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For an isotropic magnetic material with non-Heisenberg exchange, the possibility is demonstrated of a new 
type of "order-disorder" phase transition, in which the short-range order above the transition point is of a 
different type from the long-range order below the transition point (an "order-alien disorder" phase 
transition). Thus the paramagnetic Curie temperature may be positive in an isotropic antiferromagnet and 
negative in a ferromagnet. The reason for this is the different temperature dependence of the Heisenberg and 
of the non-Heisenberg exchange, as a result of which the high-temperature properties may be determined by 
the former and the low-temperature properties by the latter. For the same reason, phase transitions of the 
"ferromagnet-antiferromagnet" type are possible; and such a purely magnetic mechanism of "order-order" 
phase transitions is in many cases much more realistic than the Kittel exchange inversion. In particular, this 
mechanism permits the occurrence of a whole series of phase transitions between commensurable collinear 
structures (from a two-sublattice antiferromagnet to a three-sublattice femmagnet to a four-sublattice 
antiferromagnet to a paramagnet), observed in EuSe. By analysis of the experimental data for EuSe it is shown 
also that the last of these transitions is of the "order-alien disorder" type. If a ferromagnetic state is possible, 
then three-spin exchange enhances the singularity of the susceptibility at T, as compared with a Heisenberg 
magnet. 

PACS numbers: 75.30.Et, 75.30.Kz, 75.40.Fa, 64.60.Cn 

INTRODUCTION above the point where the long-range order disappears 

It is  usually considered self-evident that upon heat- 
ing, an isotropic antiferromagnet (AF) transforms to 
a paramagnetic (PM) state with a negative PM Curie 
temperature 0, and a ferromagnet (FM) to  a state with 
a positive 8. The sign of 0 is the same a s  that of the 
binary spin correlators of neighboring atoms, which 
describe the short-range magnetic order. Therefore 
a negative sign means that after breakdown of the long- 
range AF order in the crystal, there remains in it 
short-range AF order;  a positive 0 means that the 
short-range order is  ferromagnetic. Similarly in other 
cases also in which we have to do with order-disorder 
phase transitions (PT), it i s  supposed that the short- 
ranae order above the transition ~ o i n t  i s  of the same 

i s  very important, since many properties of crystals 
a re  determined not by the long- but by the short-range 
order. One example has already been given: the PM 
susceptibility of strong magnets. This includes also the 
electrical and optical properties. In particular, the 
position of the optical absorption edge in magnetic semi- 
conductors and insulators depends very strongly on the 
short-range order;  and this fact is  used by us below, 
together with other experimental data, to establish the 
occurrence of FM short-range order after disappear- 
ance of long-range A F  order in EuSe. Thus the paper 
presents not only a theoretical but also an experimen- 
tal demonstration of the existence of an order-alien 
disorder phase transition. - 

type a s  the long-range order below it. The theoretical demonstration of the existence of an 
order-'alien disorder P T  is given for a model of a mag- 

One of the basic results of our paper is  the demon- net with isotropic many-spin ex~hange .~)  What has beeh 
stration of the existence of a new type of order-dis- investigated so far in the literature i s  the effect on an 
order phase transition, for which the short-range order order-disorGer phase transition of biquadratic ex- 
above the transition point i s  of a different type from the ,hange2,3 [ w ( ~ 1 ~ 2 ) z ~  and of four-spin exchange4 [-(s,s,) 
long-range order below it. For example, if such a x (S3S4)]. In these papers i t  was established that ad- 
transition occurs in an isotropic antiferromagnet, its dition of such terms to the Heisenberg Hamiltonian may 
PM Curie temperature i s  not negative but positive1); produce a discontinuous phase transition from the F M  
if in a ferromagnet, then 0 i s  negative. Such order- 

state to the PM. But a s  will be clear from what fol- 
strange disorder phase transitions a r e  necessarily of lows, a Hamiltonian with biquadratic exchange2v3 per - 
first  order,  whereas P T  with retention of the type of mits only an order-ordinary disorder PT. A four-spin 
short-range order (order-ordinary disorder) may be Hamiltonian, for a certain choice of i ts  parameters,  
either of first  o r  of second order. allows one to obtain an order-alien disorder PT,  but 

The question of the nature of the short-range order this possibility went unnoticed earlier. 
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In the model used in the present paper, a fundamental 
role is  played by competition of the Heisenberg ex- 
change with the three-spin [-(S,S,)(S$,)], for which it i s  
necessary that, for some reason or  other, the Heisen- 
berg exchange between neighbor atoms should be anom- 
alously weak. Petrich and KasuyaS expressed the 
idea that three-spin exchange, like biquadratic, can 
transform a continuous order-,disorder PT to a dis- 
continuous; but the possibility of an order-alien dis- 
order P T  again remained unnoticed. In the present 
paper, a model is  hriefly discussed in which Heisen- 
berg and four-spin exchanges a re  taken into account 
simultaneously (simultaneous allowance for three- and 
four-spin interactions ra ises  no difficulties of principle, 
but the results obtained become unperspicuous). The 
physical reason for an order-alien disorder P T  is the 
different temperature dependence of the Heisenberg and 
non-Heisenberg exchanges, a s  a result of which the 
high-temperature properties of the magnet may he de- 
termined hy the first of these and the low-temperature 
by the second. 

These same models allow us  to justify a purely mag- 
netic mechanism of phase transitions with change of the 
type of magnetic order, for example FM-AF. The pos- 
sibility of a PT between a noncollinear antiferromagnet- 
ic structure and collinear structures, because of com- 
petition between Heisenberg and non-Heisenberg ex- 
change interactions, was indicated earlier :,, but no 
analogous investigation for collinear structures was 
carried out. Yet a purely magnetic mechanism, based 
on the above-mentioned difference in the temperature 
dependence of the Heisenberg and non-Heisenberg ex- 
changes, is an important alternative to the generally 
accepted mechanism of FM-AF phase transition, in 
which the transition i s  caused by inversion of the sign 
of the Heisenberg exchange integral with thermal ex- 
pansion of the lattice. 

For low-temperature PT, when the thermal expansion 
of the lattice is  negligibly small, the purely magnetic 
mechanism is much more realistic than the Kittel ex- 
change inversion. It may be responsible also for high- 
temperature PT .  he purely magnetic mechanism en- 
ables u s  also to explain the whole ser ies  of PT between 
commensurable magnetic structures that is observed 
in certain crystals. In particular, we shall reproduce 
below the series of PT of the f i rs t  kind between collin- 
ear structures that is observed in EuSe: two-sublat- 
tice AF-three-sublattice ferrimagnet-four-sublattice 
AF-PM. The last two magnetic structures, within the 
framework of the Heisenberg model used by ~ i t t e l , ~  
would always be unstable?' 

The demonstration of the existence of P T  of the ord- 
er-order and order-alien disorder types is  carried out 
a t  first for a simplified model, with use of the spin- 
wave approximation a t  low temperatures and of high- 
temperature expansion a t  high temperatures. The lat- 
ter provides a possibility of simultaneously demonstrat- 
ing that three-spin exchange can sharply enhance the 
singularity of the magnetic susceptibility of a FM at  
the critical point. Then for the same model, an analy- 
s i s  is  carried out in the approximation of the self-con- 

sistent field (SCF), which leads to results that a re  qual- 
itatively the same. This provides a basis for regard- 
ing with confidence the qualitative results obtained in 
the SCF approximation for a more complicated model, 
which enables us to reproduce the ser ies  of P T  ob- 
served in EuSe. The adequacy of the SCF approxima- 
tion i s  essentially due to the fact that the first-order 
phase transitions that we consider occur sufficiently 
far from the critical points. 

I. GENERAL ANALYSIS 

To simplify the treatment presented below, it is sup- 
posed that the magnet i s  made up of equivalent mag- 
netic atoms with spin S, forming a simple cubic lattice. 
The Hamiltonian of the system i s  chosen in the form 

where S, is the spin operator of atom g, and where the 
vector A enumerates the z =  6 nearest neighbors of the 
atom. 

The biquadratic term in (1) plays an auxiliary role: 
it must, in a case of necessity, stabilize collinear 
structures (AF or  FM), for which it i s  necessary that 
R > 0. The three-spin term in (I), besides the obvious 
requirement that all  three atoms must be located a s  
close a s  possible to one another, satisfies still another 
requirement, which for our purposes has a fundamen- 
tal character: it, like the Heisenberg term,  changes 
sign if FM order i s  replaced by staggered antiferro- 
magnetic. Three-spin terms of the type (S,S,+,) 
x (S,+,S, +, ,, .) that do not possess this property a r e  
not included in the Hamiltonian (1). 

Because the Hamiltonian (1) contains no exchange be- 
tween more distant neighbors, it permits only the two 
types of collinear structures mentioned above. In the 
case of the FM structure, the energy per atom Ep in the 
ground state and the magnon frequencies w:are given 
by the expressions 

E,=-'/2(J+K) - 8 1 2 ,  (2) 
SoqF-(J+K+ZR) (I-7,) +K(l-A,), (3) 

where we have adopted the notation 

For the staggered AF structure, the corresponding ex- 
pressions have the form 

En= (l+K) 12-R12, 

Having in mind later comparison with experiment, we 
shall investigate below the case in which the Heisenberg 
and three-spin exchanges in (2)-(5) have opposite 
signs, specifically J>  0 and k<  0, and the second i s  
stronger than the first (lk I > J). With such relations 
between the parameters, the energy E ,  of the AF state 
is  below the energy E ,  of the FM state, and the magnon 
frequencies a r e  determined positively, independently 
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of the value of k > 0. k - 3 the FM state in fact cannot be realized. 

On the other hand, by using the high-temperature ex- 
pansions one can determine the character of the short- 
range order a t  high temperatures. On applying Kubo's 
formula for the static magnetic susceptibility X,  which 
expresses it in terms of spin correlators, we get in the 
limit of classically large spins for R - 0 

where the first ,  second, and third terms in the wavy 
brackets a re  respectively (except for a factor S2/3) the 
mean square projection of the s i in  of an atom, the cor - 
relator of the spins of nearest neighbors, and the cor - 
relator of the spins of second-nearest neighbors. 

A s  follows from (6), even if the AF state is stable a t  
T= 0, at high temperatures the correlators for nearest 
neighbors may turn out to be positive; that i s ,  the 
short-range order will be FM. The transition from AF 
long-range to FM short-range order i s  due to the fact 
that with rise of temperature, the intensity of the three- 
spin exchange becomes much weaker. One can explain 
the particular situation qualitatively thus: the effective 
exchange integral between atoms 1 and 2 in the pre- 
sence of atom 3 is given by the sum of the Heisenberg 
and three-spin terms 

- 
and the value of (Sg2 decreases threefold with r i se  of 
temperature. The PM Curie temperature, defined a s  
usual by the relation X =  1/T + 8/P,  i s  according to (6) 

The condition under which the crystal i s  antiferromag- 
netic a t  T=  0 but its PM Curie temperature a t  high tem- 
peratures i s  positive has the form 

1<k<3. (8) 

In principle, a transition from AF long-range to FM 
short-range order may occur in two ways: 1) By a P T  
from an AF to a FM state, with a subsequent transition 
to the PM. This way is already known from Kittel's 
theory of exchange inversion. 2) By a direct AF-PM 
phase transition. This possibility has not been noticed 
earlier. 

In order to demonstrate the possibility in principle of 
a direct AF-PM phase transition with O > 0, it i s  suf- 
ficient to estimate the Curie temperature T, of the FM 
state and to establish that for certain relations between 
the parameters, it i s  low enough so that the free energy 
F,(T,) of the AF state, which is close to E ,  of (4), is  
substantially below the free energy F, of the FM state, 
which in the interval from T =  0 to T = T, varies from 
E, to a value --T,. This is  in fact the situation, ac- 
cording to (71, when k i s  close to 3 .  In fact, if a FM 
state existed a t  all  for such k,  then for 6 -0 its Curie 
temperature, even if it were not equal to 6, would also 
have to approach zero. Thus F,(Tc) <<F,; that is ,  for 

The results obtained above enable u s  to estimate the 
value kc for which a direct AF-PM transition i s  re-  
placed hy a transition via an intermediate FM state. 
For this purpose, it i s  necessary to equate the free 
energies F A  of the antiferromagnet and F, of the para- 
magnet a t  the Curie point T,. The values of Tc and of 
F,(T,) can he found by using the high-temperature ex- 
pansions. At not too large k, the variation of Tc with 
k can he determined from the three-spin ser ies  (6). It 
contains the minimum number of terms necessary in 
order to find not only T, but also the critical index y 
in the relation x - (PC - p)-y, which i s  valid near Tc . 
Both the ratio method and the method of pad6 approxi- 
mants lead in this case to the result 
Tc  ( k )  ='/,If ( k ) ,  y=8/Tc,  f ( k )  = (181k2-720k+720)/240(3-k).  (9) 

This three-term approximation, a t  sufficiently small 
k, insures accuracy sufficient for'our purposes: for a 
Heisenberg FM, the value Tg = $ J differs by only 7% 
from the most accurate expression, obtained by Rush- 
brooke and Wood. ' The inapplicability of (9) when k - 3 
is due to the fact that the second term in (6) becomes 
small in comparison with the third, whereas the method 
of high-temperature expansions requires the opposite 
relation between them. 

As follows from (9), the Curie temperature decreases 
with increase of k faster than does 6 a s  defined by the 
expression (7); a t  k = 1.8 it i s  only 0.03Tz. Thus ac -  
cording to (9) and (5), the value of 7, a t  T - 1-2 i s  con- 
siderably smaller than the maximum value of S W ~ .  This 
provides a possibility of using the spin-wave approxi- 
mation for calculation of F,(Tc): 

F,=E,+TN-'z l n { l - e x * ( - o q A / T ) ) ,  (10) 
'I 

where N is the number of elementary cells of the cry- 
stal. 

For the free energy of the PM state we use the ex- 
pression . 

The complexity of the problem consists in the fact that 
the series for F, in terms of p i s  asymptotic, and a t  
P=Pc there is no guarantee that its terms decrease with 
increase of the power of p. For example, when k = 0.4 
the second term in (11) i s  70% of the first  when P=Pc 
of (9). Nevertheless one can obtain a sufficiently ac- 
curate estimate of kc by using the fact that the first  
term in ( l l ) ,  in accordance with the variational prin- 
ciple for the free energy, overestimates the value of 
the latter. Representing the free energy in the form 

and equating it to the value (10) of FA a t  T =  Tc, we get 
for S = +  

kc=1.2+1.46, (12) 

the variation of kc with S is weakly logarithmic. 

In accordance with the properties of asymptotic s e r -  
ies,  the value of J 6  is of the order of the second term 
in (11); that i s ,  when k = 0.4,6- 0.1. Thus the uncer- 
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tainty in the value of kc amounts to -lo%, and its  sign 
i s  known. The weak sensitivity of kc to the value of 
F,, which a t  f irst  glance seems paradoxical, i s  due 
to the fact that kc i s  really expanded with respect to 
6 not near k = 0 but near k = 1, the value of k beginning 
with which AF ordering i s  a t  all possible. It then turns 
out that for the actual order of magnitude of F,, always 
kc - 1 << 1. In any cases,  it follows from the estimate 
(12) that the FM phase can be realized only within a 
small part of the interval (8) of k values. In the res t  of 
it, a direct AF-PM transition must occur, with positive 
6. 

The relation (10) and i ts  analog for the FM state 
can be used directly to demonstrate the possibility of 
an AF-PM phase transition at small k. For this pur- 
pose we note that if i s  sufficiently large, then ac- 
cording to (3) and (5) not only AF but also FM magnons 
a r e  stable (the FM state here corresponds to a relative 
minimum of the energy). This requires positiveness 
of the value of W =J + 3R + 2R, which i s  proportional to 
the reciprocal effective mass of the ferromagnetic mag- 
nons. The reason for a transition when W<<J i s  the ex- 
tremely great softness of the FM magnons as compared 
with the antiferromagnetic; a s  a result of this, the free 
energy decreases with r i se  of temperature considerably 
faster for the FM than for the AF. As a result, by use 
of (2)-(5) and (10) we get for the AF-FM transition 
temperature, if it lies in the spin-wave range, the esti- 
mate 

Actually, applicability of (13) requires satisfaction of 
very strict  limitations on the system parameters; but 
in any case, this result has significance a s  an exis- 
tence theorem: in fact, along with the Kittel exchange 
inversion: there is  possible a first  -order AF-FM phase 
transition caused by the non-Heisenberg character of the 
exchange interaction. The subsequent transition from 
the ~ M t o  the PM state, according to (91, must be of 
second order. 

From formula (9) there follows still another qualita- 
tive conclusion, concerning the critical exponent Y 
=6/Tc of ferromagnets with strong AF three-spin in- 
teraction, regardless of whether they have a ferro- 
magnetic (k < 1) or  antiferromagnetic (k > 1) ground 
state. Namely, three-spin exchange increases the 
critical exponent; for example, for k = 1.2 the value of 
y is  higher by a factor 2.2 than in a Heisenberg mag- 
net. This effect is  too significant to be attributed to 
inaccuracy of formula (9): for a Heisenberg magnet, 
that formula gives the value y =  1.5, which differs by 
only 12% from the most accurate value obtained for this 
exponent. Thus three-spin exchange sharply enhances 
the singularity of the magnetic susceptibility at the 
Curie point. 

If one takes into account only Heisenberg and biquad- 
ratic e~change ,2*~  then 6 will be given by formula (7) 
with k =O. From the fact that 0 is independent of R,  
i t  follows that in this case the sign of O will always be 
the same a s  that of J; that is, the character of the 
short-range order in the PM range i s  always the same 

a s  that of the long-range order in the magnetically 
ordered range. But a s  regards the four-spin exchange, 
it can lead to a P T  of the order-alien disorder type if, 
in its Hamiltonian, three spins belong to one sublattice 
and the fourth to the other [that is, if the Hamiltonian 
consists of terms of the type (St-,S, +,)(S,+,S,+, ,) with 
A'* A]. If, in addition, the four-spin exchange is 
stronger than the Heisenberg, and if it has the opposite 
sign, then it i s  the one that determines the character 
of the magnetic order a t  T=O. But the character of 
the short-range order a t  high temperatures is  deter- 
mined by the Heisenberg exchange ( 6  = 5/31; that i s ,  
in this case it i.s opposite to the character of the mag- 
netic order a t  T = 0. 

I I. THE SELF-CONSISTENT- FIELD APPROXIMATION 

An investigation in the approximation of the SCF i s  
conveniently begun with the model considered in the 
preceding section; for simplicity, we may set R = 0 in 
the Hamiltonian (1). The non-Heisenberg structure of 
the Hamiltonian (1) leads to a necessity for introducing 
two SCF. 2*3 One of these, the dipole field d, acts on the 
projection of the spin; the other, quadratic in q - k, acts 
on the square of the projection of the spin. In the SCF 
app~oximation, the Hamiltonian (1) i s  represented in a 
form that is  suitable for investigation either of noncol- 
linear o r  of collinear structures 

%scF=-s2(kmz-1/.) N cos 28 +(d cos 28-h cos 0 ) x  x#+ I/, ks2 cos 2 6 x  x:; 
P a 

(14) 
s = E l  /S, m 2 = m 2 / ~ ,  k=2(z-2)  IKISVI, 

d=s (km2-l) , x,=SgZ / S ,  h=H / zIS2, 

where S i s  the value of the spin of a magnetic atom, and 
where the bar indicates a temperature average with the 
Hamiltonian (14). All energies a r e  measured in units 
of zZS2. For the z, axis of atom g, we choose the di- 
rection of the moment of the sublattice to which this 
atom belongs; the y axis i s  common to all atoms. In 
the presence of an external field, each of the sublattice 
moments makes an angle 9 with it. 

The free energy F,,, corresponding to the Hamilton- 
ian &,, is  (per atom) 

FsCF=-~2(km2-1 /Z)  cos 28-7 In Z, (15) 

fI,= (d  cos 28-h cos 8 )  x+'/,ks2 cos 20x2. (16) 

Here T is the temperature, x = { (-S + n)/S), n = 1, 
2, .  . . ,2S; the reckoning i s  from the free energy of 
the PM state a t  h = 0, -T ln(2S + 1). The average of the 
Hamiltonian %P, calculated by means of the Hamiltonian 
g,, is  zero, so that the value of F,,, can be used di- 
rectly a s  an estimate of the free energy F correspond- 
ing to the Hamiltonian &4 

The stationary values of the variational parameters 
s ,  m2, and 9 a r e  found from the condition that the free 
energy F,,, shall be an extremum with respect to them; 
this gives 
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sin e(2dcos 0-h) =O. (19) 

As follows from (151, a t  T =  0 and h=  0 the AF ordering 
i s  more advantageous than the FM if k > 1. But with 
increase of temperature, m2 drops, and when k < 3 the 
dipole field s&m2 - 1) above a certain temperature T* 
becomes negative, which means absolute instability of 
the AF state. Thus i t  must be replaced by the FM or 
PM state. It i s  easy to see  that in any case the P T  
must be of first  order and must occur below T*. In 
fact, if it were of second order,  then the field d would 
have to remain positive a t  all s; and this i s  impossible, 
since m2 approaches 3 as s -0 (here and below, we neg- 
lect terms 1/2S in qualitative discussions, but not in 
numerical calculation). 

A ferromagnetic state is possible if the value of k i s  
not too close to 3, since for stability of it the differ- 
ence 1 - km2 must substantially exceed T a s  T - T* 
= T*/zIS2. The value of m2, which is less  than in the 
AF phase, must nevertheless in the FM state be sig- 
nificantly larger than i ts  value in the PM state, namely 
f. Analysis of Eqs. (17) and (18) shows that the tran- 
sition from the FM to the PM state must be a P T  of 
second order. This follows from the fact that in the 
vicinity of the Curie point, the expression for which 
coincides with (7), the magnetization, on approach of T 

to T, from the low-temperature side, decreases con- 
tinuously. In fact, 

and the coefficient on the right side of (20) is positive 
when 1 < k < 3 [if i t  were negative, then the S(T) curve 
a t  small s would correspond to nonphysical states, for 
which the free energy was not a minimum but a maxi- 
mum, and therefore the system would transform dis- 
continuously from a state with finite s to a state with 
s = 0, bypassing the states with small s]. 

AF 
on-range 

FIG. 1. Results of numerical solution of Eqs. (17) and (18) 
for the values k =  1 . 5  (solid lines) and k =  1.8 (dotted lines). 
The upper of the two lines for the same k corresponds to the 
AF and the lower to the FM state. To the right of the arrow. 
the AF state i s  unstable with respect to the PM. 

Obviously T, i s  higher, the smaller k. If T* i s  less 
than T,, then on r ise  of temperature, beginning with 
T = 0, there must necessarily occur first an AF-FM 

FIG. 2. Qualitative phase diagram in the (T, k) plane for a 
non-Heisenberg magnet. The circle marks the triple point 
sf= 7,; kc i s  the value of k corresponding to it. 

transition of first order, and then a FM-PM transition 
of second order. In fact, the point of transition TA 
from the AF state must be below T* and therefore also 
below T,. But below T,, the FM state is  thermodyn- 
ically more advantageous then the PM. But if T* ex- 
ceeds T, , then, depending on whether the transition 
point T, i s  below o r  above T,, there occurs a transition 
either first to a FM state, or  directly to a PM state 
with FM short-range order (when TA > T, , ferromag- 
netic ordering is ,  so to speak, jumped through). 

The results of a numerical solution of equations (17) 
and (18) for h=O substantiate this qualitative treatment. 
Figure 1 shows the results of numerical calculations for 
the cases k = 1.5 (solid lines) and k = 1.8 (dotted lines) 
when S =  7/2. The upper of the two lines corresponding 
to a given value of k shows the temperature dependence 
of the AF order parameter s,,, the lower of th'e FM or- 
der  parameter s,,. The free energy F, of FM ordering 
is negative a t  all temperatures T <  rC, whereas the free 
energy FA of AF ordering is negative only on the part  of 
the sA,(r) curve that lies to the left of the arrow. To 
the right of the arrow, the AF state is known to be un- 
stable (at the temperature T, corresponding to the a r -  
row, the free energies of the AF and PM states be- 
come equal). When k = 1.5  (7, = O .  123 < rC), there 
f i r s t  occurs an AF-FM phase transition of f i rs t  order 
a t  rf = 0.12; then there follows, a t  rC = O .  153, a P T  of 
second order to the PM state. 

But when k = l . 8  (rp=O. 198>rC =O. I ) ,  the region of 
stability of the FM state is absent, and there occurs 
a P T  of f i rs t  order from the AF state directly to the 
PM. In the interval between 1 .5  and 1 .8  there lies a 

FIG. 3. Metamagnetic phase transition in a non-Heisenberg 
isotropic magnet (numerical calculation for k = 1.8 and r = 0.19). 
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value kc corresponding to a triple point, T, = T ~ .  This 
estimate agrees with (12), although somewhat above it. 
In order to show that the PM state is characterized by 
FM short-range order even for  k >kc, when a transi- 
tion occurs from the AF state directly to the PM, i t  is 
sufficient to calculate the PM Curie temperature 0. 

For 8 one gets an expression coinciding with (7), 
which is positive when k < 3. When k >3, a PT of f i rs t  
order occurs from AF to PM with antiferromagnetic 
short-range order. Summarizing the results obtained, 
we can draw a qualitative phase diagram in the (T, k) 
plane (Fig. 2). 

Materials that reveal a PT of first  order between AF 
long-range order and FM short-range order possess 
still another interesting property: they a r e  isotropic 
metamagnets. This i s  indicated by the results of a nu- 
merical calculation for the same value k = 1.8 a s  be- 
fore, a t  temperature T =  0.19, which lies below the 
transition point T~ (Fig. 3). Up to field h,= 0.082, 
the magnetization increases continuously with the field 
because of decrease of the angle 20 between the mo- 
ments of the sublattices. But a t  field h, there occurs 
a discontinuous PT from two-sublattice to one-sub- 
lattice ordering. Here the magntization increases by 
about five times. 

The model described by the Hamiltonian (1) can be 
generalized to describe a ser ies  of PT between struc- 
tures with commensurable periods. It is  supposed that 
the magnet can be divided into planes within which the 
exchange between nearest neighbors (its integral P has 
a normal value). Only the integral I of Heisenberg ex- 
change between nearest neighbors from neighboring 
planes is anomalously small; it is therefore necessary 
to allow also for Heisenberg exchange between atoms 
from the planes second in distance (its integral is V) 

FIG. 4. Results of numerical solution of the SCF equations 
for the Hamiltonian (21). for the values k =  2.1, v =  0 . 5 ,  p = 0 . 5 ,  
r=  0 . 5 .  To the right of the arrow on a curve, the correspond- 
ing state is unstable with respect to the paramagnetic (solid 
curve, state AF2; dotted, AF1; dotted-dashed, FIM). 

and for three-spin exchange, when two spins a r e  near- 
est neighbors from the same plane but the third be- 
longs to  a neighboring plane (its integral is K). Final- 
ly, a s  in (I), we introduce biquadratic exchange be- 
tween nearest neighbors from neighboring planes, 
where g i s  the number of the plane,n i s  the number of 
the atom in plane g, and 6 enumerates the z ,  nearest 
neighbors to the atom (g,n) from the same plane. 

The various collinear structures that a r e  alone per- 
mitted in this model differ in the orientation of the mo- 
ments of the EM planes. The parameters of (21) a r e  so 
chosen that the thermodynamically most advantageous 
structures will be the following: two Heisenberg ferro- 
magnetic (EM) and two-sublattice AF with orientation 
of the moments of neighboring layers of the type t 4 
(AFl), and two non-Heisenberg-three-sublattice ferri-  
magnetic of the type 4 t t  (FIM) and four-sublattice AF 
of the type 4 4  t t (AF2) (all structures collinear). For 
this purpose, we choose the following signs of the ex- 
change integrals in (21): I > 0, V < 0, R < 0. 

Depending on the values of the parameters k =  
22, IK I S2/I and v = I V I/Z, any one of the structures 
AF1, AF2, and FM may prove energywise most advan- 
tageous a t  T = 0. In particular, the AF1 state is  the 
ground state when k > 2v + 1. The FIM state cannot be 
the ground state: when k f 2v + 1, its energy exceeds 
the energy of a t  least one of the other states (when k 
= 2v + 1, the energies of the AF1, AF2, and FIM states 
coincide). The parameter r must be subject to a r e -  
striction that insures instability of helicoidal structures 
when T=O: 

r>2u-'1, (k-I), r=RSz I I .  (22 

Since with r i se  of temperature the biquadratic exchange 
decreases to a lesser degree than do the other terms in 
(21), the inequality (22) insures such instability also a t  
arbitrary temperatures. 

Numerical calculations a r e  carried out quite similarly 
to those made a t  the beginning of this section. Their 
results a r e  that the system under consideration posses- 
ses  a whole series of P T  of first order. Thus for 
v=0.5,  p=0 .5 ,  r=O.5, and k=2 .1  the following se- 
quence of P T  of first  order is  obtained (Fig. 4): a t  
T =  0.216 a transition AF1-FIM, a t  T =  0.378 a transi- 
tion FIM-AF2, at T =  0.43 a transition to the PM state. 
The first two transitions a r e  transitions of the order- 
order type and occur by the mechanism described in 
detail in $1. The transition AF2-PM i s  a transition of 
the order-alien disorder type. In order to determine 
the character of the short-range order, it is  here 
necessary only to calculate the correlations of the type 
(S,S,,), since the correlators in the FM plane a r e  known 
to be positive. We get 

<sonstn> = sz (* - +) /h . (23) 

Thus the correlator is positive, and the short-range 
order in the orientation of the spins of neighboring 
planes i s  ferromagnetic, if k < 3. With other values 
of the parameters v, p ,  r, and k one can get other 
series of PT. Thus for v = 0.1, p =  0.5, r=  0, and 
k = 1.3, we get the following chain of P T  of the first 
kind: AFl-FIM at  T =  0.201, FIM-AF2 at  T =  0.205, 
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AF2-FM at T =  0.2055. At T= 0.35 there occurs a PT berg terms usually amount to 5% of the Heisenberg. 
of second order to the PM state. We note also that sim- 
ilar series of P T  can be obtained also for anisotropic While EuO and EuS behave like ideal Heisenberg FM 

crystals, if in the Hamiltonian (21) one introduces, in- and EuTe like an almost ideal Heisenberg AF, with a 

stead of the biquadratic terms,  anisotropic ones of the magnetic structure of the MnO type, the magnetic prop- 

type (S;)2 etc. ert ies of EuSe turn out to be incomparably more com- 
plicated (Fig. 5). In it, various magnetic structures 

II I. COMPARISON WITH EXPERIMENT occur. ~ o s s e s s i n g  the common feature that in all  of 

Series of phase transitions. The best possibility for 
comparison of the theory developed above with experi- 
ment is  provided by the isotropic magnet EuSe, which 
is customarily numbered among the magnetic semi- 
conductors, though undoped EuSe behaves as an insula- 
tor. EuSe belongs to the family of monochalcogenides 
of Eu, all  members of which have the NaCl structure. 
In this family, with increase of the lattice constant there 
occurs a transition from FM ordering in EuO (T, = 67 
K) and EuS (Tc = 16.3 K) to AF ordering in EuSe (T, 
= 4.6 K) and EuTe (T,= 9.6 K). (These data and those 
given below a r e  collected in a book of one of the auth- - 

ors .  ') In all  these crystals, the magnetic anisofropy 
i s  extremely small: in EuSe it i s  only 100 Oe. 

them the spins ofatoms belonging to the same (111) 
plane a re  parallel to one another, so  that these struc- 
tures differ with respect to the mutual orientation of 
the moments of the (111) planes. At T -0, two-sub- 
lattice ordering of the MnO type occurs in EuSe, with 
orientation of the moments of successive planes of the 
type 4 + (AF1). With r i se  of temperature, there oc- 
curs in EuSe a series of P T  of first order: AFI trans- 
forms a t  1.8 K to a three-sublattice "ferrimagnetic" 
state of the type 4 4 +  (a FM phase with admixture of the 
phase AF1). At 2.8 K there occurs a transition to a 
four-sublattice state AF2 of the type t t + + .  Finally, a t  
4.6 K this state transforms discontinuously to the PM. 
At fixed temperature, a EuSe crystal  in a magnetic 
field behaves as a metamagnet: with increase of field, 

One i s  struck by the anomalously low ordering tern- both AF1 and AF2 transform first  discontinuously to a 
perature in EuSe a s  compared with the other mem- ferrimagnetic state, and then again discontinuously 
bers  of the family. This attests to the weakness of the to a ferromagnetic state. 
Heisenberg exchange in EuSe. Taking into account the 
similarity of properties of the chalcogenides, one can 
explain the anomalous weakness of the exchange in EuSe 
by the fact that in EuSe the lattice constant a is  close 
to the value a, a t  which the exchange integral Z between 
neighboring Eu" ions vanishes. How strongly I de- 
pends on a in EuSe i s  indicated by the fact that a pres- 
sure of 1 kbar lowers T, in EuSe by a whole degree. 

It is  natural to expect that the vanishing of Z(a) a t  the 
point a, i s  not accompanied by vanishing of the other 
exchange parameters. Therefore the non-Heisenberg 
exchange in chalcogenides of Eu should be compared 
with the Heisenberg a t  a sufficiently far from a,. As 
an estimate of the strength of the latter may he taken 
Tc in EuO, close to 70 K. If the non-Heisenberg ex- 
change is an order of magnitude weaker than the Heisen- 
berg, then in EuSe it should amount to a few degrees; 
that i s ,  it i s  fully able to compete with the Heisenberg. 
An additional fact that promotes heightening of the role 
of non-Heisenberg terms in EuSe may be the fact that 
the forbidden band E, in it i s  narrow as compared with 
classical AF insulators of the type NiO etc. : it is  only 
1.7 eV. It follows from the Rowland-Bloembergen theo- 
r y  of superexchange that the relative contribution of 
non-Heisenberg terms is larger,  the smaller the for- 
bidden band. In magnetic insulators the non-Heisen- 

FIG. 5. Experimental phase diagram of E U S ~ . '  

The model described in 82, for a certain choice of 
its parameters, reproduces the whole ser ies  of P T  ob- 
served in EuSe. To facilitate the treatment, this model 
has been somewhat simplified as compared with EuSe: 
the presence of FM layers in it i s  caused not by geo- 
metric causes but by the character of the exchange in- 
teraction within these layers. But it i s  natural to sup- 
pose that the phenomena discussed should not be con- 
nected with details of the geometry of the lattice. An 
indication of this i s  the fact that the same PT (for 
example, AF-FM) can be obtained both in the layered- 
magnet model (12) and in the isotropic-magnet model 
(81). (Leaving aside the question of the reliability of 
the results of von Boehm and bak," we note that in their 
modello the FIM structure was found to be unstable. ) 

The metamagnetic properties of an isotropic non- 
Heisenberg magnet have also heen established on the 
simplified, in comparison with EuSe, model of 81. Be- 
cause of the nearest-neighbor approximation used in 6 1, 
instead of two successive metamagnetic transitions AF- 
FIM and FIM-FM a single transition AF-FM was ob- 
tained. It may nevertheless be considered that the 
mechanism treated qualitatively in this paper i s  suitable 
for explanation of the metamagnetic properties of 
EuSe. 

Series of P T  a r e  observed also in crystals of the type 
of CeSb, with strong anisotropy; but the structures that 
occur there a r e  in general more complex than in EuSe. 
Some of the non-Heisenberg structures, however, for 
example the three-sublattice FIM, a r e  encountered also 
in CeSb." 

Phase transition between antiferromagnet and para- 
magnet with ferromagnetic short-range order. Com- 
parison of the experimental data of various authors at- 
tests also to the existence in EuSe of the order-alien 
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disorder PT obtained on different models in 881 and 2. 
According to Petrich and K a ~ u y a , ~  in EuSe, in contrast - 
to the other Eu chalcogenides, the AF Xing-rangeorder 
disappears discontinuously. In the paramagnetic state, 
8 i s  positive in EuSe (8 = 9 K);''T'~ this indicates FM 
short-range order. To avoid misunderstanding, we 
emphasize that in contrast to the anisotropic model of 
82, EuSe, despite the presence of FM layers, i s  an 
isotropic magnet, and therefore the nature of the short- 
range order in it can be judged from the sign of 8. In 
any Heisenberg AF with ordering of the MnO type, there 
a re  FM (111) layers, but their existence i s  caused by 
purely geometric factors, since the exchange within 
layers and between layers i s  the same for them. 
Therefore 8 i s  negative in all of them; an example i s  
EuTe with 8 = -6 K. 

Petrich and Kasuyas suggested that the positive O 
in EuSe i s  due to donor defects in whose vicinity FM 
ordering appears (localized ferronsg). Bearing this 
possibility in mind, we will present additional evidence 
in favor of the idea that FM short-range order in the 
PM range i s  a property of a regular EuSe crystal. 
First ,  spectra of the Mossbauer effect show that above 
the AF-PM transition point, FM short-range order 
appears. If it were due to localized ferrons, as was 
supposed by Petrich and Kasuya,' it would exist also a t  
all temperatures below T,.  

Second, in the PM range there is  observed, on lower- 
ing of the temperature, a very strong red shift of the 
optical absorption edge E,, which disappears below 
T N . l 9  4 '  A giant red shift of E, i s  typical for FM 
semiconductors: in them it  occurs both above and below 
T, and i s  caused by the establishment of FM order,  
f irst  short-range and then also long-range.g At the 
same time, in isotropic AF semiconductors the red 
shift i s  absent both above and below T,. On the con- 
trary,  they display a slight blue shift. In particular, 
there i s  no red shift in EuTe, whereas in EuO and 
EuS it i s  very strong. The idea that the red shift in 
EuSe above T, i s  due to FM short-range order i s  sup- 
ported also by the following fact: a magnetic field, 
which establishes FM order ,  intensifies the red shift. l3 

')TO avoid misunderstanding, it  must be emphasized that this 
effect has nothing in common with positiveness of 6 in layer- 
ed AF with strong ferromagnetic exchange within the layers. 
The sign of 8 in them reflects the short-range FM order with 
within the layers. It is  of the same type a s  was the long- 
range order within the layers below the N6el point. 

''some of the results of the present paper were presented 
earlier. ' 

3 ) ~ n  contrast to the paper of ~ z ~ a l o s h i n s k i y  and Kukharenko, ' 
where the effect of three-spin exchange on the magnetic 
structure and on the magnon spectrum was first taken into 
account, we treat only collinear many-sublattice structures. 

4 ) ~ h e  variation of E, with T is shown in Fig. 4.2 of the book by 
one of the authors.' Unfortunately, in Ref. 9 the plot of E, 
for T below T, and for H =  0 is inaccurately reproduced: the 
corresponding sections of the curve in the original13 a r e  act- 
ually practically horizontal. 
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