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It is shown that ferroelectric ordering of paraelectric defects is possible in strongly polarizable crystals 
exhibiting soft phonon modes. A phase transition producing such ordering occurs if nrj> 1 (n is the impurity 
concentration and r, is the correlation radius) and it modifies the crystal lattice giving rise to a spontaneous 
polarization. The average field approximation is used to find the transition temperature and an expression for . 
the permittivity of the lattice with impurities. At low concentrations (nrj<l), dipole impurities in strongly 
polarizable crystals form a "dipole glass," in the same way as in ordina j lattices. 

PACS numbers: 77.80.Bh, 77.30. + d 

1. Collective properties of electric dipole impuri- 
t ies  in solids a r e  being investigated intensively by the- 
oretical and experimental methods. The greatest at- 
tention has been given to alkali halide crystals contain- 
ing molecular ion impurities such a s  OH- and CN- and 
noncentral defects of the Li' type in KC1 ( ~ e f .  1). For  
example, ~ i o r #  observed permittivity anomalies due 
to the interaction of impurity dipoles. However, these 
anomalies a r e  not accompanied by the appearance of a 
spontaneous polarization and a r e  typical of "polar 
glass" systems3 in which there is no ferroelectric or- 
der. A theoretical investigation of the physical proper- 
t ies  of crystals with randomly distributed dipoles is 
usually made employing the Hamiltonian of the interac- 
tion of dipoles in a polarizable medium4 

where d: =di(z0 +2)/3 is the effective dipole moment of 
an impurity including a correction for the local field 
in cubic crystals, d ,  is the permanent dipole moment 
of the impurity, and co is the permittivity of the pure 
crystal. 

Fairly general assumptions which a r e  not related to 
the mean field approximation a r e  used in Ref. 5 to show 
that, in principle, ferroelectric ordering is impossible 
in a system of randomly distributed dipoles with the 
Hamiltonian (I),  which is a consequence of the fact 
that the configurational average ydd = 0 vanishes. 

Systems of paraelectric defects in strongly polari- 
zable crystals characterized by low-frequency optical 
vibrations and a large polarization correlation radius 
Y,, which a r e  of considerable current interest, rep- 
resent a special It is physically clear that 
when the correlation radius is sufficiently large, the 
random distribution of impurities should not have a 
significant effect on the observed properties of the 
system. 

The cooperative behavior of paraelectric defects in 
lattices with large correlation radii is the subject of 
the present paper. We shall use the average field ap- 
proximation to show that ferroelectric ordering of im- 
purities is possible in such systems and that i t  is due 

to a modification of the Hamiltonian of the dipole-dipole 
interaction. The Hamiltonian of this interaction in 
strongly polarizable crystals contains not only the usual 
anisotropic t e rm of the type (1) but also an isotropic 
component whose magnitude depends strongly on Y,. 

Consequently, the average field acting on a dipole no 
longer vanishes and if n$ >> 1 (n is the impurity con- 
centration), a ferroelectric phase transition can occur 
in the impurity system. At a temperature T ,  of this 
transition we can expect the appearance of a spontane- 
ous polarization of the lattice in view of the linear 
relationship between the average dipole moment of the 
impurities and the lattice polarization. 

In the opposite limiting case of n 2  << 1, the situation 
does not differ qualitatively from that encountered in 
alkali halide crystals. 

2. The Hamiltonian of a system of N dipoles inter- 
acting with the lattice polarization can be written in the 
form 

H = - x d ~ ( r , )  + ~ o ~ , u ~ , + a ~ ~ ,  (2) 
k.1 

where 4, and 4, a r e  the creation and annihilation op- 
erators of phonons of frequency o,, (k is the phonon 
wave vector and j is the polarization index); E(r) is the 
electric field due to the polarization P(r) associated 
with the lattice vibrations: 

where P, a r e  the Fourier components of the polariza- 
tion. The f i rs t  term in Eq. (3) corresponds to the local 
field taken in the Lorentzian form, which holds for 
wave vectors k <<a-1 ( a  is the lattice constant),' and Y 
is the Lorentz factor. The second term in Eq. (3) cor- 
responds to a macroscopic field and b0 is the Kro- 
necker delta. Equation (3) allows for the fact that the 
crystal is under such conditions that a homogeneous 
polarization does not produce a macroscopic field. In 
the case of polyatomic lattices we shall sum with re- 
spect to j in Eq. (2) only for one group of triply degen- 
erate, a t  k = 0, soft optical branches responsible for 
the anomalous permittivity c0. [If kf 0, this corres- 
ponds to allowance for two transverse ( j r )  and one lon- 
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gitudinal ( j11) branches.] nons, respectively. 

Introducing, a s  usual, the normal coordinates Qkj,  
we shall represent P, in the form 

where Z and m a r e  the effective charge and mass of a 
vibration, No is the number of unit cells of volume v, 
~ ( k ,  j) is a unit polarization vector, &,,I = c, is the high- 
frequency permittivity, and c , ~  = 1. 

We shall determine the local field (E(r)) for a fixed 
impurity configuration (angular brackets denote quan- 
tum-statistical averaging) using the equation of motion 
for the normal coordinates and the equilibrium condi- 
tion (Q~,) = 0. 

This gives 

where we have used the well-known relationship be- 
tween the soft-mode frequency w,  and the permittivity of 
a crystal co - E, =4nz2/mvw20 and we have assumed that 
the dispersion law of the vibrations isa 

V = N,v is the volume of a crystal; a and P a r e  Carte- 
sian coordinates. 

Equation (6) is derived ignoring the lattice anharmo- 
nicity, which may generally be significant in the pres- 
ence of a soft mode. The criterion of validity of the 
harmonic approximation deduced from estimates by the 
iteration method is 

which imposes restrictions on the permissible dipole 
moment d of the impuritiesu ( B  is the anharmonicity 
constant). 

In summing over I in Eq. (5) we have to separate the 
term with I =i. This is the average reactive field due 
to the dipole-induced polarization acting on a dipole. 
Such a reactive field may result in a local phase tran- 
sition in a system of isolated dipoles in the l a t t i ~ e . ~  
The other terms in the sum (5), which we shall then 
consider, represent a random molecular field associa- 
ted with an indirect interaction of dipoles via a field of 
optical phonons (the randomness is due to the chaotic 
distribution of impurities). The Hamiltonian of this 
indirect interaction, 

= C KrlaP dra dl,, (8) 
i.l.5,P 

can be obtained also directly1' (K = KL + Ku). Thus, K, 
and Ka are  the constants of the indirect dipole-dipole 
interaction via transverse and longitudinal optical pho- 

It should be noted that whereas Y,,, -a, the quantity 
rc, depends significantly on the permittivity co and in 
the case of strongly polarizable crystals i t  may be con- 
siderably greater than a. However, in the case of 
crystals with the usual values of the permittivity, we 
find that Y,, is again of the order of a. For  such crys- 
tals we can assume approximately that r, = 0 in Eqs. 
(6) and (7) and assume that the distances between the 
dipoles a r e  r > a. Allowing not only for Eqs. (6) and 
(71, but also for the interaction of dipoles in a medium 
with the permittivity c, (if c, = 1, this corresponds to 
an allowance for the interaction of dipoles in vacuum), 
we obtain the Hamiltonian (1) in which we now have 
d* = d [ 3  + Y ( E ~  - 1)]/3. However, in the case of strong- 
ly polarizable crystals the dipole-dipole interaction 
does not reduce to the Hamiltonian (1). We shall now 
find the explicit form of this interaction. 

It follows from Eqs. (6) and (7) that if co >> c,, the 
interaction of dipoles via transverse phonons predomi- 
nates and the contribution of longitudinal phonons can be 
ignored. Extending summation over the wave vectors 
in Eq. (6) to infinity, which is permissible if Y > a, and 
going over to integration, we obtain 

T: I 4n K u p ( r )  = - - ( E ~ - E ~ )  - e-'Irc + -6.p 
9 I f rrc 3v 

where n=r/ rc ,  Y ~ = Y ~ , .  The second term in Eq. (9) 
is approximate. It does not influence the nature of the 
interaction between dipoles which a r e  a finite distance 
apart but it is important in order to obtain the correct 
value of the integral J d  3rK(r). 

Equations (8) and (9) give the interaction energy of 
dipoles in strongly polarizable crystals. In particular, 
the configurational average is v* 0, which is why fer- 
roelectric ordering of paraelectric centers is possible. 

3 .  In the molecular field approximation the statisti- 
cal behavior of a system of dipoles is given by Eq. (5). 
The ordering temperature can be estimated in the usual 
way from the expression for the average dipole moment. 
Near the ordering temperature we have 

where d is the magnitude of a dipole. The random dis- 
tribution of impurities gives r ise  to fluctuations of the 
local field and, therefore, the configurational average 
in Eq. (10) can be replaced by the product of the aver- 
ages 

- 
C K.,=@ (d,,) - C K , ~ ~ ~  (G) 

P fP 

only if we ignore fluctuations, which corresponds to 
introduction of an average field. This approximation 
is valid if 
- - 

or, bearing in mind Eq. (9), if n e > > l .  Then, a fe r ro -  
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electric phase transition occurs in a system of dipoles 
a t  a temperature T, given by 

Equation (12) allows for the usual (in the case of soft 
lattices) temperature dependence of co. 

Below T, we find that in addition to a ferroelectric or- 
dering of impurities the lattice becomes spontaneously 
polarized because of the linear relationship between the 
average dipole moment of the impurities and the lat- 
tice polarization. In fact, by analogy with Eq. (51, we 
obtain 

< P )  =J-(e,-8,) (Z). 
3v (13) 

If we consider the polarization of a crystal in an ex- 
ternal field using Eqs. (10) and (13), we obtain the im- 
purity-renormalized lattice permittivity c a t  tempera- 
tures T 2 T,: 

E(T)- E, = 
L 

(T-T.) (T+T.-To)/T' (14) 

where the permittivity q(T)  is described by an approxi- 
mation in the form of the Curie-Weiss law cO(T) - C, 

=CAT - To). 
The average field approximation is equivalent to an 

inclusion in the sum (3) only of the terms with k = 0, 
corresponding to the homogeneous polarization." How- 
ever, in the case of finite correlation radii i t  is im- 
portant, a s  demonstrated above, to allow for the spati- 
ally inhomogeneous fluctuations of the polarization and 
if n e  << 1, such inhomogeneous fluctuations suppress a 
ferroelectric phase transition. 

It is clear from Eq. (11) that if n< << 1, the disper- 
sion of a local field is considerably greater than the 
average value and, therefore, this situation does not 
differ qualitatively from that occurring in ordinary 
crystals with dipole impurities when Y+ 0 and there is 
no ferroelectric order. If v+ 0, the molecular field 
theory predicts the possibility of local ordering of di- 
poles. In the low-temperature phase (called the polar 
glass by analogy with the spin glass concept), i t  is 
found that (a3 = o but (ad2 + o at  T < T, . 

We shall estimate the temperature T, for the case of 
strongly polarizable crystals when n< << 1. Following 
Ref. 12, we shall carry  out configurational averaging 
in Eq. (10) after squaring the right- and left-hand parts 
on the assumption that R,, =O. This gives 

A polar glass in a strongly polarizable KTa03 crystal 
with noncentral Lii ions was recently discovered by 
Hochli et al? 

We shall conclude by noting that the self-consistent 
field approach adopted in the present paper reflects 

only very approximately the main features of the coop- 
erative behavior of impurity dipoles. How ever, there 
is little doubt about the possibility of ferroelectric or- 
dering of polar impurities in materials with large cor- 
relation radii, which is based on the appearance of a 
new isotropic term in the Hamiltonian of the dipole-di- 
pole interaction. Moreover, an  estimate of the tem- 
perature of such phase transition should be qualitative- 
ly c o r r e ~ t . ~ '  As far  a s  the transition to  a polar glass 
phase is concerned, recent investigations1' have shown 
that the molecular field theory describes only long- 
lived metastable states in real  three-dimensional space. 
For  example, in the case of paraelectric defects in al- 
kali halide crystals the value of T, calculated in Ref. 3 
similarly to Eq. (15) is in qualitative agreement with 
the position of a maximum of the low-frequency per- 
mittivit9 right up to frequencies w - lo-' Hz. Equation 
(15) can be used to study such quasistationary effects 
in strongly polarizable crystals. 

The authors a r e  grateful to M. A. Krivoglaz for his 
interest and discussion of the results. 

''For example, in the case of noncentral Li and Na impurities 
in K T a 4  (y- 0.1), detected in Refs. 6 and 7, the permissible 
value of the noncentral shift (equal to the length of the dipole) 
i s  xo< 0.5 A.  

2 ' ~  discussion of the validity of the average field approximation 
in dealing with the problem of the influence of impurities on 
the temperature of a second-order phase transition can be 
found, for example, in Ref. 13. 
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