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A theoretical study is reported of the Stark broadening of atomic spectral lines by nonmonochromatic laser 
radiation. An allowance is made for the finite number of longitudinal modes emitted by the laser. An analytic 
expression obtained for the absorption line profile demonstrates a strong dependence of this profile on the 
number of modes. Relationships are obtained between the frequencies of intermode beats, natural width of an 
atomic transition, and average (over a time much longer than the reciprocal of the frequency of intermode 
beats) Stark shift of atomic levels. Conditions are found under which the average Stark shift in a multimode 
field can be determined directly from the shift of an atomic transition, by analogy with a monochromatic 
field. The cases of small and asymptotically large numbers of modes are considered separately. In the latter 
limiting case the line profile is described by an expression obtained earlier using a series of stochastic models 
for laser radiation. 

PACS numbers: 32.60. + i, 32.70.J~ 

One of the most important manifestations of the ef- 
fects of high-power radiation on atoms and molecules 
in modern laser spectroscopy is the Stark shift of the 
energy levels.'" In the simplest case of a nondegen- 
erate level and an idealized monochromatic field F 
=F,coswt far from resonances of frequency w with 
natural oscillation frequencies of an atom the Stark 
shift of the position of a level n is a quadratic function 
of F,: 

, n l ~ n ( o ) F , ' ,  (1) 

where crn(w) is the dynamic polarizability of an atom in 
the nth state a t  a frequency w. Radiation from real 
lasers  is nonmonochromatic and the most typical rea- 
son for the finite width of the laser spectrum is the 
emission of a considerable number of longitudinal 
modes. The intensity of the field of such radiation can 
be represented in the form 

where Fk, wk, and pk a r e  the amplitude, frequency, 
and phase of the kth mode; N is the number of longitu- 
dinal modes which a r e  emitted. We shall assume that 
the frequencies wk form an equidistant spectrum ( 1  o,+l 
- wk I =nc/L, where L is the length of the laser reso- 
nator and c is the velocity of light) and a r e  grouped 
within a spectral interval Aw = ~ C N / L  near the central 
frequency 

(AW is the spectral width of laser radiation). It is con- 
venient to rewrite Eq. (2) in the form 

F = R ~  F,  exp (tat) f ( t ) ,  (3) 

The function At) describes modulation of the radiation 

whose carr ier  frequency is w and whose average inten- 
sity is G = x G ;  this modulation results from inter- 
mode beats and i t s  characteristic frequency is nc/L. 
The amplitudes and phases of the individual modes, Fk 
and qk also depend on (fluctuate with) time. However, 
if the mode structure of laser radiation is highly pro- 
nounced, these fluctuations (which contribute to the 
spectral width of a single mode) have a characteristic 
time rk >> L/nc. This means that in time intervals -L/ 
nc, in which modulation of the envelope At) appears, 
the amplitudes and phases of the individual modes re- 
main constant. 

The formal definition of the Stark shift of a level in 
the field of Eqs. (2)-(4) averaged over a time interval 
T >> AW-' is4 

which is identical with Eq. (1) if the dependence an(wk) 
is sufficiently smooth: [an(w*) = ffn6)]. We a r e  now 
faced with the central problem: how is the Stark shift 
of Eq. (5) manifested in the observed spectral charac- 
terist ics of atoms and molecules? The Stark broaden- 
ing of spectral lines in nonmonochromatic fields has 
already been investigated (see, for example, Refs. 5- 
10). However, these investigations have ignored total- 
ly the actual mode structure of laser radiation. It has 
been assumed that nonmonochroma@c laser radiation 
can be described by an expression for the field inten- 
sity of the type given by Eq. (3), where At) is a steady- 
state random process of the discontinuous Markov type5 
o r  a complex Gaussian process (with a Rayleigh ampli- 
tude dis t r ibut i~n) .~- '~  These stochastic models of radi- 
ation a r e  justified by the fact that, for an asymptotical- 
ly large number N modes which a r e  out of phase, the 
function fit) has-accqrding to Eq. (4)-a considerable 
number of fairly random peaks. If we ignore the fact 
that the maximum amplitude of a peak is finite for any 
finite value of N, and if we consider the limit N - m ,  we 
can model At) by a steady-state (for example, Gaus- 
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sian) random process. However, in some practical 
applications of laser spectroscopy the number of modes 
N is small (see, for example, Refs. 11-13). There- 
fore, it is essential to know what a r e  the manifestations 
of the Stark shift of the levels under these conditions. 
Moreover, if we use the description of the radiation 
field given by Eqs. (2) and (3) and the number of modes 
is small (N -lo), there a r e  no a priori grounds for 
assuming the envelope fit) to be a random process, for 
example one of the Gaussian type, and this is true a t  
least for time intervals shorter than the fluctuation 
times of the amplitudes and phases of the individual 
modes but longer than the intermode beat time. More- 
over, it is interesting to determine whether the Stark 
broadening of spectral lines can be found, including the 
case N>> 1, directly from the initial "dynamic" de- 
scription of laser radiation given by Eqs. (2)-(4) with- 
out additional assumptions reducing to ordering of At) 
by a random process of special type. The present 
paper is concerned with the last two points. 

We shall consider probe radiation of frequency SZ and 
the profile of an absorption line of an atom undergoing 
a transition from the ground state 1 to an excited state 
2. We shall assume that an atom is in the field of 
multimode laser radiation of intensity F [see Eqs. (3) 
and (4)] and that 6; << c2 - 61 (6, is the atomic energy in 
the ith state) so  that by itself this laser radiation does 
not excite the atom. We shall simplify calculation of 
the Stark shift in the field described by Eqs. (3) and (4) 
by assuming that I c3 - cz - 6 ~ l < <  f i  and that a similar 
equality applies to other natural frequencies of the 
atom, so that we can find the field-perturbed atomic 
spectrum by considering only the dipole-coupled states 
2 and 3 whose mixing by the field under these condi- 
tions is maximal. We shall assume that the charac- 
teristic time AW", which governs the changes in the 
envelope At), satisfies the condition 

We shall also,assume that the following inequality is 
obeyed: 

Then, in the second order of perturbation theory for 
the energy we can easily find the time-dependent shift 
of the level 2: 

Here, d,, is the dipole matrix element and q is the 
average [in the sense of the definition given by Eq. (5)] 
Stark shift of the level 2. The validity of the approxi- 
mation (8) and the e r ro rs  resulting from its use a r e  
discussed more rigorously in the Appendix. Equation 
(8) allows us  to obtain the following expression for the 
nondiagonal matrix element &l of the density matrix, 
which governs the absorption by an atom of weak probe 
radiation of frequency SZ (and of field intensity F,): 

ihp2 , - [ e z -~ i -q  ( t )  - i~]p21-L/,d2iFoe-'o'.  (10) 

Here, y = R / T ~  and T2 is the transverse relaxation time. 

We shall ignore the population of the excited states in 
the absorbing system of atoms (pll =I).  We can easily 
find the steady-state, after a time t >> K/Y,  solution of 
Eq. (10). This solution can then be employed in the 
usual way to find the imaginary part of the complex 
polarizability which governs the power of the probe 
radiation absorbed by the system: 

q-8%-el-AQ. (13) 

Equation (11) is averaged over the measurement time T. 
Clearly, T should be related to the width of the probe 
radiation spectrum 6SZ by the inequality T>> 6SZ-'. We 
shall now consider a number of special cases which 
follow from Eqs. (11) and (12). 

LASER RADIATION WITH FEW LONGITUDINAL 
MODES 

The simplest case is the one with two modes (bichro- 
matic fields). The situation with N = 2 has been investi- 
gated earlier in connection with some nonlinear ef- 
fects.13~10~20 We shall assume that 

TBmax (Air-', 6Q-I).  (14) 

It now follows from Eqs. (11) and (12) that 

Here, J,,(x) is a Bessel function. We shall use2' 
+- 

J ,  ( 2 s  sin y) = z J,"s) e 2 i n ~ .  
n--- 

(16) 

We then find 

To be specific, we shall assume that q > 0. If Y < q 
<< 6Alz, then 5 = ~ V F ~ F ~ / E I ; ~ , A ~ ~  << 1 and the absorption 
spectrum reduces to one line corresponding to n=O: 

Thus, in the presence of laser radiation the absorption 
line shifts without a change in the profile by an amount 
equal to the average Stark shift, in the same way a s  in 
the case of a monochromatic field. If Y << 6A12 2 q (i. e., 
if 5 2 1 for Fl =F2), the absorption spectrum consists 
of a set of equidistant lines of width Y (which a r e  satel- 
lites of the main n = 0 line) and the intensities of these 
lines a r e  governed by 4(5), where the frequency SZ 
= (Q - cl - q)/E in the absorption spectrum is not dis- 
tinguishable so  that in the average Stark shift of the 
energy levels cannot in this case be observed directly. 
The appearance of a line structure in the absorption 
spectrum (i. e., the appearance of satellites of the n 
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= 0 line) is due to activation of channels of the electron 
Raman scattering of the laser  radiation. For  q/RA12 
< 1 these satellites a r e  described by odd orders of 
perturbation theory. For  example, the satellite with 
n = 1 corresponds to the Raman scattering accompanied 
by the absorption of a photon RQ and a photon Rwt and by 
the stimulated emission of a photon RQ. This process 
can be described in the third order of perturbation the- 
ory and i ts  probability is proportional to and G.  
The same result follows from Eq. (17) for q/FfAl2 < 1. 
In the case described by q/E~lz  > I, the f i rs t  nonvanish- 
ing order of perturbation theory fails to describe this 
process. It is then necessary to sum al l  possible re- 
emissions of laser photons, described by higher orders  
of perturbation theory. This is essentially ensured by 
the calculation scheme used in the present study and 
based on the adiabatic approximation (see the Appen- 
dix) .  

We shall now consider the profile of an absorption 
band in the case of practical importance when RAlz << 7 
< q. It is convenient to find i t  directly from Eq. (15) 
because in the range of importance in the process of 
integration with respect to T we then have A127 << I .  
Assuming that sin+Al2r $Al2r, we obtain 

According to Eq. (19), the absorption line profile is a 
strongly broadened curve with two maxima a t  RS2 = 
- ~ 1 -  q(l* P )  (Fig. 1). For  comparison, Fig. 1 shows 
(by a dashed curve) a Lorentzian absorption profile in 
the presence of a two-mode field of the same average 
intensity but satisfying the condition Y C: 77 <<RAi2. A 
profile of the type shown in Fig. 1 is derived also in 
Ref. 16 but under very different assumptions relative 
to  the experimental arrangement. It is assumed that 
the measurement time T is much shorter than the re- 
ciprocal of the intermode beat frequency (E/Y << T << 1/ 
A,,), so  that not even a single complete beat of the field 
amplitude occurs during the measurement time. Aver- 
aging is carried out over a se t  of successive measure- 
ments, each of which being characterized by a random 

FIG. 1. Frequency dependence x"(S2) in the N =2 case: x:' 
=Idl$ 2 /y ,  y =0.1~; curve 1 corresponds to IiAl2<< y ,  F1 =F2 
( p  = 1); curve 2 corresponds to  tiA12<<y, F1 = 1/4Fz ( p  " 0.47); 
the dashed curve represents the case when EAiz>> y. 

FIG. 2. Frequency dependence X "  tQ) in the N = 3 case: Fl = F2 
= F 3 = ~ 0 / f l .  

value of the phase shift ~ 1 2 .  

We shall consider briefly the case N=3. We shall 
confine ourselves to the conditions described by 
max I A,, I <<y/E and we shall assume that FI = Fz = F3 
= ~ , / 3 ' ' ~  and that the modes a r e  locked. Under these 
assumptions we obtain the following expression for 
x"(s2): 

%" (Q) = --It r *  
'd2ni2j -,, (q-q-L/.q cos p-%q cas 2cp)' + r2 . (20) 

If q >> y, the Lorentzian in Eq. (20) can be replaced with 
the 6 function which gives 

(21) 
It is clear from Eq. (21) that xN(S2) has three maxima 

a t  q = 0, q = q/3, and q = 30. The square-root diver- 
gences a t  these points a r e  removed by allowing for the 
fact that the value of Y is finite. The resultant cum- 
bersome expression will not be given here. A typical 
line profile described by Eqs. (20) and (21) is shown in 
Fig. 2. In the complex band shown in Fig. 2, a s  in the 
case demonstrated in Fig. 1 (curve I) ,  the average 
Stark shift 77 appears only in the average form. 

MULTIMODE LASER RADIATION 

We shall now consider the case when N>> 1. As in the 
few-mode case, the condition for direct observation of 
the average Stark shift (5) is the condition under which 
Eq. (11) can be simplified by dropping g(t, 7). This can 
be done when the average Stark shift is considerably 
less  than the width of the laser  radiation spectrum, 
i. e. ,  when 

q<hAw, (22) 

which is in agreement with the qualitative ideas put 
forward 91 Ref. 4. In the alternative case of q >RAW, 
we have a complex absorption band where 77 does not 
appear directly. A simple analytic expression for this 
band can be obtained if RAw << Y. Then, in the range of 
importance in integration with respect to 7 we can ob- 
tain  sin$^,^^ = + A ~ ~ T  and i t  is then easy to carry out 
integration with respect to  t assuming that the mode 
amplitudes a r e  equal (F, =F,/N" is the rectangular 
form of the spectrum) and the mode phases a r e  not 
matched. We then find 
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(kl+kz+-"+kN=n).  If N>>l ,  then 

(see Refs. 14 and 15), which gives 

Equation (24) is derived using the familiar representa- 
tion - 

n! = j e-*zn dz. 
* 

Equation (24) can be represented also in the form 

Here, Ei (x )  is the exponential integral. The simplest 
expression for x"(S2) is obtained for q>w: 

Equation (26) has been obtained earliersvTs8 on the as- 
sumption that the intensity of laser radiation can be 
regarded a s  a random process with an exponential dis- 
tribution (Rayleigh amplitude distribution). Here the 
same expression is obtained directly by multimode de- 
scription of the radiation field (2) without any addition- 
a l  assumptions. 

We shall now introduce moments am of an absorption 
band 

Here, F(0) is the normalized function of the band pro- 
file 

Using Eq. (11), we easily obtain for q>> y 

1 = 
IS- =(-I)" ~-"~ '" - j  I f  (t) 12"'dt 

0 

1 
= (-1)" h-'"?'" - (m!)' 

(kl + kz + ' + kN =m). According to Eq. (29), the cen- 
ter  of gravity of an absorption band is independent of 
N (q =-17/61. Higher moments depend on the number 
of modes N, for example, q = 2 $ ~  -'(I - 1 / 2 ~ ) .   h he 
values of the sum in Eq. (29) a r e  given in Ref. 14 for 
m = 1-6.1 The moments om practically cease to depend 
on N only for N>> m2. The corresponding asymptotic 
value is om = (- -'"qmm ! , which naturally corres- 
ponds to the asymptotic expressions for the line profile 
(24)-(26). It is clear from Eq. (29) that the mth mo- 
ment of the absorption band o, is proportional to the 
mth correlation moment of the intensity of N-mode 

radiation. Consequently, an analysis of an absorption 
band can be used to reconstruct the intensity distribu- 
tion function of N-mode radiation, i. e., it can give im- 
portant information on the statistical properties of such 
radiation. 

In addition to the experimental arrangement discussed 
above, we can also conceive a different configuration 
when the source of the Stark broadening of an absorp- 
tion line is a pulsed laser emitting radiation with am- 
plitudes and phases of the individual modesvarying from 
pulse to pulse in a random manner. Each measure- 
ment is carried out during one pulse a t  fixed values of 
F, and qk. The line profile is found by averaging over 
a large number of separate pulses (measurements). 
I t  is assumed that the number of measurements is s o  
large that i t  represents a complete ensemble of ran- 
dom quantities Fk and q,, . In describing the results of 
such experiments the quantity x"(S2) [see Eq. ( l l ) ]  
should be additionally averaged over the ensemble of 
the separate realizations Fk and qk subject to the ad- 
ditional condition 

2 Fkz - Poz - mat, 
L-i 

which expresses the fact that the average intensity of 
laser radiation is reproduced from pulse to pulse. 
Thus, the observed absorption line profile is 

Here, C, is the normalization constant; ~ " ( 0 ,  {Fk, qk)) 
is governed by Eq. (11); complex random quantities 
Fk exp(iqk) a r e  assumed to have a Gaussian distribu- 
tion with the same variance o (the radiation spectrum 
is assumed to be rectangular). In the case of a narrow 
spectrum (AW << ~ / 6  sq/6), Eq. (30) can be reduced to 

The quantity B(X)  is the distribution function of the in- 
tensity (in units of of multimode radiation. This 
function has been calculated earlier13"7'22 and it is 
given by 

If q >> Y, it follows from Eqs. (31) and (33) that .,,, - nldtZl2 N-I ( , - E.-;;-~Q ) .'-' 
11 N 

O(~~-e,-iiQ), 
(34) 
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i. e., the absorption band profile repeats the distribu- 
tion function of the intensity of multimode laser radia- 
tion. In the limit Nem, Eq. (34) reduces to Eq. (26). 

The author is grateful to N. B. Delone, V. A. Kovar- 
skii, V. P. Krainov, and A. V. Masalov for discussing 
some of the topics considered above. 

APPENDIX 

We shall now consider the precision of the approxi- 
mation (8) for ~ ( t )  obtained in the second order of per- 
turbation theory. The expression for q(t) includes the 
average Stark shift 77 given by Eq. (9) and its validity 
is governed1 by the inequality (7), which can be satis- 
fied by relatively moderate fields Fo. On the other 
hand, the validity of the second term in Eq. (8), which 
governs the intensity of the satellites (n+ 0) of the main 
absorption line (n = O), is not ensured by the inequality 
(7), a s  we shall show below. Moreover, there is lit- 
erally no parameter containing Fo which would ensure 
the validity of the time-dependent part of ~ ( t )  for any 
value of n. In the case of sufficiently high values of 
In 1 the approximation (8) gives an incorrect result for 
the intensity of the nth satellite when Fo is low. We 
shall show this by finding the wave function of an exci- 
ted atomic state bearing in mind that I ES - -KG / 
<<5Z and we shall express this wave function in the 
form 

tt 
Y ( t )  = [a . ( t )  12)eicfi2 + a, ( t )  13) e-'"z]erp {- z ( e 2 + ~ . )  1, (All 

where &(t) and q(t) satisfy the usual system of equa- 
tions in the two-level approximation (see p. 176 in Ref. 
23), which follows from the secular Schrodinger equa- 
tion. The condition (6) justifies the adiabatic approxi- 
mation for the solution of the  stern,^^'^' i. e., it al- 
lows us to assume 

a 2 , ~  = bzSs exp {- +J e ( t ) d t ] ,  

and we then find that the slow time dependence of bz,S 
can be ignored in the spirit of the adiabatic approxima- 
tion. We thus obtain the system of equations 

[ e+  l/z(eJ--ez--ha) 1 b2+'/zd2,F,f ( t )  bJ=O, (A21 
[ E - ' / ~ ( E ~ - E ~ - A I J )  ]bJ+i /Zd~ZFOf t ( t )  bp=O, 

whose nontrivial solution is possible only for 

The approximation (8) follows from Eq. (A3) if the ex- 
pansion of the square root occurring in the definition of 
~ ( t )  is confined to the first  nonvanishing term with 6. 
In the simplest case of two modes we can obtain the re- 
sult for ~" (sz )  without invoking the approximation (8). 
In particular, we can obtain an expression of the (17) 
type where $ , ( q / ~ b 1 ~ ) ( ~ 1 =  F2 = ~ ~ / 2 ~ / ~ )  is replaced by 
the quantity 1 Un 1 defined by 

pit) = arctg 
dzsFaf ( t )  
~ ~ - ~ ~ - h 7 i i  

(A 5) 

When the inequality (7) is obeyed, we can expand a s  a 

series the root occurring in the definition of S. We 
then obtain 

~ S = ~ / , ( E ~ - - E ~ - ~ ~ O )  +q.  (A 6 )  

which implies the validity of Eq. (9) for the average 
Stark shift. In general, it is not possible to expand 
the root X(t) of Eq. (A3) occurring in the integrand of 
Eq. (A4). If 77/ffA12 << 1 and In 1 > 1, the integral in Eq. 
(A4) relating to the rapidly oscillating function inside 
the integrand is exponentially small and, therefore, 
extremely sensitive to the approximations in the quan- 
tity X(t). The terms dropped in the approximation (8) 
of the expansion X(t) make a contribution to I U,, 1' of the 
same order a s  those which a r e  retained. However, if 
77/tiA12 2 In 1 ,  the integral in Eq. (A4) is not exponen- 
tially small and the sensitivity to the approximation in 
~ ( t )  disappears. When the condition for the above adai- 
batic approximation I cs - q - Ew I / E A ~ ~  e 9 >> 1 [see Eq. 
(6)] is obeyed, the integral (A4) can be estimated by 
the steepest-descent method. (Details of ways of esti- 
mating integrals of this type can be found in an earlier 
paper by the present author.25) We find that whenp < 9 

[ p  = 2(s/A12 - n) = 9 + 2q/A125 - 2n], then 

k2D(6, k )=F(8 ,  k ) -E(6 ,  k ) ,  

F(6, k) and E(6, k) a r e  elliptic integrals of the f i rs t  and 
second kind, respectively. It follows from Eq. (A7) 
that if 71/12~1~ << 1, then 

Under these conditions, we have 

which gives 

If n/9 < 1, then pna: exp(n2/8), i. e., the intensity of the 
nth satellite of the main absorption line estimated from 
Eq. (A7) is p, times higher than the value obtained us- 
ing the approximation (8). If 9 = 10, then pn = 2.7 even 
fo r  n = 3. An estimate of I U, l 2  similar to that given 
by Eq. (A7) is also obtained if p 9 and (p2 - g)1'2/ 
x.9 > 1 (these inequalities a r e  satisfied for n = 0 and 
In 1 > 2q/'ttA12). We then find 

r ( p 2 - 6 2 ( i + ~ Z )  )"' 
-2p Arsh - + 2p 

X U  r 

x0  
6 ,  = arccos - . 

r 

It also follows from Eq. (A9) that pna exp(n2//9) for V /  
KA12 << 1. Thus, the approximation (8) is quantitatively 
unsuitable for finding the intensities of the Raman sat- 
ellites located on both sides of the main absorption line 

399 SOW. Phys. JETP 5213), Sept. 1980 N. F. Perel'man 399 



(n =0) when q/EA12 < 1, i. e., when the  absorp t ion  spec- 
t r u m  has a l ine  s t r u c t u r e  a n d  t h e  main  absorpt ion line 
is shif ted re la t ive  to t h e  absorp t ion  line of a f r e e  atom 
b y  an amount  equal  to t h e  a v e r a g e  quandra t i c  S t a r k  
shif t  V. T h e  error due to t h e  approximation (8) rises 
exponentially on increase i n  the  satellite number .  T h e  
correct expression f o r  ~"(51) is obtained b y  replacing 
in Eq .  (17) t h e  quantity 4(q/EA12) with  I U, l 2  which is 
es t ima ted  by  E q s .  (A7) a n d  (A9). If 17/EA12 >> 1, t h e  
ratio p, d i f fe r s  little f r o m  unity a n d  t h e  a proximation 
(8) is sa t i s fac to ry  at least f o r  q/R012 2 in!. It is t h e s e  
v a l u e s  of In 1 that are important in t h e  fo rmat ion  of a 
Stark-broadened absorpt ion band when t h e  laser spec-  
t rum is narrow (RAI~ << Y s ~ ) .  Thus, t h e  absorption 
b a n d s  corresponding to Eq.  (19) are d e s c r i b e d  we l l  by  
t h e  approximat ion (8). I t  is eas i ly  shown tha t  t h i s  ap-  
plies to the  case N >  2, i. e., to E q s .  (20), (21), a n d  
(24)-(26). 
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