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Radiation from a vortex in a long Josephson junction 
placed in an alternating electromagnetic field 
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We consider phenomena connected with the motion of one vortex in a long Josephson junction placed in an 
alternating electromagnetic field. We show that under certain conditions the vortex radiates electromagnetic 
energy to both sides of the junction, and the radiation frequency is in general not equal to the external 
frequency applied to the junction, i.e., a single vortex plays the role of a frequency converter. The presence of 
a threshold rate of vortex radiation leads to resonant singularities on the current-voltage characteristic of the 
junction. 

PACS numbers: 74.50. + r 

1. INTRODUCTION 

The  electromagnet ic  p roper t i es  of long tunnel Joseph-  
s o n  junctions have been the  subject  of many studies. 
In the  present  paper we are interested i n  phenomena 
connected with the  motion of one vor tex  (or  of a s trongly 
ra re f ied  chain of vort ices)  along a long junction. I t  is 
assumed that the  al ternat ing and d i rec t  c u r r e n t s  per -  
pendicular to the junctions are given and are uniformly 
distributed along the  junction. W e  list in t h i s  connection 
some already known facts.  

If a s t rong  magnetic field is applied t o  the junction, 
a periodic vor tex  s t r u c t u r e  is produced in it.' When 
d i rec t  cur ren t  is made t o  flow through th i s  junction, 
the  vor t ices  are moved by the  Lorentz force. If the i r  
velocity coincides with the electromagnetic-wave pro-  
pagation velocity in the  junction, a resonant  peak appears  
on the current-voltage charac te r i s t i c  (CVC).''2 This  
picture is valid only in  the p resence  of sufficiently 
s t rong  damping, when edge effects  can  be  neglected. 
If, however, the samping in the junction is weak, then 
t h e  reflection of the  electromagnet ic  waves f r o m  the 
edges of the junction gives rise to standing waves, i.e., 
the junction t u r n s  into a resonator. A singularity (a 
Fiske step) appears  on the CVC of the junction when 
t h e  Josephson frequency is equal to  one of the  natural  
f requencies  of the j ~ n c t i o n . " ~ - ~  

Highly interesting s ingular i t ies  i n  the f o r m  of giant 

s t e p s  were  observed on  the CVC of a junction by 
Chen et aL6 in  a z e r o  magnetic field. This  phenomenon 
w a s  l a t e r  investigated by Fulton and c o - ~ o r k e r s . ~ , ~  
We r e c a l l  briefly the  g i s t  of the phenomenon. 

I n  a long junction to which d i rec t  cur ren t  is applied, 
a single vor tex  executes  finite motion, being periodically 
ref lected f rom t h e  edges. In  each reflection act, the 
direct ion of t h e  c u r r e n t  in  t h e  vor tex  is r e v e r s e d ,  and 
i n  each passage of the  vor tex  (or  antivortex) f r o m  one 
edge of the junction to the  other  the phase difference 
of the o r d e r  parameter  of the  superconductors  making 
up the junction increases  by 277. The average  r a t e  of 
change of the phase shif t  is thus 

where V is the vortex velocity and W is the junction 
length. Since the vor tex  velocity cannot exceed the  
maximum velocity c, of the electromagnet ic  wave in 
the  junction (the Swihart velocity),') we have 

T h i s  means  that if only one vortex moves in  the junction 
the  voltage on the junction is 

where @J, is the magnetic-flux quantum, and c i s  the  
speed of light in vacuum. On the other hand, as v -  c, 
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make up the junction is of the f ~ r m ' ~ - ~ '  

FIG. 1. Configuration of thin-f ilm tunnel Josephson junction, 
which produces along the side W a uniform distribution of the 
current J entering the junction. In this case L -A,. 

(and with it V- V,,,) the vortex energy increases without 
limit, since E = ( l  - d/c$)-"' (Ref. 9), or ,  equivalently, 
a s  V- V, the current that maintains v constant in time 
a lso  increases without limit, transferring energy from 
the source to the vortex. It is this which explains the 
appearance of the current step on the junction CVC at  
V= V,. On the other hand if the junction contains two 
vortices, then we get a similar picture, except that 
when the vortex collides with the antivortex that moves 
against it, the two can pass through each other under 
certain conditions.1° As a result, the limiting value of 
V, is doubled and a new branch appears on the CVC, 
with a new current step a t  V =2V,. Similarly, for n 
vortices moving in the same junction, the CVC will 
have n current steps a t  Vh = kV, (k = 1,2 , .  . . ,n). Such 
CVC were in fact observed in 

In the present study we undertook a theoretical in- 
vestigation of the phenomena occurring in a long tunnel 
Josephson function in which one vortex moves, and 
the effects of these phenomena on the CVC. We assume 
that the direct and alternating currents a r e  uniformly 
distributed along the junction. Such a uniform distribu- 
tion of the current fed to the junction was reported, for 
example, by Johnson and Barone" for the Josephson 
junction shown in Fig. 1. The experiment" and a theo- 
retical c a l c u l a t i ~ n ~ ~ ~ ~  of the current distribution in 
such a junction have shown the distribution to be uni- 
form in the direction of the long side of the junction.') 
In the experiment, the current distribution remained 
uniform at least up to a dimension W = 18A,. Josephson 
junctions into which a uniformly distributed direct cur- 
rent enters from the outside were investigated by many 
workers (see, e.g., Refs. 14-20). We note finally that 
the junction configuration shown in Fig. 1 is by far  not 
the only one that results in a uniform distribution of 
the entering current. 

We solve the equation for the phase difference cp be- 
tween the sides of the junction with allowance for the 
external currents and dissipation, we find that under 
definite conditions, far  from the vortex, plane waves 
propagate along the junction and carry  energy; in other 
words, the vortex radiates. This radiation leads to 
certain singularities on the CVC of the junction. 

2. CVC OF JUNCTION WITH UNIFORM AND 
DIRECT BIAS CURRENT 

Assume first  that no alternating current flows through 
the junction. The equation for the phase difference be- 
tween the order parameters of the superconductors that 

Here 1 is the coefficient of viscosity in the junction, J 
is the direct current through the junction per unit length. 
Equation (1) is written in the relative units co =A,  = 1. 

The solution of (1) without the right-hand side, cor- 
responding to a single moving vortex (soliton) in an  in- 
finitely long junction, i s  of the form 

cpo=4 arctg eL. (2 ) 

Here 5 and r a r e  the proper coordinate and time of a 
vortex moving with velocity v :  

2-fit t = -  t-px 
, 2 3 ,  

Y 'i 

Treating the right-hand side of (1) a s  a perturbation, 
we seek the solution of (1) in the form cp = rpo + cp,, where 
(cp1l<< 1. To this end we assume I J(<< 1 and q<< 1. 
Linearizing (I) with respect to  p,, we obtain (in the 
reference frame of the vortex) the equation 

which takes, after taking the Fourier transform with 
respect to 7 ,  the form 

The Green's function of the operator LF,  i s  

qo=( l -02) 'h  if 1 0 1 S 1 ,  

go=-i(w2-1)'" if o>l, ( 4 4  
q = ( a - I ) ' h  if @<-I. 

The upper and lower signs in (4) pertain respectively 
to the cases 5 > 5' and 5 < 5'. It follows from (4) and (4a) 
that the Green's function G ( [ ,  5 ' ; ~  -7') is real:  

G.(E, E') =G-.'(E, E'). 

As w - 0, the function ~ ~ ( 5 ,  t'), a s  seen from (4), 
diverges like w - ~ .  We represent Gw([, 5') in the form 

where Fw([, 5') is a function regular a s  w - 0, and ex- 
pand F,(5,[') in powers of w2. Then, 

The possible divergence of cpl(5, w) corresponds to  
non-uniform motion of the vortex in the junction. For 
rpl(5, w) to be finite, and for the vortex motion thus to  
be uniform, it is necessary that the f i rs t  integral in 
the right-hand side of (5) be equal to zero: 

Substituting (po([) from (2) in (6) and 
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Fo(E. Il) =[mzG.(b, 5') I.=. 

we obtain from (4) the stationarity condition for the 
vortex: 

We now discuss the result. The direct current through 
the junction interacts with the single Josephson vortex in 
the junction; the result is a Lorentz force acting on the 
vortex. This force causes the vortex to move at con- 
stant velocity and to overcome the friction force. 
Equation (7) obtained by us established an umambiguous 
relation between J and p. 

Assuming that the dc voltage on the junction is due 
to the change of the phase difference cp in the periodic 
reflection of the vortex from the edges of the junction, 
a s  described in the Introduction, we obtain from (7), in 
dimensional units, 

where Vo = @,c,/cw, and V =*,V/CW, a s  noted in the 
Introduction. Here J i s  the current density and R is the 
junction resistance per unit area. The result (8) agrees 
exactly with a formula given by Fulton and  dyne^,^ 
where the current was introduced into the junction 
through the edges. Thus, the CVC should coincide 
exactly with the one observed in Ref. 7 also in the 
case of uniform distribution of the current over the 
long junction. 

3. RADIATION OF VORTEX FROM JUNCTION 

We consider now the case when in addition to the dc 
bias voltage the junction carr ies  also an alternating 
current fosinwot uniformly distributed over the junction. 
The equation for the phase difference takes in this case 
the form 

a@ "' q - - sin @-~==f, sin mot. 
axZ atz  a t  

Putting fo<< 1 ,  we seek the solution of (9) in the form 
@ =cp  +$,, where cp i s  the solution of the problem con- 
sidered in the preceding section. Linearizing (9) with 
respect to $, and using the fact that .p = cpO + fi, where 
p,-q<< 1, we get 

a= aZ a - -- q -- cos qo+q, sin qo  @,=fa sin mot. (I. st2 at  1 (10) 

Let us simplify this equation. The operator in the 
parenthesis contains two terms that a r e  small in q. 
However, if the term q/at, a s  will be seen from the 
result, ensures cutoff of the resultant divergences and 
damping of the obtained waves, then the second term 
cp, sincp, leads to insignificant changes of the Green's 
function (4). We leave out therefore the last term in 
the parentheses. Going over to  the reference frame of 
the vortex and taking the Fourier transform with respect 
to time, we obtain the following equation, which is 
simpler than (10): 

Here w = w , / ~  and k = @w,/~ .  

Thus, 

where 6,((, 5 ' )  is the Green's function of the operator 
ESw.  We reduce the operator to normal form 
(without the first  derivative). To this end we represent 
dl([, w) in the form 

@ S  (5, 0 )  = ~ X P  (-PqE/Zy) Q (E, o )  . 
Then 

etm@,(E, m) =exp(-pqE/2.0Lt,Q (5, o ) .  

where Lbno is  the Fourier component of the operator 
L E T  introduced in (3),  and 

Q,'=02+iqoly- (qf3/2y)'. 

Knowing the Green's function of the operator Ls4, we 
easily obtain the Green's function of the operator L s  ,: 

c.(E, 5') = exp(-q@(5-5')12y)Gq(E. E') 

i (q~'-illo/y)'. ,  where qo2=l-o' if l o l G l ,  
Q=( l -R2) ' -  = -i(q2+iqo/y) -, where p'=oz-1 if o > l ,  j13a) 

i!qz+iqo/y)'-,  where q2=oz-1 if GI<-I. 

The equation (13a) was se t  up with allowance for the fact 
that G([, (';T -7') is real. It is remarkable that the 
function C,(C;, 5 ' )  is  finite a s  w - 0, so that the indicated 
method of finding the Green's function with allowance 
for  dissipation eliminates the divergence of 40, a s  w- 0. 

Knowing the Green's function (l3),  we obtain .J,((,T) 

from (12) a t  1 (I>> 1: 

where q =(w" 1)1/2, and the upper and lower signs 
pertain respectively to the cases [ >> 1 and C;<< -1. 

In this formula and hereafter we omit that part of ip, 
which correspond to the trivial phase oscillation due to  
the flow of the alternating current fo sinwot, and which 
is in no way connected with the presence of the vortex 
in the junction. It is easy to show that the discarded 
part of q, does not influence the CVC of the junction. 
We proceed to a discussion of Eq. (14)-the main result 
of this section. It follows from it that @,, which is a 
wave that travels along the junction, attenuates a t  a dis- 
tance -(y/q)1/2, and has a phase 0 = Slt - Kx, where 

0 Po. u Q=O*@, K G - * - .  
yZ "I 1Z 7 

(15) 

Since w2 =q2 + 1, we get from general relativistic con- 
siderations 

a s  can also be easily verified by direct substitution. 
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This is  not surprising, since the propagation of the wave 
@, in the junction is equivalent to propagation in the 
junction of an electromagnetic wave with 

The dispersion law of electromagnetic waves in the 
Josephson junction, however, is that of a plasma, i.e., 
it takes the form (16). 

It is thus clear that radiation in the form (14) exists 
only a t  w = w,/(l - P)lt2> 1. From this it follows directly 
that a t  an external frequency w,< 1 the radiation (14) can 
s tar t  only when the vortex velocity exceeds a certain 
threshold 8, = (1 - ~2,)"'. If, however, w,> 1, then the 
radiation (14) exists a t  any vortex velocity. The value 
of @,([, w) at 8 =PC can easily be obtained from (14) by 
putting in it q =0: 

It is seen that @, tends to infinity a s  r~ - 0. 

It must be noted that the radiation observed far  from 
the vortex has, generally speaking, a frequency &2 not 
equal to the external frequency w,. Thus, a long 
Josephson junction in which a vortex moves constitutes 
a unique frequency converter, whose conversion coef- 
ficient can be controlled with an external direct current 
J in accordance with formulas (7) and (15). Since @, 
must be small if perturbation theory is to  hold, we 
must regard (I?), assuming the damping to be small, 
only a s  an estimate. 

We note one more feature of (14). At w, = 1 (corres- 
ponding in dimensional units tow, = c,/A,) resonance se ts  
in a t  the natural frequency of the system, a s  a result of 
which @,([,T) increases abruptly a t  the frequency w, = 1. 
An estimate of @, yields in this case 

Waves with a plasma dispersion law (16) have the 
property that their group velocity is the reciprocal of 
the phase velocity: 

(the upper and lower signs correspond to 5>> 1 and 
E,<< -1, respectively). It is seen from (17) that v l >  0 at 
a l l  8 and w,, and that signv; =sign (1 - w,), i.e., a t  the 
frequencies w,< 1 the radiation is dragged behind the 
vortex. It is  easy to verify that at w,< 1 we have v; < 8, 
i.e., the radiation lags the vortex in this case. 

We note finally that at w , / ~  < 1 there is no radiation of 
electromagnetic waves. @, i s  then localized near the 
vortex in a region of the order of (1 - w ~ ) - " ~ .  

4. CURRENT-VOLTAGE CHARACTERISTICS 

The CVC of a Josephson junction without an external 

alternating current were investigated in a number of 
studies, referred to in the Introduction. In the absence 
of an external magnetic field the dependence of the cur- 
rent on the voltage is determined in this case by Eq. 
(8). Let us see  how the CVC a r e  influenced by a uniform 
alternating current f,sinw,t. We consider Eq. (9), for 
which the corrections q, to cp in terms of the parameter 
fo are:  

EE,@,(E, T )  =-'I2 sin cpo(b)@,2(6, z )  ; (19) 

the operator it, is defined in (11). It follows from (12) 
that q1(5, T) is of the form 

@,(E, z )  =foA ( E l  sin (or+a(E)  ). 

Thus, (19) takes the form 

The second term in the right-hand side of (20) leads 
t o  radiation similar to &([,T), but of second order in 
f,. We shall  not be interested hereafter in this small  
correction. On the other hand, the f i rs t  term in the 
right-hand side of (20), which does not depend on the 
t ime, can lead to divergence of @,. As already men- 
tioned in the derivation of (?), this divergence is due 
to the decelerated (or accelerated) motion of the vortex. 
For @, t o  be finite (and the vortex motion uniform) we 
must introduce an additional direct current J, that can- 
cels out the deceleration (or acceleration) of the vortex. 
By the method described in the derivation of (7), we 
obtain 

(Allowance has already been made here for the fact that 
sincp,([) = -2 sinh5/cosh2[.) 

It follows from (2 1) that Jl # 0 only if A([) has no 
definite parity with respect to 5,  i.e., if the amplitudes 
of the radiating waves ahead and behind the vortex a r e  
different. 

The function A(5) i s  known only in quadratures [see 
(12)]. At 1 5 (7> 1 we determine A([) from (14). We ob- 
tain now a qualitative estimate of Jl. At q # 0 we easily 
obtain A(5) from (14) by extrapolating q l ( f ,  T )  from (14) 
into the region 15 1 S 1 and by leaving out the terms with 
q: 

A ( i )  =nl2oq sh ['lrn(q+k sign 6 )  1. 

Substituting A([) in (21) we get 
nfo' J 1 ( B ) = - -  ( s h - ' [ ~ ( * - q ) ]  

40%' 

We thus have a small correction (of the order  of f;), 
given by the formula (7), to the CVC; this correction 
vanishes a t  8 = 0  and 8 = 1. 

If g = O  [in this case w = 1 and =PC = ( I -  w,)~/'] then, 
by expanding the Green's function (13) in a Laurent 
ser ies  in Q near the point w = 1 and using (12) and (21), 
we obtain ultimately 
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FIG. 2. Current-voltage characterist ic of Josephson junction 
having one vortex and placed in an  alternating electromagnetic 
field. Here P = v/co =V/VO. 

We now discuss the result.  If wo> 1 (in this  case  we 
always have q * O ) ,  then the correction Jl is smal l  in the 
entire velocity interval 0 c /3< 1. If w,< 1, however, the 
situation i s  more  interesting. If the vortex velocity 

+ PC, then ~ ~ ( 0 )  i s  given by (22) and is a smal l  cor -  
rection to Jo =4@71/~y .  But a s  the vortex velocity /3 ap- 
proaches i t s  threshold value &, the correction ~ , ( /3)  
increases rapidly, reaching a t  0 =PC a maximum value 
J,(&) in accord with (23). I t  is seen thus that 
,!?=Be the correction Jl(@) diverges in a nondissipative 
junction. To maintain the vortex velocity constant under 
conditions of such strong radiation a large energy must 
flow into the junction from the dc source ,  and it is  this 
which explains the noted divergence of J,(&). Since the 
total direct current  through the junction is J,, + Jl ,  where 
Jl is given by (22) and (23), the expected CVC takes 
the form shown schematically in Fig. 2. 

On the other hand if w, = 1, then the perturbation 
theory constructed for cp is not valid, since @, - 1/71 > cp, 
on the entire velocity interval 0 < ,!3< 1, but the quali- 
tative behavior of gl(@) seems  to be correct ly des- 
cribed by formula (17a). 

In conclusion the authors thank K. K. Likharev and 
h i s  coworkers for  a n  interesting discussion of the work 
a t  a seminar,  V. E. Fradkov for  a discussion of the 
resul t s ,  and Yu. N. Ovchinnikov, a discussion with him 
a l so  contributed to a successful performance of the 
work. 

"Vortices with v > co a r e  unstable. 
')such homogeneity can of course be  realized only if the cur- 

rent  is uniformly distributed in the fi lms that lead to the 
junction. This can be attained by many methods. These con- 
ducting fi lms can be made s o  thin that the depth of penetra- 
tion A ,  of the perpendicular magnetic field turns  out to be 
larger  than the Josephson penetration depth Af, and A ,>> W. 
I t  is possible to place the junction shown in Fig. 1 on a super- 
conducting flat screen. I t  i s  possible, finally, the produce 
such a junction by depositing superconducting fi lms on the 
surface of a dielectric cylinder. Of course,  many other 
methods of realizing a uniform distribution of the current in 
a long Josephson junction can be proposed. 
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