
tion allows us to assume that both phenomena a r e  real-  
ized in one spatial region and a r e  due to a single cause, 
the two-plasma parametric instability that se ts  in when 
the threshold flux i s  exceeded. Accordingly, the elec- 
tron Langmuir waves of frequency w d 2  generated in 
the plasma, f irst ,  produce the (z)o, harmonic by com- 
bining with the laser radiation and, second, lead to 
generation of the hot electrons when absorbed a s  a r e -  
sult of the Cerenkov interaction with the electrons. All 
this allows us to state that under the conditions of ex- 
periment with the "Mishen'-1" facility the hot electrons 
a r e  generated in a region with densities close to one- 
quarter the critical density, not a s  a result of the sup- 
erheating of the plasma but because of the Cerenkov 
acceleration of the electrons by the electron Langmuir 
waves, which a r e  the products of two-plasmon para- 
metric instability. It seems to us that the approach de- 
scribed in the present communication i s  quite general 
and i s  of particular interest under conditions of inter- 
action between the plasma corona and the C0,-laser 
radiation, where the problem of anomalous heat trans- 
port is still quite vital because of the low densities 
in the absorption band. 
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We consider the modulational instability of a Langmuir turbulence spectrum in which the group velocities of 
the waves are large compared to the ion sound speed. We obtain a dispersion relation which enables us to 
determine the threshold and growth rate of the instability for an arbitrary ratio of the spatial scale of the 
modulation to the characteristic wavelength of the Langmuir oscillations. We derive a ~ i  solve by the inverse 
scattering method an equation which describes the nonlinear stage of the instability of one-dimensional long- 
wavelength perturbations at small excess above threshold. We establish that the transition of the instability 
into the nonlinear regime is qualitatively similar to the hard excitation of turbulence in hydrodynamics. 

PACS numbers: 52.35.Py, 52.35.Ra, 52.35.M~ 

1. INTRODUCTION 

The present paper is  devoted to the non-linear stage 
of the one-dimensional modulational instability of a 
spectrum of Langmuir waves with random phases.192 
The special feature of the one-dimensional problem i s  
that here the possibility of Langmuir collapse i s  ex- 
cluded, i . e . ,  non-linear effects necessarily lead to a 
stabilization of the growth of the modulational pertur- 
bations (see Ref. 3). Depending on how the amplitude 
of the non-linear oscillations hehaves in the transition 
through the instability threshold, one can distinguish 

between two stabilization regimes: soft and hard. In 
the first case the amplitude just above threshold turns 
out to be small ,  and in the second case it reaches a 
finite magnitude a t  arbitrarily small excess above 
threshold. The problem of which of these two regimes 
is  realized in the case of the modulational instability 
was not clear until recently. The present paper con- 
tains an answer to that question: if the instability 
threshold corresponds to long-wavelength perturba- 
tions, the regime is hard. This conclusion is  based 
upon results  given in section 3 ,  where we obtain and 
solve a non-linear equation which describes the evolu- 

435 Sov. Phys. JETP 52(3), Sept. 1980 0038-5646/80/090435-07$02.40 @ 1981 American Institute of Physics 435 



tion of long-wavelength small-amplitude modulational 
perturbations [see Eq. (19)]. From the solutions con- 
structed here it follows, in particular, that the instab- 
ility develops until an appreciable part of the Langmuir 
waves turns out to be captured in the potential wells 
formed by the plasma density inhomogeneities. 

The statement of the non-linear problem which in- 
terests us  requires, as shall become clear from what 
follows, a preliminary improvement of the linear theory 
of the modulational instability. We give this in section 
2. The principal element here will be a generalization 
of the results obtained earlier in the long-wavelength 
limit by Bedenov and Rudakovl to the case of modulation- 
a1 perturbations of arbitrary wavelengths. 

2. LINEAR APPROXIMATION 

1. Derivation of the dispersion relation 

Vedenov and Rudakov,' who started the study of the 
modulational instability of Langmuir oscillations on the 
basis of the kinetic equation for plasmons 

a N  (L, r, t) + 30,rD2k 
a h l ( k , r , t )  1 o, a n  d N ( k . r , t )  = o  (I)  

d t dr 2 no dr dk 

and of the equation for sound waves, taking the high- 
frequency force into account: 

showed that for  a sufficiently high level of Langmuir 
turbulence in the plasma density perturbations start  
to grow spontaneously. It follows from their results' 
that the growth rate of this instability increases with 
decreasing wavelength of the perturbations. At the 
same time, Eq. (11, in the derivation of which the geo- 
metric optics approximation for the plasmons is used, 
does not enable us to analyze perturbations with small 
spatial scales. For the evaluation of the maximum 
growth rate (just as for the determination of the thresh- 
old of the instability) it i s  thus necessary to change to 
a more exact description of the Langmuir waves. 

It is  natural here to use the equation averaged over 
the "fast" time, for the amplitude of the high-frequency 
electrical field E. and the equation for the perturba- 
tions of the plasma density n (see Refs. 5,6): 

The set  (3) ,  (4) and sets similar to it have been used 
before5-' in studies of the instability of monochromatic 
waves. Each such wave is a stationary solution with 
n =  0, but a superposition of waves does not have this 
property, a s  the high-frequency force contains inter- 
ference terms. A s  the initial state in the form of a 
set  of waves i s  non-stationary, the statement of the 
problem itself of its stability must be made more pre- 
cise. If, however, the spectrum i s  sufficiently broad, 
i t s  rearrangment due to taken the interference contri- 
bution to the high-frequency force into account takes 
place relatively slowly. The corresponding character - 
istic time is equal to the time T of the decay process in 
which high-frequency waves and ion sound take part. 

When studying faster instabilities (and it i s  just in these 
that we shall be interested) we can neglect the non- 
stationarity of the initial spectrum. 

The lower limit for the instability growth rate y, 
above which our results will be valid, is thus given by 
the following inequality: 

yz>l. (5) 

We note that for the turbulence spectra discussed be- 
low 

where W i s  the energy density and ko a characteristic 
wavenumber value for the Langmuir oscillations (see, 
e .g . ,  Ref. 8, p. 104). 

The limitation from above of the growth rate y i s  con- 
nected with the requirement of randomness of phases 
of the high-frequency waves. We shall assume that the 
initial phases a r e  random and, moreover, that the time 
of phase mixing is of the order o r  magnitude of ( 6 ~ ) - ' ,  
where 6w is the width of the spectrum, which is small 
compared to the time for the evolution of the modula- 
tional instability, i. e.  , 

Taking into account what we have said, we can r e -  
place the high-frequency force in Eq. (14) by its value 
averaged over the phases of the waves. The set (31, 
(4) then has stationary solutions in which n = 0, while 
the electrical field is  an arbitrary set of Langmuir 
and electromagnetic waves. We now consider a pertur- 
bation of the ion density 

and find from Eq. (3) the correction to the electrical 
field connected with this perturbation. Substituting the 
correction into the linearized right-hand side of Eq. 
(4) and averaging over the phases of the unperturbed 
field we get the following dispersion relation: 

Here w,(k) i s  the difference between the frequency of 
the wave and the plasma frequency o,; N,(k) is  the 
spectral density of the waves of the branch A, normal- 
ized by the condition 

where W, i s  the energy density of the waves; we denote 
by S,(k) the polarization vector of the wave. The index 
A in Eq. (7) takes on three values, where1' 

We note that Eq. (7) allows a simple generalization 
to the case of a plasma in a weak external magnetic 
field (w,, << w,). When there is  a field, it i s  only neces- 
sary to correct appropriately the dispersion laws w, 
and the polarization vectors S, and also to take into ac- 
count the effect of the field on the ion motion, for which 
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one must multiply the left-hand side of (7) by the follow- 
fraction (see Ref. 9). 

Q Z - - ~ H . 2  

Q2 - ( ~ H I P H ) ~  . 
The equation obtained generalizes Vedenov and Ruda- 

kov's dispersion relation1p2 to the case of short -wave- 
length perturbations and arbitrary dispersion relations 
for high-frequency waves. At the same time it de- 
scribes correctly the modulational instability of a mono- 
chormatic wave, a s  one can easily verify by putting 
N,(k)a 6(k - ko) and comparing the result with the dis- 
persion relations in the papers by Zakharov5 and Kuz- 
netsov. 

2. Instability of the Langmuir turbulence spectrum 

A detailed study of Eq. (7) will be given separately. 
Here we restrict  ourselves to only those conclusions 
which refer to Langmuir turbulence in a plasma with- 
out a magnetic field. We analyze the stability of a 
Langmuir-wave spectrum with a width & of the same 
order of magnitude a s  the characteristic wavenumber 
k,. We shall assume for the sake of simplicity that the 
spectral function N(k) i s  even, and about k, we shall 
assume that 

korDB (m/$f)  ''j (8) 

(this inequality means that the plasmon group velocity 
is  much larger than the sound speed). 

We turn first of a l l  to long-wavelength perturbations 
with q << k,. The instability threshold for them lies, 
according to Refs. 1 ,2  a t  W/n,T-k:<. If we a r e  not 
too far above threshold so  that 

W/noT<MkoLrD'lm, (9) 

we can show that the instability develops adiabatically 
slowly: in a time equal to i ts  inverse growth rate,  
plasmons moving with the group velocity traverse a 
distance appreciably longer than the wavelength of the 
perturbation. This enables us to neglect the quantity 
52 on the right-hand side of Eq. (7). We use also the 
fact that the ratio q/k, i s  small and we expand the right- 
hand side of (7) in a ser ies  up to terms of order (q/~z,)~. 
As a result we get 

where 
k0 n BN 

~ ~ = - j d k = ~ ,  W 

The dimensionless functions I, and I, in Eq. (10) a r e  in- 
troduced such that their characteristic values would 
have a modulus of order of magnitude unity. Depending 
on the shape of the spectrum of the Langmuir oscilla- 
tions and the direction of the vector q, these functions 
can take on both positive and negative values. 

We consider in more detail the threshold regime of 
the instability, with the implication that the lowest 
threshold corresponds to perturbations with q - 0 (just 
this situation will be discussed in section 3 when we 
solve the non-linear problem). In that case the value 
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of I, which is minimal with respect to n i s  negative and 
the value of I, for the corresponding n i s  positive. Sat- 
isfying the conditions I, < 0, I, > 0 does, generally speak- 
ing, not guarantee that it i s  precisely the long-wave- 
length perturbations that grow at the threshold (these 
a r e  only necessary conditions). However, one can 
easily construct many examples of spectra for which 
also sufficient conditions a r e  satisfied. 

Denoting by E the relative excess of the energy of the 
Langmuir oscillations over their threshold value we 
can rewrite Eq. (10) a s  follows: 

where 

Z1 (no)  - min I ,  ( n )  . 

From this it i s  clear that the maximum growth ra te  i s  
reached when 

and is equal to 

while the instability region in q stretches from q = 0 to 

(see Fig. 1). 

For a number of turbulence spectra the threshold val- 
ue of q turns out to be different from zero and to be of 
the order of magnitude of the quantity k, [this occurs, 
in particular, for those spectra for which I,(n,) > 0 or  
I,(n,)< 01, In that case it i s  convenient to expand the 
right-hand side of Eq. (7) in the vicinity of the largest 
"unstable" value of q which we denote by q,. As a re -  
sult we get 

where the A,, a r e  coefficients of order unity which de- 
pend on the shape of the turbulence spectrum. From 
the meaning of the expansion (12) i t  follows that the 
matrix A,, is positive definite. The width of the in- 
stability zone in q - qo in the present case is esti- 
mated to remain the same a s  for the long-wavelength 
instability but the maximum growth rate is now pro- 
portional to & rather than to &''. 

FIG. 1. Growth rate of the long-wavelength modulational in- 
stability y averaged over directions near threshold (& << 1) as  
function of the wavenumber q of the perturbation. The quantity 
I I , / I ~ ~ ' / ~  i s  indicated by a; k, is  a characteristic value of the 
wavevector of the Langmuir oscillations. 
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Equations (11) and (121, which correspond to a small 
excess above threshold, a r e  suitable up to c - 1. At 
the limit of their applicability (W/n,T-k:4) the maxi- 
mum growth rate i s  reached a t  q = k, and i s  estimated 
a t  

As W increases the instability region encompasses ever 
larger values of q. For example, when W/n,T>>k:< 
perturbations with q >>k, become unstable. For those 
perturbations the dispersion relation (7) can be con- 
siderably simplified: 

We note that this formula, but with a different value of 
p ( p =  l), is true also in the case q <<ko, 152 I/q 
>> w,,ko,/2,. In this case it describes the instability of a 
cold plasmon gas, observed in Ref. 1. 

The dispersion relation (14) enables us to determine 
the upper boundary of the instability region q*: 

Moreover, it follows from it that up to W/n,T- Mk;ri/ 
m the maximum value of the growth rate i s  reached a t  
q-k, and, a s  before, i s  given by the estimate (13). 

In the region W/noT 2 ~ k ; ~ > / r n  the condition for phase 
mixing (6) is  violated and the formulation of the problem 
of the instability of the spectrum needs to be made more 
precise. The discussion of that limiting case goes be- 
yond the framework of the present paper. 

3. NON-LINEAR STAGE OF THE INSTABILITY 

1. Basic equation 

In this section we turn to the problem of the possibil- 
ity of suppression of the modulational instability by a 
small non-linearity. As we have already noted we a r e  
interested in such a situation a t  a small excess above 
threshold (c << 1) and the threshold corresponds to per- 
turbations with q - 0 (see Fig. 1). We restrict  our- 
selves here to a discussion only of one-dimensional 
perturbations. However, the non-linear equation for 
the ion density which i s  then obtained [see Eq. (19)] 
can easily be generalized also to the three-dimensional 
case. To derive the equation in which we a r e  interest- 
ed we turn to the dispersion relation (11). Multiplying 
both sides by n,, and performing the inverse Fourier 
transformation we get 

d2n d2n I,  ca2 d'n -+ E C a 2 -  +--__= 
d t z  ax2 II,I k t  ax4 0, 

where the x-coordinate i s  reckoned in the direction 
corresponding to the maximum growth rate. 

A comparison of Eq. (15) with the initial equation for 
n [see (411 shows that in the linear problem the role of 
the high-frequency force is reduced to a renormaliza- 
tion of the sound velocity and an additional dispersion. 
Dispersion in the present case is caused by small cor- 
rections of order (y/ko)2. Therefore, when evaluating 

the non-linear corrections to the high-frequency force 
we can neglect it. This enables us to determine the 
required correction by means of Eq. (1). Since the in- 
stability develops adiabatically slowly, the plasmon dis- 
tribution manages to adjust itself to the plasma density 
perturbation. The correction linear in n to the spectral 
function N(k) of the plasmons then adds to the high-fre- 
quency force a contribution that leads to  Eq. (15) with 
zero dispersion. However, the quadratic correction 
to N(k,r, t )  has the form 

where N(k) i s  the unperturbed spectral function while 
the angle brackets indicate spatial averaging. The ex- 
pansion here i s  in the parameter n/n&:<, whose small- 
ness means that the number of "trappedJ' plasmons is 
small compared to the number of untrapped ones. In 
order that the presence of trapped plasmons not hinder 
the use of perturbation theory, the initial spectrum N(k) 
must be sufficiently smooth in the small wavenumber 
region. 

Allowance for the corrections quadratic in n to the 
spectral function of the plasmons leads to replacement 
of the right-hand side of Eq. (15) by the quantity 

As a result we have 
a2n d2n I ,  c d'n c;I, dzn2 

- + e e / - + I - = - -  a t2 asz I I , I  k , ~  as6 nokuZrDZ a 9  

where 

The integral I ,  is  estimated a t  W/nTkz-/2,; for the 
threshold value of W it i s  a number of order unity. 
Depending on the shape of the spectrum, this number 
can be either positive o r  negative, but in the one-dimen- 
sional problem I, > 0, a s  in that case 

It is convenient to change in Eq. (17) to  dimensionless 
variables through the following substitutions: 

3 nokolrDz 
n + -  eu. 

4 11 

In the new variables this equation takes the following 
form : 

aau aZu i aLu 3 azua + + - - - -  
at2  asZ 4 as' 4 a 9  ' 

For reference we give here the three-dimensional 
analogs of Eq. (19). If the initial spectrum of the ~ a n g -  
muir waves i s  isotropic, the second derivatives with 
respect to  x must be replaced by the Laplacian opera- 
tor:  

d '~ /d t '+Au+' / ,AAu=~/~Au~.  

However, in the case of an anisotropic spectrum with 
an anisotropy of order unity we have 
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where the x-coordinate [as in Eq. (1911 corresponds to 
the unstable direction. In the last equation the scale 
lengths in the x-, y -, and z-directions a r e  different. 

We emphasize that Eq. (19) does not contain the small 
parameter E . Therefore the boundedness in time of all  
i ts  solutions, corresponding to small  initial perturba- 
tions, would mean that a soft regime of instability sat-  
uration occurs. On the contrary, when infinitely grow- 
ing solutions a r e  present, a hard regime must exist. 

2. Evolution of unstable perturbations 

Equation (19) pertains to a number of non-linear equa- 
tions which a r e  integrable by the inverse-scattering 
method. Its integrability was established by Zakharov 
and Shabat," but the solutions themselves were not ob- 
tained in that case. We construct them using Shabat's 
schemelo9" and introduce the auxiliary integral equation - 

K(sY,t)=F(z,Y,t)+JK(z,s,t)F(s,v,t)ds, (20) 

which in shortened form has the form 

and consider a pair of differential operators: 

Each of the operators Di (i = 1,2) corresponds to a 
"dressed" operator Ei defined such that 

DiK=DiF+DiK*F+K*D,F. (21) 
The operators D a r e  given by the following formulae :I0 

where 

Equation (21) shows that with appropriate limitations on 
the functions K and F the equations Di F = 0 and B,K = 0 
a re  equivalent. Hence, if F satisfies the two equations 

D,F=O, DzF=O, (23) 

which a r e  necessarily compatible, K must be a solution 
of the set 

D,K=O, D,K=O. (24) 

The compatibility condition of this set  reduces to Eq. 
(19). Thus, each solution of Eq. (20) with kernel F 
that satisfies conditions (23) generates a solution of 
Eq. (19). 

In the problem considered by us, of most interest 
physically a r e  those solutions of Eq. (19) which a t  the 
initial instant a r e  a set of unstable sinusoidal small- 
amplitude waves. An obstruction to the construction 
of such solutions i s  given both by the usual difficulties 
of studying a problem with initial conditions and by the 
fact that Shabat's scheme in its standard form enables 
one only to look for solutions which decrease a s  x - + a  
(or as x - -a). In the present case,  however, it i s  

possible to circumvent these difficulties: we shall show 
that the required solutions a re  obtained by going to the 
limit of solutions corresponding to a degenerate kernel 
F that decreases a s  x -+a .  

We consider the degenerate kernel 

~ ( x , ~ , t ) = ~ f ~ ( x , t ) c p ~ ( ~ , t ) .  (25) 

Substituting it into Eq. (23) we find the functions f, and 
v, : 

Here a, and 0, a r e  arbitrary real  constants, and k,, and 
k,, a r e  complex numbers connected by the relation 

We assume additionally for k,, and k,, that 
Im k..>O, Im k,,>O. (28) 

In what follows we assume that the kernel F consists of 
pairs of complex conjugate terms f,qn + f$cp,*, s o  that it 
i s  automatically real. 

We write the solution of the integral equation (20) for the 
kernel (25) in the following form: 

where the functions $,, a r e  determined from the set of 
linear algebraic equations: 

Solving this set  and then using Eq. (22) we can obtain 
the following expression for u(x, t)  (see, e. g. , Ref. 12): 

6' 
u=-2-111 A, 

dx2 
(30) 

where 
A=det A,,. 

In the region where it i s  regular, the function u(x, t) de- 
termined by Eqs. (30) and (31) necessarily satisfies 
Eq. (19). 

We let the imaginary parts of the numbers k,, and k,, 
tend to zero, assuming additionally that none of the 
quantities k,, + k,, vanishes. The function A which i s  
obtained a s  the result of taking this a limit turns out 
to be regular on the whole of the x-axis and not to be 
decreasing as x -*a. In the simplest case when the 
sum (25) consists of two complex conjugate terms, A 
i s  given by the following formula: 

The constants a ,  0, k,  and H. are  real ,  while a and 6 
a r e  arbitrary,  and k and x connected by the relation 

kz+3x2=4. 

Substituting A(x,t) in Eq. (30) we get 

where 
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We trace the evolution of the solution (33) assuming 
that initially there is  an unstable small-amplitude per- 
turbation (see Fig. 2a). In that case p(0) >>I, and k and 
x have the same sign, For not too long times [t 
<< ln(o(O)/kxu)] Eq. (33) describes the linear stage of 
the instability: 

u s - Q k  exp - kxt  cos(kz+0) .  
(3; 1 

When the perturbation grows its shape s tar ts  to deviate 
from sinusoidal: the maxima become flatter and the 
minimum steeper (see Fig. 2b). When p = 2  the first 
three derivatives of the function u(x,t) vanish a t  i ts  
maxima. After that in the position of each previous 
maximum there occurs a minimum and in i ts  vicinity 
two symmetrically positioned maxima appear which 
grow and move away from each another (see Fig. 2c). 
AS p-  1 the new maxima approach the points x=x, 
= (2nn - 8)/k, where the function u(x) has absolute mini- 
ma, and the solution becomes singular. 

The singularity occurs at the time 

when the minimum value of A vanishes. In the vicinity 
of the singularity, u(x,t) varies in a self-similar man- 
ner : 

We see that this function i s  universal: i ts  form does 
not depend on the parameters of the initial wave. The 
initial conditions determine solely the location x, and 
the time t, where the singularity appears. It i s  note- 
worthy that the singularity [if it occurs a t  a l l  in the sol- 
ution (30),(31)] has the form (34) not only for an initial 
condition in the form of a single wave, but also for any 
other initial condition. Indeed, an expansion of the 
function ~ ( x ,  t) in power series in x - x, and t, - t in the 
vicinity of its zero must have the form 

A=g[ (2-x,)'+g8(t.-t) 1. 
The coefficient g does not affect u(x,t) while 4 i s  uni- 
quely determined from Eq. (19): 9 = 3'". Hence it 
follows a t  once that u(x, t) is given by Eq. (34). We note 
also that the function (34) i s  an exact solution of the 
equation 

FIG. 2. Evolution of an unstable small-amplitude plasma den- 
sity perturbation [see Eq. (33)l. The figures correspond to the 
following values of the parameter p: a) p = l o ,  b) p =2,  c) p 
= 1.2. 

Knowing the plasma density profile u(x, t), it i s  easy 
to find the energy distribution of the Langmuir waves. 
To do this we remember that a t  small excess above 
threshold, and this i s  the case to which Eq. (19) refers ,  
the perturbation of the gas-kinetic pressure i s  almost 
completely compensated by the plasmon density. 
Therefore, up to small corrections, the perturbation 
of the energy density of the waves i s  proportional to the 
function u(x, t) with the opposite sign. 

Kernels F of the form (25) generate not only the solu- 
tion (33) corresponding to a single wave, but also solu- 
tions that initially a r e  arbitrary superpositions of un- 
stable sinusoidal small-amplitude waves. The number 
of such waves i s  equal to the number of complex con- 
jugate pairs in the sum (25). One can show that under 
very lax limitations on the initial conditions, the solu- 
tions of such a form become singular a t  some time. 
The conclusion that a singularity appears refers,  in 
particular, to that case where the initial spectrum of 
the plasma density perturbations i s  a noise spectrum. 

The solutions described above a r e  an example of a 
hard transition of the modulational instability into the 
non-linear regime. They show that in the region where 
Eq. (19) i s  applicable the instability i s  not suppressed. 
Regardless of the excess above threshold, the pertur- 
bations of the plasma density reach a level 

nln,-kdrd, 

corresponding to the limit of applicability of our ap- 
proach. The spatial scale of the perturbations i s  then 
comparable with the characteristic wavelength kil of 
the Langmuir oscillations. 

We note that the picture considered here of the evolu- 
tion of the modulational instability reminds us  qualita- 
tively of the results obtained in numerical modeling of 
one-dimensional Langmuir turbulence (see Ref. 13). 
It i s  well known that the calculations lead to appearance 
of localized density perturbations which diminish in 
size with time. The shape of these perturbations (soli- 
tons) i s  similar to the self-similar solution (34). It i s ,  
unfortunately, impossible to pursue their comparison 
here quantitatively, however, since the calculations of 
Ref. 13 include pumping and dissipation of Langmuir 
waves. 

3. Sub-threshold instability of finite-amplitude 
perturbations 

Since, as we saw, a small  non-linearity does not lead 
to suppression of the instability, it is natural to as- 
sume that in the given case (as in the case of the hard 
excitation of hydrodynamic turbulence14) there must oc- 
cur an instability of finite-amplitude perturbations in the 
sub-threshold regime. We can verify the validity of 
this assumption a s  follows. We introduce a function 
[(x, t) which is the displacement of the ions from their 
equilibrium position. In that case 

The function [(x, t) satisfies the following equation [see 
Eq. (1911: 
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imply, in fact, that there is some small perturbation which 
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threshold reg ime,  and the  lower one to the  sub-thresh-  
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unity. In t e r m s  of dimensional var iab les  th i s  critical 
amplitude i s  the s m a l l e r  the  closer the  s y s t e m  i s  to  the  
instability boundary. 

) ~ r o m  the degeneracy of the dispersion law for electromagne- 
tic waves it follows that, strictly speaking, these waves a r e  

ed by Plenum Press, New Yorkl. 
'R. Pozzoli and D. D. Ryutov, Phys. Fluids 22, 1782 (1979). 
'9. E. Zakharov and A. B. Shabat, Funkts. Analiz 8. 54 

(1974) [Funct. Anal. Appl. 8, 43 (1974)l. 
"A. B. Shabat, DoM. Akad. Nauk SSSR 211, 1310 (1973). 
121. A. Kunin, Teoriya uprugikh sred s mikrostrukturor 

(Theory of elestic media with micro-structure) Nauka. 1975, 
Ch. V. 

1 3 ~ .  A. Gorbushina, L. M. Degtyarev, R. Z. Sagdeev, V. D. 
Shapiro, and V. I. Shevchenko. Preprint No 17, Inst. Appl. 
Math. Acad. Sc. USSR, Moscow, 1978. 

1 4 ~ .  D. Landau and E. M. Lifshitz, Mekhanika sploshnykh sred 
(Mechanics of Continuous Media) Gostekhizdat, 1954 [English 
translation published by Pergamon Press, Oxford]. 

Translated by D. ter Haar 

Expansion of collisionless plasma in a vacuum 
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The expansion, in a vacuum, of a collisionless plasma with a front of width A < lor, and A k lor, is 
investigated experimentally. [r, = (Te/47r ne2)'" is the local Debye radius determined by the plasma 
parameters at the crest of the front; n =: 10'-loL0 cm-', Te =: 2-10 eV]. It is shown that as the front moves 
away from the source, the action of the force of the electronic pressure gradient produces on the front a 
continuous acceleration of the ions to velocities much higher than the velocity of ion sound. The electronic 
heat conduction, which supplies energy to the electrons that accelerate the ions, turn out to be much less than 
in the case of a collisionless plasma. The physical aspect of these processes is investigated in detail. 

PACS numbers: 52.30. + r 

I. INTRODUCTION 

Expansion of a col l is ionless  p lasma in a vacuum i s  
one of the important phenomena in p lasma physics. I ts  

effects play a substant ial  role in the accelerat ion of 
charged part ic les  in laboratory and cosmic  p lasma,  in 
the  flow of p lasma out of stars and in laser-mediated 
thermonuclear fusion. Many a s p e c t s  of this  phenomena, 
however, remain  unc lear  to this  day. 

Ion accelerat ion in the expansion of the p lasma in a 
vacuum w a s  observed in many experiments ,  s ta r t ing  
with Tanberg 's  1930 work' (see, e. g . ,  Refs. 2-4). 
An explanation for  this  effect,  on the b a s i s  of the  mech- 
a n i s m  of ambipolar  ion accelerat ion by e lec t rons ,  was  
proposed by Plyutto. A m o r e  r igorous t reatment  of 

the problem of expansion of a collisionless plasma in 
a vacuum, assuming  a constant e lectron temperature 
T,,, w a s  c a r r i e d  out by A.V. Gurevich et al.' One of 
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