the matrix elements V,,, i s  contained in the 
function A(c ,k). We assume henceforth that 

if ECL (k) < r < ECI (4 + as., 
e,, (k) - he, < e < e., (k); 

0 if e < e,, (k) - 8e,, e > e,l (k) + as,, (12) 

Here 6cC and 6 ~ ,  a r e  the widths of the conduction and 
valence bands. This i s  the form chosen in Ref. 18. Its 
use in our case  i s  justified hy the following considera- 
tions. According to ( lo) ,  A(& , k )  i s  determined, f i r s t ,  
by the form of the two-dimensional s tate density p ( ~  , k ) ,  
and the second, by the values of V,,. Since the volume 
bands can be regarded as almost  f ree ,  and for f r ee  el-  
e c t r o n s ~  ( ~ , k )  = const. The matrixelement V,,',,, is very  dif- 
ficult t o  calculate accurately. We assume that V,,, 
- const, since in the principle there a r e  no grounds for  
assuming a strong dependence of V,,, on n,  k,  o r  I .  

From (10)-(12) we obtain 

We shall consider s ta tes  in the forbidden band, i . e . ,  
essentially c - C, ( c ,  i s  the width of the forbidden band). 
Assuming that 6zc ,  6cv  >> c., , c,, c,, we get from (13) 

We proceed to derive the equations for the self-con- 
sistent determination of n,  no, and c,. We obtain the 
f i r s t  equation by putting 

n - x  <bo+bro) (15) 

[here b;, and b,, a r e  the operators of electron creation 
and annihilation in the s ta te  cp,(r)] in t e r m s  of the 
Green's function 

Ade 

Ibltn/o 
.O(L)CCI (16) 

Here E o(k) i s  the solution of the equation 

TABLE I. 

Con- / Values for I Value;:, I Constant I Vbe;? 1 Values for 
stant Ge Si 

In the derivation of (16) we used the formula 

The f i r s t  t e rm in (16) i s  the contribution made to the 
density of the electrons on the dangling honds from the 
localized DS with the functions pi. The second t e rm i s  
a contribution due to the mixing of the volume and dis- 
location states.  

We obtain the second self-consistency equation hy 
expressing the total number of the electrons bound by 
the dislocation per dangling bond, no, in t e rms  of c,: 

no=a I dkln. (19) 
Ibl<n/a 

e d v < Z .  

The third equation can he  written in the form 
n,=min ( l+NDa/nd,  ii,, 2). (20) 

where no i s  the solution of the equation c ,(no) = c D ,  c 
i s  the shallow-donor level, and n, i s  the dislocation 
density. 

Solution of the system (16), (191, and (20) yields self- 
consistent values of &,, n, and no a s  well a s  various 
dependences of the type E ,(no) and n(no). 

3. NUMERICAL SOLUTION OF THE SELF- 
CONSISTENCY EQUATIONS AND PHYSICAL 
MEANINGS OF RESULTS 

To obtain a numerical solution it i s  more  convenient 
to modify the problem somewhat. We consider only the 
two equations (16) and (19), which make it possible to 
find the two unknowns n and no if the third unknown C, 

i s  regarded a s  a specified parameter .  The numerical 
values of the constants a r e  indicated in the table. The 
constant C ,  i s  chosen from the condition that the Fermi  
level of a neutral dislocation coincide with the experi- 
mentally observed values: 

~, ,=p~=O,l  eV for Ge. 
~ , ~ = p , = 0 , 4  eV for Si. 

Figures 2 and 3 show plots of &,(no) and n(n,). Figure 
4 shows the energy of the dislocation state of Ge a s  a 
function of x =  ka. The solid horizontal line indicates 
the position of the Fermi  level. From the functions 
&,(no) and n(no) we can obtain the values of no and n. 
The corresponding resul t s  for Si a r e  shown in Fig. 5. 
The dashed horizontal lines in Figs. 4 and 5 corre-  
spond to the forbidden-band width E,. 

We now show how to obtain with the a id  of the plotted 
resul t s  a numerical solution of the three equations (161, 
(191, and (20). To this end we draw on Fig. 2a the hor- 
izontal line E, = c D .  The absc issa  of the point of in- 
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FIG. 2. Plots of &,(no) (a) and n(no) (b) for Ge. 

tersection of this line with the &,(no) curve yields 
fi,. The self-consistent value of no is determined 
by (20). Knowing no we obtain E, and n from the plots 
of &,(no) and n(no). 

We examine now the physical meaning of the results. 
It i s  seen from Fig, 2 and 3, f irst ,  that the maximum 
possible occupation numbers a r e  (f = no - 1) 

fW=0.4 for Ge, 

fm,=0.5 for Si. 

This is  much larger than in the SR theory, although 
somewhat smaller than in the preceding paper. 20 None- 
theless, comparing (21) with the earlier we 
can draw the following conclusion: the maximum pos- 
sible occupation numbers depend little on the structure 
of the spectrum of the volume states. What makes pos- 
sible the existence of dislocations with occupation num- 
bers  f - 1 is the mixing of the DS with the volume states. 
The mixing leads to two effects. First ,  the wave func- 
tion of the DS becomes more delocalized as the disloca- 
tions become filled with electrons, and this lowers the 
energy of the Coulomb interaction of the dislocation 
electrons. It i s  thus seen from the plot in Figs. 2b and 
3b that with changing no the number of electrons that a r e  
very strongly localized (in the region r-a around the 
dislocation core), i. e . ,  n, changes quite insignificantly, 
6n< 0.1. Second, mixing leads to a quantum-mechani- 
cal repulsion of the levels (see Ref. 20). 

We note next that the DS form rather broad (-0.5 eV) 
one-dimensional bands. This result has two causes: 
allowance for the effect of the mixing of the states, and 
the strong dispersion of the edges of the dislocation 
band and of the conduction hand. In fact, a t  A =  0, the 
width of the band is 4V, ~ 0 . 1  eV (at the chosen values 
of the parameters). At A # O  the dislocation spectrum 
i s  determined by the solution of Eq. (17). The disper- 
sion of the solution i s  determined not only by the func- 
tion E (k) but also by the functions c,,(k) and c,,(k). 

FIG. 3. Plots of +(no) (a) and n(no) (b) for Si. 

.FIG. 4. DS energy C o  against x for Ge. 

The physical meaning of this effect i s  that allowance 
for the mixing means in fact allowance for the overlap 
of the wave functions of the dangling bonds and the wave 
functions of the paired bonds. A s  a result, the electron 
acquires another opportunity of tunneling from one dang- 
ling band to another (besides the direct tunneling). The 
probability of the additional transitions i s  larger than 
that of the direct transitions, since the former a r e  
characterized by the matrix element of the overlap be- 
tween nearest neighbors, whereas direct transitions 
correspond to overlap of second-nearest neighbors. 
As a result, the dislocation band becomes several times 
wider. 

An important property of the DS spectrum i s  the non- 
monotonic dependence of the energy c o  on the quasi- 
momentum. As i s  seen from the numerical results, 
there a re  several values of k, (and accordingly several 
values of c , )  a t  which dc ,(k)/dk = 0. Since the state 
density is  inversely proportional to de ,/dk, the vanish- 
ing of dco/dk at certain values of c i  means, in the 
one-dimensional case,  that the state density has singu- 
larities a t  the point c = E i .  We define the half-width 
of the peak of the state density, with center a t  c = ci , 
a s  the difference between E ,  and an energy value c ; 
such that the state density p(c;) i s  larger than the mini- 
mum state density pm,, by 10 times (by one order). The 
half-widths defined in this manner turn out to be 
-0.002 -0.006 eV, i. e. , quite narrow. 

At A = 0 we have dc ,(k)/dk = 0 only a t  k = 0 and 
k =ir/a. The physical cause of these extrema i s  the 
Bragg scattering of the one-dimensional electrons in a 
periodic one-dimensional structure with period a = 4 
x lo-' cm. Additional extrema appear a t  A #O. Taking 
into account the physical meaning of the mixing effect, 
it can be stated that they result from scattering of one- 
dimensional dislocation electrons by neighboring cent- 
e r s  with dangling bonds. From the more formal point 
of view, the additional extrema a r e  the consequences 
of the nonmonotonicity of the function E ,,(k), which in 

FIG. 5. DS energy Eo against x for Si. 

492 Sov. Phys. JETP 52(3), Sept. 1980 Yu. A. Osip'yan and I. A. Ryzhkin 492 



turn is due to the presence of several equivalent mini- 
ma of the conduction band a t  k=k,,,,n#O. 

With changing Fermi level E, , the occupation num- 
bers n and no change and, according to (2) and (17), a 
change takes place in the structure of the dislocation 
spectrum, i .e. ,  in the value of c i  and in the character 
of the singularities of p(c ) a t  E In concluding this 
section, we emphasize that only the numerical values 
of c i  or  the rate a t  which p ( ~ )  becomes infinite a s  E - z i  can depend on the values of the initial constants, 
but the very presence of singularities i s  a qualitative 
result and a t  a different choice of constants it does not 
depend on their numerical values. 

4. COMPARISON WITH EXPERIMENTAL RESULTS 

In the preceding section the numerical solution was 
obtained using the specific parameter values listed in 
the table. Some of them, for example A and V ,  were 
chosen quite arbitrarily. The numerical results must 
therefore be regarded a s  an illustration of the physical 
phenomena that a re  possible within the framework of the 
given model. On the other hand, to describe an actual 
experimental situation these parameters must be r e -  
garded a s  adjustable. It is  more convenient to obtain 
a separate fit for each concrete case. In the present 
section we confine ourselves to an investigation of only 
several fundamental possibilities of using the model to 
explain the experimental results. 

a. It follows from Sec. 3 that f,,,= 0.4 for Ge and 
f,,, = 0.5 for Si. Obviously, by changing the constants 
A and U, and also by changing the functions ~ , , ( k )  and 
s,,(k) (at those values of k for which the exact form of 
these functions i s  unknown) it i s  possible to obtain f ,, 
=O. 1-1.0, in good agreement with the observed 
values. NO such agreement can be obtained within 
the framework of the SR theory. 

b. We consider the microwave dislocation conductivity. 
Dislocation bands of width -0.5 eV must of necessity con- 
tain energy sections on which d~, /dk-  lo7  cm/sec. Conse- 
quently, if the Ferrni levelfalls on these sections, then v, 
- lo7 cm/sec. According to Ref. 24, this yields a,, 

(Q.cm)-' (at a mean free path 1 =  lo-' cm). 
This agrees in order of magnitude with the results of 
Ref. 4-7. At the same time, a t  certain values of the 
parameters (donor density, dislocation density) the 
Fermi level can land in a region where d ~ d d k  << lo7 
cm/sec. Taking into account the relation U,,a v: (see 
Ref. 24) we can expect a drastic decrease of a,,. It 
follows from the numerical results that v, can decrease 
by dozens of times if the Fermi level lands in a vicinity 
of one of the singularities of the state density. 

We note the following circumstance. Strictly speak- 
ing, the results of Ref. 24 a r e  valid for the case when 
the equation E ,(k) = E , has two solutions, k = ik,. In 
our problem, on the other hand, in addition to this case 
there is  encountered also another, when there a r e  four 
solutions: k = +k,, ,k = +k,,. This problem was not con- 
sidered theoretically, and we do not know definitely to 
what results the presence of the additional two solutions 
*k,, can lead. However, in one limiting case the qual- 

itative result can be understood from the following 
reasoning. Assume that there a r e  four solutions 
k = ik,, , k = *kF2, and the corresponding Fermi velo- 
cities satisfy the condition Iu,, I >> Iv,, I .  In this situa- 
tion, in addition to the scattering processes k,, -k,,, 
k,, - -k,,, there a r e  possible also the proces- 
ses  k,, -k,,,k,, - -k,,. The electron i s  then in a state 
with a small Fermi velocity. It i s  clear that in this 
case the presence of states with k = *kF2 can only de- 
crease the conductivity. The experimentally observed 
decrease of a,, of n-Ge with increasing dislocation den- 
sity can be attributed to just this cause. In fact, it is 
seen from the numerical results that the smaller the 
dislocation charge (i. e. , the higher the dislocation den- 
sity) the closer we approach to the considered limiting 
situation. It i s  reached approximately at E, = 0.2 eV, 
whereas in experiment the decrease of om, occurs for 
practically neutral dislocations, i. e .  , a t  E, = 0.1 eV. 
This discrepancy can be eliminated by changing the nu- 
merical values of ~ , , ( k )  and ~, , (k)  (we recall that the 
forms of these functions a r e  known to use only qualita- 
tively). 

c. Observation of the EPR signal is  direct proof of 
the existence of DS. From the point of view of our mod- 
el, the observed signal comes from a one-dimensional 
metallic band. The magnitude of the signal i s  propor- 
tional to the static susceptibility, which in the case of 
a smooth P(E) function i s  proportional in turn to the 
state density on the Fermi level. In fact, we write 
down the static susceptibility in the form 

where M i s  the magnetization, H i s  the magnetic field, 
p i s  the Bohr magnetism, f is the Fermi function, and 
E ,  and E~ a r e  the end points of the one-dimensional 
band. At low temperatures T, the function af /ae  i s  
usually replaced by - 6 ( ~  - p) ( p  i s  the chemical poten- 
tial), a procedure valid if p ( ~ )  changes little with 
changing E - k, T (k, i s  the Boltzmann constant). If p(c ) 
has singularities, then the width of the peak of the func- 
tion af/ac must be kept constant. Representing 8f/8r: 
in the form 

we obtain for the susceptibility the expression 

If I.I does not lie in the vicinity of the singularity of p(c) ,  
then we get from (23) 

8' X~=P'P (P) ' (2ndsoldk)l 
B' -- I ..,.,+.. 2abc. ' 

(24) 

which i s  approximately smaller by a factor lo3 (at T 
= 10 K and 6eo=  1 eV) then the Curie susceptibility 

~ ~ = $ ~ l n ' " a k . T  

from the discrete levels. This means that the EPR 
signal from the dislocation band i s  very weak compared 
with the signal from the discrete levels and is prac- 
tically unobservable. In experimentS on the other hand 
an intense signal i s  observed with xac T-' at T > 50 K. 
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This phenomenon can be easily explained if i t  is  recog- 
nized that p can land in the vicinity of one of the sin- 
gularities of p(c ). 

We assume for simplicity that p = c,  and let the sin- 
gularity of p(c) a t  the point c i  obey a power-law, 

p(e)  =a-'r6-' I&-ci1 -'. (25) 

Here 6 i s  the exponent of the singularity, 6 > 0, and T' 
is a constant with the dimension of energy. For kB T 
<< I E~ - c I but kB T >> y ( y  i s  the width of the singularity) 
expression (23) yields 

s 

~=C,p~/n'"ak.T;  C ,  = Idx/ lx16-I;  p=y/l'. (26) 
(I 

It agrees with the result observed a t  T > 50 K both in 
magnitude and with respect to the temperature depen- 
dence. For k, T << y we get 

p2 r " - dx erp ( -xZ)  .=c2 - (-) 
a, 42' ' " = I  nxlxla ' 

The transition from the Curie law ( x a  T-') to the re -  
lation X a  T* takes place a t  kBT = y. From the numeri- 
cal results it follows that y/k, -20-60 K, in fair agree- 
me'nt with the observed deviation from the Curie law at  
T s 5 0  K. 

Next, experiment has recently revealed a situation 
that is a t  f irst  glance contradictory. Investigations of 
the influence of the annealing temperature on the EPR 
signal have shown that annealing at 700 "C leads already 
practically to a vanishing of the EPR signal. It has 
also been proved that the observed signal i s  connected 
with the dislocation level 0.44 eV (in Si). 25 At the 
same time, investigation of the electret state26 indicate 
that the 0.44 eV level remains if the samples a r e  an- 
nealed not only a t  700 "C , but also a t  1000 "C. In the 
SR theory these results contradict each other. In our 
model, on the other hand, there i s  a natural explana- 
tion. 

Indeed, the EPR signal i s  observed only when p lands 
in the region of a peak in the state density, otherwise 
the signal is  weak. On the other hand, in an investiga- 
tion of the electret state one actually measures /.I in- 
dependently of whether IJ. is  in the region of the peak 
o r  not. The contradiction i s  resolved if it is  assumed 
that in the course of annealing the spectrum becomes 
restructured in such a way that the state density a t  the 
Fermi level decreases. This i s  a very natural assump- 
tion, since annealing changes the screening of the dis- 
location by the impurities, and this changes the self- 
consistent Coulomb energy, leading in turn to a change 
in the form of the spectrum. 

The numerical results provide also an answer to 
the question a s  to why EPR signals a r e  observed in 
silicon and not in germanium. To this end we compare 
the dislocation spectra of almost neutral dislocations 
(EPR i s  investigated as a rule a t  high densities of the 
dislocations, when they a r e  almost neutral) of silicon 
and germanium. It turns out that the chemical poten- 
tial of silicon i s  equal to the energy a t  which p(c)  has 
a singularity, whereas this i s  not the case for german- 
ium. 

d. We discuss now the investigations of the photo- 
conductivity, electroluminescence, and photolumin- 
escence spectra. The electroluminescence and 
photoluminescence spectra a r e  complicated. They can 
be represented a s  superpositions of peaks -5 x eV 
wide. As a result, several peaks a r e  observed. Their 
width i s  practically independent of temperature, some- 
thing difficult to reconcile with the notion of transitions 
from a band to a discrete level (in which the case the 
peak width i s  mT). It i s  interesting that the levels de- 
termined from the temperature dependence of the car-  
r ier  density never manifest themselves in the lumin- 
escence spectra. In the photoconductivity spectra, 
deep levels correspond to "steps." In the case of dis- 
locations, the positions and number of these steps de- 
pends noticeably on the experimental conditions. In 
addition, very frequently a decrease of the photocon- 
ductivity i s  observed after the s tar t  of the step, some- 
thing that should not occur for transitions from bands 
to deep levels. 

All these singularities can be qualitatively explained 
within the framework of our model. In fact, in place 
of deep discrete levels we have a system of state den- 
sity peaks of width -8 x eV. Thus, the observed 
line width should be 28 x eV. Consequently, if the 
measurements a r e  made a t  T < 8 . 10-3/k, = 90 K the line 
width should be independent of temperature. In ad- 
dition, within the framework of this model, "intra- 
center" transitions a r e  possible. l2 The electrons can 
tunnel through the electrostatic barr ier  to upper dis- 
location states that lie within the limits of the conduc- 
tion band. They fall next to lower levels and emits 
photons. In these transitions the line width i s  also in- 
dependent of temperature. A decrease of the photocon- 
ductivity should then be observed in the spectrum after 
the start  of the step, as is in fact observed in experi- 
ment. 

We note that between the peaks the state density is 
small but still finite. This in turn makes possible non- 
radiative transitions, in good agreement with the ex- 
perimental fact that the presence of dislocations de- 
creases strongly the intensity of the radiative recom- 
bination. Next, the levels determined from the tem- 
perature dependence of the carr ier  density correspond 
to the position of p.  If /.I i s  in the region where the 
state density i s  low, no corresponding levels will ap- 
pear in optical experiments. This apparently i s  the 
case with the 0.1 eV level in Ge. 

When a change takes place in the occupation numbers 
and in the character of the dislocation screening, the 
distances between the singularities and their number 
can change. This can partially explain the difference 
between the experimental results obtained for the same 
substances. 

We not also the following interesting circumstance. 
It i s  seen from the numerical results that under certain 
conditions the upper edge of the dislocation band touches 
the bottom of the conduction hand. It appears that anom- 
alies should then be observed in the carr ier  lifetimes 
and in the kinetic phenomena, owing to the resonant 
scattering by the dislocations, and nonlinear effects 

494 Sov. Phys. JETP 52(3), Sept. 1980 Yu. A. Osip'yan and I. A. Ryzhkin 494 



connected with the t r a n s f e r  of dislocation e lec t rons  into 
the conduction band are also possible .  

In conclusion, the  a u t h o r s  thank k. I. Rashba  for  a 
helpful discussion of the  work. 

"we emphasize that to obtain self-consistent results it i s  
necessary to introduce at  least two parameters, n and no. 
By introducing only one parameter it i s  impossible to satisfy 
all the self-consistency conditions. The quantities n and no 
have different physical meanings (a similar situation was en- 
countered in Ref. 18). Failure to understand this difference 
is apparently the cause of the principal e r r o r  of Ref. 19, in 
which the f i r s t  attempt was made t o  study the influence of 
mixing on the DS. 
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The thermodynamic properties of a structural phase transition model for alkali-metal cyanides are discussed 
in the molecular-field approximation. The temperature dependences of the transition parameters and of the 
specific heat are obtained. The jumps and changes of the transition entropies are calculated. The results of the 
calculation are compared with the experimental data for the crystals KCN, NaCN, CsCN, and RbCN. 

PACS numbers: 64.70.Kb, 65.50. + m 

1. INTRODUCTION 

St ruc tura l  phase t rans i t ions  (PT)  i n  c r y s t a l s  of the 
type MeCN (Me = K, Na, Rb, C s )  have been  t h e  subject  
of many studies. It h a s  been experimental ly  es tabl ished 
that  the t ransi t ions in these  c r y s t a l s  are connected with 
the o rder ing  of the cyanide groups. Po tass ium cyanide 

(KCN) h a s  at room t e m p e r a t u r e  an NaCl s t ruc tu re ,  
and in this phase the  cyanide g roups  C N  are d i sordered  
relative to the  or ientat ions of t h e i r  longitudinal axes. 
It was found that  the CN g r o u p s  do not ro ta te  freely, '  
but move in  a potential with a l a r g e  number  of mini- 
ma. The published opinions concerning the f o r m  of 
t h i s  potential v a r y  ,Im6 s i n c e  it is impossible  t o  dis- 

t inguish in  exper iment  with sufficient re l iabi l i ty  the 
motion of the CN groups  i n  an eight-minimum poten- 
tial (equally probable  or ientat ion of the g roup  axis 
re la t ive  to the body diagonals of the cube p lus  equally 
probable  disposi t ions of the C and N a t o m s  on the 
ends  of the molecule)  f r o m  that  in a twelve-minimum 
potential (equally probable  orientation of the group 
axis relative to the  diagonals of the f a c e s  of the cube 
plus  interchange of the positions of the C and N a t o m s  
in  the molecule).  

A t  a tmospher ic  p r e s s u r e  KCN undergoes at 168 K, a 
f i r s t - o r d e r  PT into a par t ia l ly  o r d e r e d  phase with space  
g roup  D,:~ (2 = I ) ,  in which the CN groups are oriented 
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