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Electron bremsstrahlung is considered in a medium of point dipoles of magnitude d less than the critical value 
0.639ea0 corresponding to absence of fall to the center. The bremsstrahlung cross section du/do is expressed, 
just as in the known Sommerfeld theory of radiation in a Coulomb field, in the form of single-parameter 
functions of the frequency. Analytic expressions are obtained for the radiation in a potential * ~ r - ~ ,  and 
numerical solutions are obtained in a potential - (d . r)r-). The following limiting classical cases are 
considered: Born, classical, and limits of high and low radiation frequencies. Simple analytic approximations 
are obtained both for the spectrum and for the total radiation. 

PACS numbers: 4 1.70. + t 

1. INTRODUCTION 

The bremsstrahlung of an electron moving in the po- 
tential of a point dipole i s  of interest from the view- 
points of both applications and general physics. The 
practical significance of this problem is due to its con- 
nection with electron radiation in a weakly ionized 
medium containing molecules that have a constant 
dipole moment d (such a s  NH,). It is easy to  estimate 
that, e.g., for a plasma containing molecules with -1 
a.u., the total radiation of the electron collisions with 
dipoles predominates over the radiation produced by 
collision with ions a t  a temperature T - 1 eV at  a degree 
of ionization a s  low as  N, /N ,  s 10''. 

The problem is of general physical interest because 
it admits of an exact analytic solution at sufficiently 
small dipole values, d 6 0.639ea, (e.g., for the mole- 
cules CO, NH,, o r  H,S). A classical example of the ex- 
act solution of the bremsstrahlung problem is the Som- 
merfeld theory of bremsstrahlung of an electron in a 
Coulomb field1 (see also Ref. 2, 090). The general 
solution,' however, i s  exceedingly complicated in form 
and its use to obtain the limiting results of the Born 
and classical approximations is far from a trivial mat- 
t e r  (see Ref. 3 and the literature therein). 

The distinguishing features of the considered dipole 
potential a r e  connected, f i rs t ,  with the specific law of 
its fall-off with distances just a s  for a centrifu- 
gal potential) and, second, with the possibility that the 
particle will fall to the center a t  values d > dm = 0.639ea,,.1'~ 
The first  circumstance results  in a radical simplifica- 
tion of the analytic form of the radial wave functions of 
the particle compared with the case of the Coulomb po- 
tential. The second circumstance leads to a limitation 
on the value of the scattering dipole (d sd,). It was 
precisely this circumstance which was used by Mittle- 
man and von Holdt4 to calculate the differential cross  
sections of electron scattering by a point dipole. We 
note that in the bremsstrahlung case of interest to  us it 
is necessary to know the complete structure of the wave 
function, and not only i t s  asymptotic form as in the 
scattering case. 

the bremsstrahlung spectrum can be represented in the 
form of single-parameter functions of the frequency. 
Any departure from this model (e.g., the case d >dm 
or  allowance for the quadrupole interaction) calls for 
the introduction of additional parameter, which a r e  con- 
nected with a correct  treatment of the fall of the particle 
to the center. 

An aggravating circumstance in the solution of our 
problem i s  the complicated angular dependence of the 
dipole potential. It i s  clear at the same time that allow- 
ance for the angular dependence does not introduce any 
new parameters in the problem. We consider f irst  
therefore the singularities in the limiting case of brems- 
strahlung in the field of a spherically symmetrical po- 
tential u = ( u Y - ~  (Sec. 2), and then proceed to calculate 
the spectrum of the radiation in the real potential 
u = -(a. r ) ~ - ~  (Sec. 3). 

The points of physical interest in our problem a r e  the 
deduction of the classical and Born results from the 
general quantum solution, as  well as  the connection 
between the bremsstrahlung cross  section and the dif- 
fuse-scattering cross  section. 

2. RADIATION IN THE CASE OF MOTION IN A 
SPHERICALLY SYMMETRICAL POTENTIAL + c u r 2  

An analysis of the spectrum of the radiation of a par- 
t icle in a potential U = cur-' makes i t  possible, asalready 
noted, to investigate all the limiting cases of the prob- 
lem. The wave functions of the particle reduce in this 
case,  a s  is well known,5v6 to Bessel functions: 

where I is the orbital angular momentum, q i s  the mo- 
mentum, and M is the particle mass. The cross  section 
for bremsstrahlung in a spherically symmetrical poten- 
t ial  is expressed in the form of the overlap integral 
A , , ,  of the wave functions (2.1) with angular momenta 1 
and I* 1, expanded in a ser ies  in t e rms  of the angular 
momenta of the incident electron9 

do 2n2a2 
It must be pointed out that the analogy between our t io- -=-  x ( 1 + f )  [ ~ : + , , r  + A ; l + , ] .  

dm 3Mc3ap (2.2) 
problem and the Sommerfeld theory1 remains in force 
only in the case of a point dipole, i.e., a t  d sd,, when In our case the integrals A,, a r e  expressed in explicit 
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analytic form in terms of the complete hypergeometric 
function F(a, b, c ,  x): 

Here q and q' a re  the initial and final momenta of the 
electron and a r e  connected by the relations (q2 - q t 2 ) / 2 ~  
=Ew; z=ql/q, a = ( v l + v -  1)/2, b = ( v l -  v-  1)/2, c = v l + l  
= a + b + 2 ,  r(x) i s  the gamma function, and %rti2/me2. 

The problem has three limiting cases: 1) the Born 
approximation, 2) the diffusion approximation that con- 
nects the bremsstrahlung connection with the diffuse- 
scattering cross  section, and 3) the classical approxi- 
mation. The Born approximation follows from (2.2) and 
(2.3) in the limit a s  M a  - 0: 

The threshold1) behavior of the cross  section in the 
high-frequency region (Ew = & = q 2 / 2 ~ ) ,  which follows 
from (2.4), is determined by the factor (1 - ~ w / & ) ~ / ~ .  

At low frequencies Ew<< &(Ma)-112 the general formula 
(2.2) leads to the unknown connection between the cross  
section do/dw and the diffuse-scattering cross section 
u*: 

do 8 ea ha-=- - eo', 
d o  3n Mc' 

where the phase shifts 6, a r e  easily discerned from the 
structure of the wave function (2.1) a s  Y - .o: 

At M a  >> 1 and Ew<< & we obtain from (2.2) and (2.3) 
the results of the classical analysis. These results 
can also be obtained from a Fourier analysis of the 
classical electron trajectory: 

where k,(x) = WV,,,,(2x)/r(l + u/2) is the Whittaker func- 
tion, 6 =p2 + a / & ,  and v is the electron velocity. 

At low frequencies w ,  Eqs. (2.8) and (2.9) lead to the 
results  of the diffusion approximation (2.5) and (2.6), 
except that o* is replaced by the classical diffusion 
cross section 02. At high frequencies fiw >> & ( ~ a ) - ' ~ ,  
the cross  section (2.8), (2.9) falls off exponentially. 

Expressions (2.8) and (2.9) yield a finite result only 
if a > 0. At a < 0 the total radiated energy diverges in 
the region p- ( l a  l/&)lf2, thus directly indicating the 
limitations of the classical analysis a t  low impact dis- 
tances for an attraction potential that causes the par- 
ticle to fall to the center. 

It follows from the foregoing that the classical limit 
for the electron (M = 1) calls for satisfaction of the 
condition 1 a I>> 1 and is therefore not realized in the 
considered point-dipole approximation. Since there is 
no classical limit in the problem, it is  convenient to 

FIG. 1. Dependence of the factor B on the force constant (Y 

in the potential *arS2 at small ( z  = 0.95) and large ( z  = 0.1) 
emission frequencies, z  %q1 / *  = (1- E W / E ) ~ / ~ .  

characterize the behavior of the bremsstrahlung cross 
section not a s  usual by the Gaunt factor [equal to the 
ratio (du/dw)/(do/dw),,], but by a factor B that deter- 
mines the ratio of du/dw to i ts  Born limit: 

It is clear from the foregoing that the parameter a 
(the magnitude of the dipole moment) is  the analog of 
the parameter ze2/Ev in the Coulomb problem. The 
results  of the calculation of the factor B a r e  shown in 
Figs. 1 and 2. It is important that, depending on the 
sign of a ,  we can have B(a, w )  larger ( a  < 0) o r  smaller 
( a  > 0) than unity (Fig. 1). 

This circumstance is  particularly clear near the 
threshold Ew = &. In fact, in the high-frequency limit 
z=ql/q- 0 we can put F(a, b, c, z2)= 1 in (2.3) and retain 
in the sum (2.2) only on t e rm with the minimum value 
v' = v, = v(l = 0) = (f + ~ M @ ) ' I ~ ,  thus obtaining 

In the limit of small  Ma,  the law governing the de- 
crease of the cross section at the threshold approaches 
the Born law corresponding to the value v, = %. It is  
seen that, depending on the sign of a ,  the decrease of 
the cross  section a t  the threshold, compared with the 
Born value, is either more (a  > 0) o r  less ( a <  0) abrupt. 

The considered character of the spectrum of du/dw 
and all i t s  limiting cases, except for the classical case,  
apply also to the case of a rea l  dipole, with the stipula- 
tion, however, that the magnitude and sign of the effec- 
tive interaction constant a a r e  far  from obvious before- 
hand. It is only clear that the values of the true factor 

FIG. 2. Dependence of the factor B on the frequency z =(I  
- A W / & ) ~ / ~  at different a in a field U(r) =*(YV-~. 
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B must lie between the considered cases of "pure" 
attraction and "pure" repulsion, but the difference be- 
tween the latter can be quite appreciable (Fig. 2). 

3. ELECTRON RADIATION I N  THE POTENTIAL 
U =  - (dr . r ) r 3  OF A POINT DIPOLE 

We obtain, f irst ,  the bremsstrahlung cross  section in 
the Born approximation: 

32 (de)' q' 
( h o 2 ) B = T x T .  

A comparison with (2.4) shows that the correct  value 
of (3.1) is obtained from (1.4) by substituting o! = a,, 
= 2 d / n n .  

To find da/dw in the general case it is necessary to  
se t  up the system of wave functions of the electron in 
the  potential -(dm r)rm3. The Hamiltonian of the system 
is of the form 

where $, is  the radial momentum, i s  the orbital angu- 
lar  momentum of the electron, 1' - 2Md - n, and 
n= r / ~ .  

It is seen from (3.2) that the entire angular dependence 
is contained in the operator A, which does not depend 
on r. It is  therefore possible to separate directly the 
radial and angular motions of the electron, using wave 
function with a definite value of A. This approach was 
used effectively in a number of studies with a dipole 
p ~ t e n t i a l . ~ . ' ~ - ' ~  The eigenvalue A of the operator A, 
which serves a s  the variable-separation constant in 
(3.2), is obviously a conserved q~ant i ty .~ . '~ ."  Also con- 
served is the projection m of the angular momentum on 
the direction of the dipole d. Since [i,, i] =0, we can in- 
troduce functions with definite A and m: 

ilhm>-hlhm>,~,lhm)=mlhm>. (3.3) 

The radial functions R"" a re  expressed, a s  in (2.1) 
above, in terms of Bessel functions: 

The connection between the wave functions 1 l,,,) and 
the spherical functions I lm) (m = const) is  given by - 

Ihm) =x (lmlhm>llm>, (3.5) 
I-/mi 

where the transformation coefficients of the basis 
(lml Am) and the eigenvalues A a re  determined by di- 
agonalizing the matrix in the basis I lm): 

(l'ml hl~m)=l(l+l)6,~.-2~d<l'mI cos 61lm>, (3.6) 

where 9 is  the angle between r and d. The problem of 
diagonalizing matrices of this type is considered in 
Ref. 13. 

To calculate do/dw we must establish the connection 
between the wave functions I Am) and the wave functions 
I*q) corresponding to a definite value of the momen- 
tum. Writing down the connection between the two 
bases in the form 

and equating the coefficients of the factors ghr in the 
asymptotic expansions of the right- and left-hand sides 
of (3.7), we get2 ' 

where Y,,(n) a r e  spherical functions. The functions 
I iq) a re  normalized to (2n)-'6(q). 

Separating the diverging part of the function ( +q) - eiar, 
we can obtain an explicit expression for the scattering 
amplitude 

f=4n Ylma(nq)  Y I , ~ ( Q . )  ( l 'ml i  llm), (3.9) 
I l 'm 

where f, is the partial scattering amplitude, which is 
diagonal in the A representation: 

exp (2iShI) - 1 
2iq ' 

(3.9') 

where 6,, =$n(l+g-v) a r e  the scattering phase shifts, 
which turn out to be independent of energy by virtue of 
the specifics of the dipole potential (see Ref. 14). 

The obtained wave functions I iq) can be used to cal- 
culate the matrix elements of the coordinate r,,,, which 
determine the bremsstrahlung cross  section. Direct 
calculation yields 

where d=  I dl, Nd = d  - 3n(dn), and the overlap integrals 
A a r e  determined by the same formulas (2.3) a s  before, 
except for the substitution v =(A + +)'I2. 

An investigation similar to that in Sec. 2 shows that at 
small  d the general formula (3.10) leads to the results  
of the Born approximation (3.1). At low frequencies we 
obtain from (3.10) the connection (2.5) between the 
bremsstrahlung and diffusion-scattering cross  sections. 
The latter is determined by the general formulas (3.9) 
and (3.10) for the scattering amplitude. 

In the region of the threshold frequencies Piw = & 

(z  =q'/q<< 1) it follows from (3.10) and (2.3) that 

do (nde) ' ( I -ho le )  
fro-=- r(a)  1~$G12, (3.11) 

dm 6 M r x  P(v.+t)  [ml 
r.m 

where uo =(Ao + $)'I2 is expressed in t e rms  of the smallest 
eigenvalue &,. 

In the limit of small  d we can obtain an approximate 
expansion for Ao:Aoz - ~ d / f l ,  from which we get 

do da ao-!?=(hu-) ~ ' ~ = ( h o ~ ) ~ ~ ~ ,  
do' d o  B 

It is seen f rom a comparison of (3.12) with (2.11) a s  
a - 0 that near the threshold a small  rea l  dipole be- 
haves like an attraction potential with constant cr,, 
= -d/2D. Thus, the effective attraction constant a 
turns out to  be much less  than the dipole d. 

Numerical calculations were performed for the factor 
B: 
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We note an interesting and important circumstance 
that follows from the numerical calculations of the 
factors B for a spherically symmetrical potential 
ar-' and a point-dipole potential -(d. rb-'. In both 
cases the effective variable of the force interaction is  
the quantity d =@/a, = 8a or  d =d/d,=d/0.639. It 
turns out in this case that the following equality holds 
within -5% in a wide frequency transition region 
( 0 . k  z c 1): 

The factor B for radiation in a noncentral potential of a 
point dipole with a given d can thus be approximately 
represented in the form of two terms with weights $, 

FIG. 3. Dependence of the factor B on the frequency in the which correspond to radiation in a spherically symmet- 
field of a real dipole U ( r )  =-(d . at different values of rical  attraction potential (B = -2) and repulsion potential 
d  /dcr. (a =dl. 

where z =q'/q =(1 - t i w / ~ ) ' / ~  and 2 =d/d, (d, =0.639eao). 

The general behavior of the factor B is clear from the 
foregoing analysis: 

The last ratio of the diffusion cross  section to its Born 
limit was calculated earlier4; our calculations of the 
factor B agree well (within 3-58) with these results in 
the limiting case z - 1. 

The results of the calculation of the factor B a r e  
shown in Fig. 3. It is seen that on the whole the char- 
acter of the bremsstrahlung spectrum corresponds to 
the case of attraction. The effective constant a,, of 
the attraction potential -mym2, however, is much 
smaller than the dipole potential. This is qualitatively 
understandable: the real  dipole potential corresponds 
to attraction as well a s  repulsion, so that the variation 
of B is subject to opposite tendencies that cancel each 
other to a considerable degree. 

FIG. 4. Dependence of the quantities 2vo-  1, f ,  and S, which 
determine respectively the behavior and magnitude of the 
cross  section at the threshold and the total effective radiation, 
on d/dcr .  

For an analysis of the near-threshold cross  section 
behavior that follows from (3.11) and (3.14), Fig. 4 
shows the minimum values of 2vmi, - 1 =(4Xmi, + 1)lI2 - 1 
a s  functions of 2 =d/d,, a s  well a s  the values of the 
functionf ( d )  = lirn(~/z'"o-') a s  z - 0. 

4. TOTAL EFFECTIVE RADIATION AND EMlSSlVlTY 
OF ELECTRONS IN A DIPOLE MEDIUM 

We consider now the radiation characteristics 
averaged over the spectrum and over a Maxwellian dis- 
tribution of the electron velocities. We calculate f irst  
the effective radiation n (Ref. 5): 

a- 
do 

x = 5 iio - d o ;  Ao-=E. 
d o  

0 

Expression (4.1) is  easily expressed in terms of the 
factor B: 

1 

~ ( d ) = 3 5  ~ ( d , z ) z ' d z .  (4.3 
0 - 

A plot of S against the ratio d/d, =d is shown in Fig. 4. 
A s  d- 0 the quantity ~ ( d )  tends to unity, a s  it should. 

Further averaging over (4.2) over the Maxwellian dis- 
t r  ibution of the electron velocities is trivial and reduces 
to  replacement of & in (4.2) by ( E )  = ( $ ) k ~ ,  where T is 

FIG. 5. The function Q@, 3, which determines tJle emiesivity 
of the electrons in a dipole medium (P = h w / k T ,  d s d / d c r ) .  
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FIG. 6. The function B(~3,3 ,  which determines the ratio of the 
emissivity to its Born limit. 

the electron temperature. This circumstance is closely 
connected with the specifics of the dipole potential, in 
which S turns out to be independent of the electron 
energy. 

We obtain next the electron emissivity j, in a dipole 
medium1': 

where N ,  is the dipole concentration and (. . . ) denotes 
averaging over the Maxwellian velocity distribution. In 
the Born approximation we have according to (3.1) 

j.B=iVdv,~BQ,(trolk~), (4.5) 

In  the general case  the function Q,(p) in (4.5) i s  r e -  
placed by the f u n ~ t i o n  ~ ( p , d ) ,  which contains the factor 
B: 

The limiting expressions for Q(p,J) a r e  

2B(l,d)n-", pal- 
Q(B..= { 2n-'"f (J) r(vp+i) pl-%oe-P, 8 ~ 1  

It i s  seen from (4.8) that at  p<< 1 the emissivity j ,  is 
expressed in t e r m s  of the diffusion c ros s  section (3.14, 
and a t  p>> 1 the main contribution i s  made by the near-  
threshold region. 

The form of the function Q(p,d) is shown in Fig. 5. 
Figure 6 shows the rat io B = ~ ( p , d ) / ~ ~ ( p )  and different 
values of d ;  from this rat io we can a s s e s s  the extent to 
which the emissivity differs from the Born approxima- 
tion. The limiting values of this rat io a r e  of the form 

E= { B(I,Z), 
r(vo+i) r - 1 ( S / 2 ) f ( ~ )  ~ - ( Y o - ' l l ) ,  p i  . (4.9) 

5. ANALYTIC APPROXIMATION. CONCLUSION 

For  practical est imates it is convenient t o  have simple 
analytic approximations of various parameters  that 
characterize the bremsstrahlung. We begin with the 
description of the behavior of the c ros s  section do/dw 
a t  the threshold. According to (3.11) and (3.141, the 
c r o s s  section near the threshold z = q f / q  =(1 -Rw/E)' '~ 

<<I is of the form 

where the functions f (2) and v,(d) a r e  approximated, 
with -5% accuracy, by the formulas 

The function f(d)  turns out t o  be quite close t o  the 
value of the factor B in the diffusion limit, i.e., t o  
~ ( 1 , d ) .  This allows us to count on a good accuracy of 
t he  interpolation of the total factor B in the entire region 
of z and d with the aid of the relation 

The accuracy of the approximation (5.4) turns out to 
be not worse than 15%. The use of (5.4) to calculate 
the effective emission (4.3) yields 

~ ( d ) = 3 6 .  
4-t 

(5.5) 

The function Q(p,a), which characterizes the emissivity 
[(4.5), (4.7)], is approximated for  values a c 0.9, with 
accuracy 5- lo%, by the formula 

In conclusion, we summarize the principal resu l t s  of 
the  article. Their gist is most clearly represented by 
Fig. 6, which shows the mean difference between the 
exact and Born results. It is seen that a t  a given emis- 
s ion frequency (at a given p) this difference increases 
rapidly when the dipole moment approaches i ts  cr i t ical  
value. Next, the deviation from the Born approximation 
increases monotonically with increasing frequency (with 
increasing p), and the r a t e  of this  increase is larger  the 
la rger  d. We note finally that a l l  the indicated resul t s  
pertain only t o  bremsstrahlung in the case  of potential 
(nonresonant) scattering. 
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Photon emission in collisions of a proton or positron with 
an atom 

V. M. Burmistrov, Yu. A. Krotov, and L. I. Trakhtenberg 

L. Ya. Karpov Physicochemical Research Institute 
(Submitted 6 March 1980) 
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Photon emission produced upon collision of a proton and a positron with a hydrogen atom is considered. It is 
shown that the emission cross section contains contributions from collisions at which the state of the atom 
remains unchanged (pure bremsstrahlung) as well as from collisions at which excitation of the atom takes 
place simultaneously with the emission of the proton. The cross section of the bremsstrahlung is calculated in 
the Born approximation in the characteristic frequency band in which the photon energy is much higher than 
the atom ionization energy. The results differ substantially in a wide range of emission frequencies from the 
known results of bremsstrahlung theory. The difference is due only to the more accurate formulation of the 
problem: in the present paper the bremsstrahlung is regarded as the emission of an "atom plus incident 
particle" system, so that the role of the atomic electron does not reduce merely to static screening of the 
nucleus, in contrast to earlier assumptions. A consistent analysis leads to the appearance of a new 
effect-emission of a photon by a proton (positron) with simultaneous excitation of the atom into the discrete 
or continuous spectrum state. The emission of the proton with ionization of the atom greatly exceeds the 
"pure bremmstrahlung" in a definite frequency interval. 

PACS numbers: 34.50.Hc, 34.80.Dp 

1. INTRODUCTION 

The bremsstrahlung produced when a charged part ic le  
is sca t te red  by a n  atom o r  a n  ion is customari ly calcu- 
lated i n  the  given-field approximation.' Th is  approxi- 
mation means that the  e lec t ron  of the  t a rge t  a tom is 
regarded  as  a s ta t i c  charge  that s c r e e n s  the nucleus, 
s o  that the  bremsstrahlung of the incident par t ic le  t akes  
place i n  the given electrostatic field of the  nucleus and 
of the electron $-cloud. When the  particle is sca t te red  
in  a given external  field, both the  quantum and t h e  
c lass ica l  e lectrodynamics lead to a bremss t rah lung  
cross sect ion x(e/m)', where e and m are the charge 
and m a s s  of the  incident particle.' T h i s  leads ob- 
viously to the conventional notions concerning the  
bremsstrahlung of a proton o r  positron, namely that 
the  proton bremsstrahlung cross sect ion is negligibly 
s m a l l  compared with t h e  e lec t ron  bremsstrahlung c r o s s  
sect ion and that  the positron and e lec t ron  b r e m s s t r a h -  
lung c r o s s  sect ions are equal in  the  f i r s t  Born approxi- 
mation. 

It is shown i n  the presen t  paper  that these  two con- 
clusions are the consequence of the approximate formu- 
lation of the bremsstrahlung problem, in  which the  
ro le  of the atomic e lec t ron  reduces  only to s ta t i c  
screening of the nuclear  field. If the given-field 
method in the b remss t rah lung  problem is replaced by 
a n  exact multiparticle formulation it tu rns  out that ,  

in  a definite par t ic le  region, the integral  cross sect ions 
of the  proton and e lec t ron  bremss t rah lung  are com- 
parab le  at equal par t ic le  velocities relat ive t o  the tar- 
get  a tom,  and the posi t ron and e lec t ron  bremsstrahlung 
cross sect ions differ substantially even in the  f i r s t  
Born approximation. 

Bremss t rah lung  sca t te r ing  of a charge part ic le  by 
a n  a tom,  f r o m  the point of view of the quantum mechan- 
i c s  is a several-part ic le  problem: the Hamiltonian of 
the sys tem should take into account on a par  a l l  the 
par t i c les  (the nucleus of the atom, the atomic electrons,  
the  incident par t ic le) ,  and allowance mus t  be made f o r  
a l l  the kinetic energ ies  of the par t i c les ,  a l l  the inter-  
act ions between them,  and the interaction of each par- 
t ic le  with the electromagnet ic  field. I n  part icular ,  the 
proton bremsstrahlung c r o s s  sect ion tu rns  out t o  be  
comparable with the  e lec t ron  bremsstrahlung c r o s s  
sect ion because the exact  Hamiltonian of the sys tem 
t a k e s  into account not only the interaction of the  pro-  
ton with the electromagnet ic  field a: l / m , ,  but a l so  
the interact ion of the  atomic e lec t ron  with the electro-  
magnetic field, x l / m .  If we use  f o r  the problem this 
formulat ion,  which is certainly m o r e  accura te  than the  
given-field approximation, and calculate the f i r s t  non- 
vanishing t e r m  in the expansion of the t ransi t ion ampli- 
tude i n  t e r m s  of the interactions of the incident par t ic le  
with the atom and of a l l  the part ic les  with the electro- 
magnetic field, new formulas  a r e  obtained for  the  proton 
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