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Inversion of the retarded Green's function of the electromagnetic field of an anisotropic medium yielded a 
correct solution of the problem of the limiting transition in the nonlinear polarizability tensor (NPT) from the 
independent variables (k, o ] to variables (k, o, (k)] that satisfy the dispersion law of normal electromagnetic 
waves; this corresponds to the conditions of resonance between the extraneous sources and the natural 
oscillations of this system. An exact limiting expression having no poles over the entire interval of variation of 
its frequency arguments is obtained for the total NPT of a medium of arbitrary symmetry. The intensity of 
generation of the summary harmonic is calculated in the given-field approximation. 

PAC3 numbers: 77.30. + d 

I. INTRODUCTION 

A microscopic calculation of the total nonlinear po- 
larizability tensor (NPT) for concrete models of a 

U - 
X E ,  (k,, a2)6(k-kl-k2)6(o-al-~z)&, dm,, 

crystal medium remains one of the vital problems of where Ai j  (k, w) = k20ij - kikj - wacij (k, w)/c2, while 
nonlinear optics. This is due to the need fo r  knowing E ,j (k, w) and c i j l  (k, w; klwl; k,, w,) a r e  the permittivity 
the NPT to solve Maxwell's equations for a nonlinear and nonlinear polarizability tensors. 
medium, a s  well as to obtain the probabilities (inten- 
sities) of various nonlinear processes. 

It is known that normal electromagnetic waves in an 
anisotropic medium a re  in the general case neither 
longitudinal nor transverse,' and that this division i s  
quite arbitrary. Therefore the choice of such models 
a s  optically isotropic cubic crystalsz o r  a weakly aniso- 
tropic m e d i ~ m , ~  in which account is taken of the con- 
tribution of only transverse waves, i s  not always sat-  
isfactory fo r  the calculation of the limiting value of the 
total NPT. First ,  the transverse -wave approximation 
leads not to a total but to a transverse NPT cij l ,  hav- 
ing poles at  the frequencies of the Coulomb exciton, 
i.e., in those frequency regions where the transverse- 
wave approximation itself cannot be used because the 
amplitudes of the electric fields of the corresponding 
transverse waves vanish. Second, in addition to the 
contribution of the transverse waves i t  i s  necessary to 
take into account also the contribution of the longitudin- 
a l  waves, which turns to exert  a substantial influence 
on the dispersion properties of the NPT cijl even in 
the case of low anisotropy. 

II. CONNECTION OF NPT WITH THE 
ANHARMONICITY COEFFICIENTS 

With the aid of a Fourier transformation, Maxwell's 
equations for  the electric field in a nonlinear homogen- 
eous medium, with both the quadratic and linear po- 
larizabilities taken into account in the material rela-  
tions, can be represented in the form 

The method of extraneous currents4 was used in Refs. 
3, 5, and 6 to establish the connection between the 
NPT and the anharmonicity coefficients in a polariton 
svstem: 

where k= k, + k,, w = w, + w,, the three dots denote five 
additional t e rms  of similar  structure, and spi(k) is 
the amplitude of the electric field intensity of the po- 
lariton mode: 

2ntio:(k) vOpr (k) 
SpL (k) = Sp(k)likp = - ( 

VkcZ ) ( ' h  k O k  (3) 

Here V i s  the cyclicity volume, s = k/lk(; g ~ ,  I? and 
v,,, (k) = a  w,(k)/ak a r e  respectively the normalization 
factor, the unit polarization vector, and the group vel- 
ocity of the p-the normal mode, the explicit forms of 
which a r e  given in the Appendix. 

The relation (2) i s  not accidental, since the use, on 
the one hand, of phenomenological equations (1) and, 
on the other, the Hamiltonian of a crystal accurate to 
three-particle interactions 
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corresponds to one and the same approximation. In 
the last Hamiltonian, 5i(k), t p  (k) and Ewp(k) a r e  re- 
spectively the creation, annihilation, and energy oper- 
ators of the polariton of branch p with wave vector k; 
W stands for the cubic anharmonicity coefficients, ex- 
plicit expressions for  which and whose connection with 
the nonlinear-effect tensor a re  given by O ~ a n d e r . ~  

In expression (2), the arguments of k and w a re  in- 
dependent of each other. However, physical interest 
attaches to the value of the NPT at those argument val- 
ues which satisfy the dispersion law of the normal elec- 
tromagnetic field, and when the synchronism conditions 
a re  satisfied in the unbounded ~ r y s t a l . ~  For these a r -  
guments, the factors hij[k, wp(k)]~',(k) vanish in ac- 
cordance with the homogeneous  axw well's equations 
for normal waves. Furthermore, owing to satisfaction 
of the energy and momentum conservation laws, the 
corresponding energy denominators also vanish. It is 
precisely these denominators which contain the term 
of (2) which is written up in explicit form and which 
gives a nonzero contribution to the limiting value of 
the NPT. This raises the question of finding the value 
of the limit 

L,' ( k )  = lim Ai,(k, o ) S b ( k )  , o + o , ( k )  
w - o , ( k )  

for an anisotropic crystal. 

Ill. LIMITING VALUE OF THE TOTAL NPT 

Attempts to obtain the limiting value of the NPT were 
made numerous times. Thus, Obukhovskii and Striz- 
hevskii3 determined the limiting value for a crystal of 
cubic symmetry using the explicit expression for the 
phenomenological permittivity. In Agranovich's mono- 
graph2 this limit was calculated for transverse waves 
in the approximation E ,  j(k, W) = 6, ,  and a normal-wave 
dispersion law w = ck that is valid only for transverse 
photons in vacuum. The limiting value of the NPT ob- 
tained in this manner is not the complete but the trans- 
verse NPT and agrees with the formula that can be ob- 
tained for the tensor &tj,  by calculating the polariza- 
bility induced in the crystal by transverse electromag- 
netic fields, using a s  the zeroth-approximation states 
not polaritons but Coulomb excitons. The question of 
the possibility of taking the limit for less rough ap- 
proximations of the normal-wave spectrum also re-  
mained unclear. On the other hand, the value of the 
limit (5) has not yet been found for an anisotropic crys- 
tal. 

The problem of the limiting transition can be solved 
correctly by taking into account the connection between 
the linear Maxwell operator hij(k,  w) and the Fourier 
transform Dij(k, w) of an electromagnetic field in a 
medium 

Aij(k, o )  =-4n02D,-'  ( k ,  o )  /cZ. (6) 

In the exciton region of the spectrum 
V S,' ( k )  S; ( k )  S," ( - k )  S; ( - k )  

D*, (k ,  m) = n C{ - 
o - o , ( k )  o + o , ( k )  

P 

It is known8 that the inversion of Dij(k, W) in the case of 

an anisotropic medium is a complicated problem. To 
solve it, we separate from the sum over the polariton 
states in (7) the resonant term with p= po, and include 
all the remaining terms of this sum, which have no 
singularities when the limit i s  taken, in the tensor 
nij(k, w). Then 

Here and below S0=S,,(k) and wo= q,,(k). For the in- 
verse tensor D;f(k, w) the following expression is valid: 

where the quantities Ci,(k, w), Fir&, w), A(k, w ) ,  and 
B(k, w) contain no singularities when the limit i s  taken, 
and a re  equal to 

C j j ( k ,  o )  = (Vlh)  et~,ejm,,S~"S~"[4n6mh+nm~(k, o)  I ,  
Fj, (k ,  o )  =1/Zei,ejmn[4n8,j+n.,(k, I [4n6mk+nmk(k, o )  I 

A ( k ,  a ) - - ( V l h ) F , ( k ,  w)S,"S,', 

B(k, o )  ='la Sp [ P ( k ,  o )  ( 4 n l + h ( k ,  a ) )  I ,  

el,, is the fully antisymmetrical Levi-Civita tensor. 

Using the property of the matrix Cij(k, w )  

which is the consequence of the homogeneous Max- 
well's equations, and substituting relation (9) in (5) 
with allowance for  the conduction (6), we obtain an ex- 
pression for the limit 

L,,' ( k )  = - + QmZ ( k )  ] 

The vector QpO(k) is orthogonal to the vector S,*,(k) 

Qha ( k )  S*" ( k )  =O 
and i s  equal to 

Changing over in (2) to the corresponding limits and 
knowing their explicit form ( l l ) ,  we obtain a simple 
connection between the limiting value of the NPT of an 
anisotropic medium with the anharmonicity coefficients 

where k = k, + h. In the approximation of optically 
isotropic crystals, with account taken of the contribu- 
tion of the transverse waves, expression (12) goes over 
into the well known formula for the transverse NPT;,~ 
which for convenience we write in the form 

e:, ( k ,  o , , ( k ) ;  k , ,  o , , ( k , )  ; kz ,  o o , ( k 4 )  

= - (4n lV)  [ W ( k , p l ;  kzp,; kpa) + W(kzp2; kps) 1 
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The quantities &(k) do not enter in (13), since they 
vanish identically in the class of transverse waves 
Ssk).  

IV. INTENSITY OF GENERATION OF SUMMARY 
HARMONIC 

To solve the phenomenological   ax well's equations 
for the field Ea(k, w) of the summary harmonic, we use 
the given-field approximation: in which the amplitudes 
of the primary high-power waves E0 a re  regarded a s  
specified classical functions. In this approximation, 
Eq. (1) takes the form 

o2 
A,,&, o ) E : ( k ,  W )  = 7 j ei,l ( k ,  o; k t ,  w , ;  kz, ot)E,O(k,,  o t )E t0 (kz ,  ~ 2 )  

Xii (k-k , -k2)6  ( o - a , - o z ) d k l  dk ,  d o ,  d o z .  (14) 

The complete solution of (14), satisfying the zero ini- 
tial conditions 

takes the form 

here 

E," ( k ,  W )  = ~ i , ( k ,  w p ( k )  )Ei8ik ,  a )  l,LPleij(k, m p ( k ) )  likPIF 

is the p-th component of the Fourier transform of the 
particular solution of the inhomogeneous equation (14). 

The energy transferred to the summary harmonic per 
unit time is equal to the work performed by the pri-  
mary light waves and determines the integrated inten- 
sity of the process 

The current induced by the nonlinear polarizability of 
a unit volume of the medium is 

where k=k,+k,and w=w,+w,. 

To simplify the calculations, the primary fields E0 
will be assumed to be monochromatic 

and we change from summation over k to integration 
introducing the density of the final states of the field of 
the summary harmonic. In the final stage of the cal- 
culations i t  i s  necessary to go, for all the frequencies, 
to the limit a s  wO4 wpo(ko), inasmuch a s  in the case of 
a weak nonlinearity the fields that take part  in the pro- 
cess a re  the normal waves in the medium. 

Substituting (15) and (17) in (16) and taking (2) and (12) 

into account, we obtain for  the intensity of the sum- 
mary harmonic 

(18) 
Here Z1,,= ~wpl,2(kl,2)vp1,28r(kl,,)Nl,,/V a r e  the intensi- 
ties of the primary waves, dQ' is the element of the 
solid angle in the direction of the group velocity vector 
of the summary harmonic vp,,(kl + k,); v,,(lr) and 
vfip(k) a r e  the group and phase velocities of the normal 
waves. Formula (18) coincides with the exprtssion 
for the intensity of the generation of the summary har- 
monic, which can be easily obtained by following the 
quantum-mechanical "golden rule" for the scattering. 

It should be noted that both the limiting value of the 
NPT (12) and the intensity (18) remain finite over the 
entire interval of variation of their frequency argu- 
ments. The reason is that the spectrum of the normal , 
waves in the medium differs greatly both from the 
spectrum of the Coulomb excitons and from the spec- 
trum of the transverse photons in vacuum. 

V. APPENDIX 

We obtain now some useful formulas and relations by 
comparing the phenomenological and microscopic a s  - 
pects of the solution of the problem of normal electro- 
magnetic waves in an anisotropic dispersive medium. 

In the absence of extraneous charges and currents we 
determine unambiguously from  axw well's equations 

A,, ( k ,  a, ( k )  ) l,L"=O (19) 

the polarization vectors l:@ and the dispersion law o 
= wp(k) of the normal waves, where p= 1,2,  . . . num- 
bers  the roots of the equation 

det IAij(k,  o )  I =O (20) 

at a given wave vector k. 

The structure of the unit polarization vectors 17 is1' 

where eP i s  a unit transverse polarization vector, 
and satisfies the orthogonality condition 

from which in fact we determine g,,. 

In the general case the dispersion equation (20) 
breaks up into a product of two factors, the roots of 
which determine two sets  of normal waves and {p,}. 
In the particular case of an optically uniaxial crystal, 
these a re  the ordinary and extraordinary waves. 

In the microscopic approach, the same spectrum of 
the normal electromagnetic waves (nonlongitudinal po- 
laritons) is determined from a system of homogeneous 
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equations for the Bogolyubov-~yablikov' canonical- 
transformation coefficients 

by equating to zero the determinant 

detl N,. (k, o )  -Aa (k, o )  6 j j .  I =O. (24) 

The coefficients Ukj (p), which determine the amplitude 
of the electric field of the normal wave, the anharmon- 
icity coefficients; etc., a re  simply connected with the 
phenomenological characteristics of the anisotropic 
medium," such as the refractive index n,(k) = kc/w,(k) 
and the group velocity 

where we have used the relation ao,(k)/ak=v,,,(k)s. 
The difference between formula (25) and the corre- 
sponding formula in Ref. 11 lies in the absence of the 
factors qj(kp), which have the property 

and which a re  equal to 

mode 

is then directed along one of the two principal axes of 
the tensor Njj, since the quantities qj(k, p), according 
to (26), at the roots of the dispersion equation (27), 
a re  equal to 

In conclusion I a m  grateful to L. N. Ovander for sug- 
gesting the problem and to the members of the division 
of nonlinear optic: Yu. D. Zavorotnev, N. S. Tyu, and 
I. L. Lyubchanskii for helpful discussions. 
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