forces, and coupled to the o-world by “bridges” of
massive particles x; and with the y, worlds by the
bridges x;,. The most stringent bounds on the param-
eters of such a picture come from cosmology based
on the theory ofthe hot Universe (the big~bang model).

I am grateful to V.V. Vladimirskii, V.A. Grebenni-
kov, A.D. Dolgov, Ya. B. Zel’dovich, I. Yu. Kobzar-
ev, D. Ya. Martynov, and M. U. Sagitov for useful dis-
cussions and remarks.

Dwe shall not discuss here the fantastic version in which
there exists a world z, at present completely isolated from
our world and having its own gravitons. The coupling to the
z-world could have disappeared as a result of a peculiar
phase transition above the Planck temperature.
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Calculatior] of the energy levels of u-mesic molecules of
hydrogen isotopes in the adiabatic representation of the
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The energy levels ¢,, of the mesic molecules ppu, pdu, ptu, ddu, diu, and ttu in the states (Jv) of the
rotational and vibrational motion are calculated. The calculations are made in the adiabatic representation of
the three-body problem, in which the wave function of the x-mesic molecule is expanded with respect to a
complete set of solutions to the quantum-mechanical two-center problem. A numerical investigation was
made into the rate of convergence of the expansion. For the weakly bound states (J = 1, v = 1) of the mesic
molecules ddu and dry the values €,,(ddy) = — 1.91 eV and ¢,,(d1u) = — 0.64 eV were obtained.

PACS numbers: 36.10.Dr

1. INTRODUCTION -

At the Laboratory of Nuclear Problems at the Joint
Institute for Nuclear Research, Dubna, an experimental
measurement was recently made® of the rate of forma-
tion x4, of the mesic molecules dtu and the lower bound
Aggy > 108 sec”! was obtained. According to the calcula-
tions of Ref. 2, the high rate of this process is due to
the resonance mechanism of formation of the mesic
molecules dtpu in the weakly bound rotational-vibra-
tional state with quantum numbers J=1, v=1. The
binding energy of this state, €,,~1 eV, was calculated
earlier? for the first time by perturbation theory
realized in the adiabatic representation of the three-
body problem.3~’

For the detailed study of u-mesic molecular pro-
cesses in a mixture of hydrogen isotopes and, in
particular, to describe the process of resonance for-
mation of the mesic molecules dtu, it is necessary to
know their energy levels to an accuracy ~0.01 eV,
which is ~10~® mesic-atomic energy units g, =2m Ry
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=5626.51 eV.?

In the present paper, we present the results of cal-
culations of the energies ¢,, of various (Jv) states of
p-mesic molecules of the hydrogen isotopes. The cal-
culations are made in the adiabatic representation of
the three-body problem, in which the wave function of
the p-mesic molecule is expanded in a complete set of
solutions to the quantum-mechanical two-center prob-
lem.3"5 In this approach, the original eigenvalue
problem for the nonrelativistic Schrédinger equation in
a six-dimensional space reduces to the solution of a
Sturm-Liouville problem for a system of ordinary in-
tegro-differential equations. The matrices of the coef-
ficients of this system (the effective potentials of the
three-body problem in the adiabatic representation)
are calculated with the necessary accuracy by means of
the algorithms of Refs. 8-13.

The corresponding Sturm-Liouville problem is solved
numerically with the required relative accuracy in the
framework of the continuous analog of Newton’s
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method'*'’® by means of algorithms®~!® realized in the
form of a set of programs written in FORTRAN-4. All
the calculations were made with a CDC-6500 computer.
In our preceding papers, this Sturm-Liouville problem
was solved in the two-level approximation,® and also by
perturbation theory.” The results of these calculations,
and also the results of the best variational calcula-
tions'®?° are compared with the values of €,, obtained
in the present paper.

2. FORMULATION OF THE PROBLEM

The wave functions ¥,.(r,R) and the total energies E,,
of the states [u7) of u-mesic molecules of the hydrogen
isotopes are found from the nonrelativistic Schrédinger
equation in the six-dimensional (r,R) space*:

(H—Epn) ¥ ae(r, R)=0, (1)

where (in units with e=#=1)

H=P,+h,+1/R; 2)
gl (et 0) - ()0,
L @3)
L=L+1,1=L+1 M—M,

M, M. M, m. m M, " MM,

Here, R is the vector joining the nuclei of the mesic
molecules ¢ and b with masses M, and M, (in what
follows, M,>M,); r is the vector joining the center of
the interval R and the u~ meson with mass m,; 7, and
7, are the distances from the nuclei a and b to the pu~
meson.

The motion of the u~ meson in the mesic molecule is
characterized by the three parabolic quantum numbers
n=[nm,m], and the relative motion of the nuclei a and
b by the set of quantum numbers 7 =(Jm,vA), where J
and m, are the total orbital angular momentum of the
three-body system and its projection onto the z axis of
the laboratory coordinate system, v is the vibrational
quantum number, and A =+(-)’ is the total parity of the
three-body system.

The most interesting energy levels of the mesic
molecules correspond to the ground state of the motion
of the 1~ meson, i.e., the state with quantum numbers
n =[000]. Inthe absence of a magnetic field, the energy
of the u-mesic molecules does not depend on the quan-
tum number m;, and in what follows we shall therefore
omit it. Thus, for states with n =[000] and given total
parity A the wave function depends only on the quantum
numbers J and v:

W¥,.(r, R)=(r, R|ntd=<, R|Jv>=¥,,(r, R). 4)
These wave functions satisfy the orthogonality relation
UvlIv'>= jdrdR‘-P’,;" (L R) ¥ 1o (r, R) = 6,,-80ur. (5)

The adiabatic basis with respect to which the wave
function (r, R|Jv) of the state (Jv) of the mesic molecule
is expanded is a complete set of solutions to the quan-
tum-mechanical two-center problem,’ i.e., the problem
of the motion of the p~ meson in the Coulomb field of
two fixed nuclei a and b separated by the distance R:
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he,(r; R)=E,(R)&;(r; R),

(6a)
@;(r; R)=<r; R|j>=<r; R|nn.mp>;
;‘ e ;R =izk2¢c ;R ’
Pe(r; R) ="/ (r; R) (6b)
@.(r; R)=<(r; R|c>=<r; R|kn.mp>,
where
~ 1 1 1
= A= 6
k 2 A Te T ( C)

is the Hamiltonian of the two-center problem, E,(R) is
the term corresponding to the state |j) of the discrete
spectrum of this problem, and & is the momentum of the
u~ meson corresponding to the state |c) of the continu-
ous spectrum of this problem.

The states |j) = |jp) of the discrete spectrum are
labeled by the set j =[n,n2m] of parabolic quantum num-
bers n,, n,, m and parity p =(g,u) under inversion
r - —r about the origin. In the spheroidal coordinates

l={§y n, ¢}1 §=(ra+rb)/R, '|'|=(r¢—rb)/R,

the solutions ¢,(r;R), which are bounded in the region
1<t<wo,-1<sn<1,0<¢p=<27,0<R<, can be represen-
ted in the form

1 —\m ,ime
¢,<r;,n>=¢,,<r;m=¢,-.(g,n,qp;R>=cp,,(§,n;m(zT).,,{e(_,.,,,), ™ (Ta)

They satisfy the orthogonality relation
Gpli'p'> =§ dr #1"(65 B) B3 (5 R) = B55BrumBmamBin',
: (b)
dr="/,R*(§'~n") dtdnde.

The continuum states |c)= |ksp) of the two-center
problem are characterized by the momentum & of the
u~ meson, the set s =[n,m] of parabolic quantum num-
bers n, and m, and the parity p. The corresponding

solutions, which are bounded in the region 1 < (<o,
-1s7<1,0<¢p<27,0<R<w»,

1St<o, —i<n<i, 0<q@<2n, O<R<o,
1 _\mpimep
Pe(r; R) = B, (r; k, R)=%.5(, m, 9; K, R) =@up (&, 3 K, R)-——— (_,.,3 ¢
(2n)" Le~ime
(8a)
satisfy the orthogonality relation
¢eler= _[dr B¢ (13 R) Bor (F; R) = O+ OrnmOans & (k—K"). (8b)

The dependence of the wave function ¥, (r,R) on the
angular variables © and & of the vector R={R, 8, &} in
the laboratory coordinate system, and also on the
azimuthal angle ¢ of the vector r ={£,7, @} in the co-
ordinate system which rotates with the vector R, is
separated by means of a symmetrized combination of
normalized Wigner D functions:

D)., (0,8,¢)

=[4n(14+8um) 1-*[ (=) "™ Do, (®,0,0) +¢=™D ., (0,8,0)],  (9)
which correspond to total parity A =+(=)7.*

Using the solutions (7b) and (8b) and the functions (9),
we can represent the wave function (4) in the form of
the expansion

Yo(r, R)= Y Don, (0,0,0) R-Fu’* (5,1, R),

Mue0

(10a)
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Fa (g R)= Y Z { 2 @ur (8,13 R) ™ (R)

g nym0  ngm0

+ [k & n b RXa" (5 R) }. (10p)
The functions
1" (R)=(R; jp|Iv>=(R; n,n.mp|Jv>,
. (11)

Yaup”* (k, R)=(R; ksp|Jv>=<R; kn,mp|Jv>,

which are regular at R =0 and bounded on the half-axis
0 s R< =, describe the relative radial motion of the
nuclei g and b in the p-mesic molecule and satisfy an
orthogonality relation that follows from (5), (7b), and
(8b):

Y 2 2 { 5:, j: dR 1" (R) s (R)

Praf,u mued ngem0  7y=0 O

+ [ ak [ dRx " (R gy (6, R) } = 8o (11a)

When one imposes on the wave function (10a) boundary
conditions corresponding to the correct limit of dis-
sociation of the y-mesic molecule into a mesic atom and
a nucleus,* the solutions

ou(& MR, ou(BMmR), 9u(&nkR), ou(EnkR)

in the expansion (10b) are usually replaced by the linear
combinations (in which the arguments are omitted)

0u=2""(Qu— 1), P»=2""(Pst ) (12a)

with similar combinations for ¢, and ¢.

The transformation (12a) induces a transformation
for the functions x,, =xJ(R) and x,, =xJu(R):

%o =2"" (%) Xp=27" (ss X (12b)

and a similar transformation is induced for x's’:(k,R)
and x®(k,R). Since the relation

Qseirt Pin=Psulss Qe (13)

is satisfied, the expansion (10b) preserves its form
with a changed meaning of the index p:
p=(g, u)—+p=(a, b).
Substituting the expansion constructed in this manner
for the wave function ¥, (r,R) in Eq. (1) and averaging
it over the variables &, ©, ¢, £, n, we arrive at an
infinite system of ordinary integro-differential equations
on the half-axis 0 s R< :
~f & J(J+1)—2m* 2M
— e T e Jo i R
I{ TZ I3 7T 2Me }x &)

=Y duwu+ 3 fa Gt Rk B,

=1 sl 0

(14)
Ap @ JU+H)—2m 2M
—_— of Kk,
1{ — = o+ 2Me }x( R)
= Y Gutk, Ry R+ Y, [ @k T K, Ry (K, B)
with the boundary conditions (0 < k< )
%:(0)=0, lim x:(R)=0, i=1,2,...,
‘ - (15)

1o(k,0)=0, Limy.(k,R)=0, s=1,2,...;
R-—»o0o
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where M =M,/m,, €, =E,,-E,, is the energy of the
state (Jv) of the y-mesic molecule measured from the
energy E,, of the ground state of the mesic atom (#,,M,),
and all quantities are measured in units of e=fi=m, =1,

The system of equations (14) is written in the “two-

component form”3+4:
XM(R) X-a(kyR)
(R)= i’” R)= s == .“ =
xw@=rr@= (7" 0) 0l R= kR (X-b""m)’(le)
~ Uii(R) Usiasn(R) ~ 1 0
Uis(R)= =
(R) (U(b,;a(R) Uwn(R) ), ! (0 ‘l)

with similar expressions for the matrices ﬁ,s(k,R),
Usi(kyR)y and Uss'(k, kl,R)'

The potentials U,, ;,{R) are calculated using expres-
sions that follow from the transformations (12a) and
(12b):

Ui, 1 (R)F‘/z {( Vie, wt Viu, iu) - ( Vi, wt Vi, Jﬂ) } —2ME by,
U, »(R) ='/; { (Vig.ss—Viu u) T (Vie u—Viu, 16) I8

(1)
Uuz, ia (R) =‘/2{(Vig, j'_Vim ju) _(Vi', ju T Viu, jz)},

U(n. ib (R)"'—"/z{(vu, jg+Viu, ju) + ( Viz. ju+V-'u, ju) } —2ME1¢15;,~.
The potentials V,, ;, =V ;(R), etc., are expressed
in terms of the terms E,(R) and the matrix elements
H{YR), H{P(R), Q{P(R), and B{P(R), which are
defined as follows®™10:12+13;

Vigse(R) =2ME o (R) 64+ Higs (R) — (1+2%) Hig 1o (R)

d d
+B g5 (R) + = Qi (R) 2055 (B) 7, (18)

- - d - - d
Vien(R) =% {H.‘,Jl (R) +Bisp(R) + @-0.-2,,-& (R)+2Qic (R"d?} . (19)

Similar relations hold for Vi, ,(R) and V,, ;(R) with the
obvious substitution g-— u on the right-hand side of Eqs.
(18) and (19).

For the potentials V,, ., Ak, R), which couple the states
of the discrete, |i), and continuous, | ), spectra of the
two-center problem, the relations (18) and (19) hold as
before.

The potentials V,, ., (k, &', R), which couple the con-
tinuum states |¢) and |c¢’) of the two-center problem,
can be represented in the general case in the form

(20)

The potentials V, .(k,R), like those in (18), canbe
represented as

Vu:, s'p’ (k, klv R) =V'p. s'p’ (kv R)ﬁ(k—k’)ﬁ‘l}.,v s'p’ (kv k’) R) .

K .
Voo, R) = 2M — 800 t-Hogdog (b, R) — (1+2%) Hugley (k. R)

d d
+B.‘..*.’.,(k,R>+-ﬁo.‘g,*.".(k,H>+20.‘.*,3.3(k, Ry (21)

The expressions for the potentials Vs,,_s,,,(k,R),
Vi .sw(k,R), and Vo, o.(k, R) are constructed as in (18)
and (19).

Using the asymptotic behavior of the matrix elements
H{PR), HSP(R), QP(R), B{P(R) in the limit R~ =, we
find that the origin for the measurement of the energy
E,, (in units with e =# =m,=1) is*

(2M) V44, 1a() =E () =E ="/
i.e., it is equal to the energy of the ground state of the
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mesic atom (m,,M,). At the same time, U, ,,()=0.

Solving the singular Sturm-Liouville problem (14)~(15)
with the potentials (17)-(21), we can find the energy
levels ¢, and the wave functions y,(R) and yx (&, R) of the
mesic molecules.

3. SOLUTION TO THE STURM-LIOUVILLE PROBLEM
FOR A SYSTEM OF ORDINARY DIFFERENTIAL
EQUATIONS

To solve the singular Sturm-Liouville problem (14)-
(15) for the infinite system of ordinary integro-differ-
ential equations on the ray 0 <R <~ we approximate it
by the regular Sturm-Liouville problem for a finite
system of equations of dimension N on the finite interval
0 <R <R, (Refs. 22 and 23):

ey

& JUH)-2m*  2M
T T AT o }
{dRz R 7 2Men pu(R)

—EU«J(R);&(RH Z jdk Gk, Ry (R, R),

=t 0

(22a)
S & JUHD—2m 2M
—— o ¢ % (K,
1{ R R 7 2Me }X (k. R)
Ny Ay
- ZU,,(k R)y:(R)+ 2 j dk’ U, (b, &', Ry (k', R)
with boundary conditions
%i(0) =y: (Rn) =0, {<i<N,,

¥o (e, 0) =y, (k, R,)=0, 1<s<N, O<k<k,. (22b)

The numerical investigation of the convergence of
the expansion (10) made in the present work shows that
for the calculation of the energy levels of the p-mesic
molecules with accuracy ~0.1 eV it is sufficient to set
N;=13, N,=6, R, =60, k,=10. The interval 0 <k <k,
for each state |ks) is divided up by N{* points &,
(@=1,2,...,N{) with step Ak, and all integrals over
k are replaced by sums of the form

. N (S)

S 1 ey = 2 1 (ko) @ () g, (23)
where ¢(k,)AkR, are the weights of Simpson’s quadra-
ture formula. When the continuous spectrum is made
discrete in this manner, the total number of pairs of
equations in the system (22) is

Ny
N=(N+N), N.= Z‘N,f"’.
a=1

In the present work N, =119, i.e., the total number of
equations in the system (22) is 2N =264.

The potentials V,,(R), which couple the states |i)
= [nm,m) and |j) = jnin;m") of the discrete spectrum of
the two-center problem for all sets of quantum num-
bers satisfying the condition
n=n,+n,+m+1<3,
n'=n+n,+m +1<3,

and also the potentials V,,(R) and V,,(R), which couple
the (g,u) pair of states |1)=|000) to the three pairs of
states |4)=1300), [210), |120) in the shell n =4, were
calculated by means of the algorithms of Refs. 8 and 9
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FIG. 1. Schematic form of the matrix of effective potentials
U,;;(R) used in the solution of the system of equations (22a).
The numbers N; and N, are the dimensions of the matrices
U;;(R) and U, (k,R) which couple the states of the discrete
spectrum and the states of the discrete and continuous spec-
tra, respectively. The broken lines show the matrix used in
the program BAAP.

over the interval R =0.1(0.1)20(1)100 with relative
error ~1077. The total number of potentials V,,(R) used
was 436,

The potentials V, (k, R), which couple a pair of ground
states of the two-center problem, |[000g) and |000),
to the pairs |ksg) and |ksu) of states of the continuum,
were calculated with absolute accuracy ~1075 on the
interval R =0.1(0.1)5(0.2)11(0.5)20.*:*2 For the states
s =[n,m}=[00], the potentials were calculated for the
values k=0.2(0.1)1(1)10 (n{*’=18), for the states
{10], [20], [01], and [11] for £=0.2(0.1)1(0.2)2(1)10
(N{®)=22), and for the states [30] for %=0.2(0.2)2(1)5
(N{®)=13). The total number of potentials ¥, %, R) and
V. (k, R) used was 476.

The diagonal matrix elements V, (%, R), V, (%, R),
etc., which couple the pairs of states |c) = |kn,mg) and
{c'y =] knymu) of the continuous spectrum of the two-
center problem, were calculated in Ref. 13 with ab-
solute accuracy ~107° for the sets #,=0, 1, 2, 3, and
m =0, 1 for the values 2=0.2(0.1)1(0.2)2(1)10 in the
interval R =0.1(0.1)5(0.2)11(0.5)20.

The general form of the matrix of the potentials [(R)
calculated at the present time is shown in Fig. 1.

For the numerical solution of the Sturm-Liouville
problem (22) we used the algorithms of Refs. 16-18
constructed on the basis of the continuous analog of
Newton’s method'* and its modifications.!®* The re-
quired values of €,,, y,(R), and y(%, R) were calcula-
ted by means of the programs ITER (Ref. 17) and BAAP

TABLE 1. Binding energies —&;, (V) of the (Jv) states of the
mesic molecules ppu , pdu, ptu.

Jo)
Method
. (00) l (10} I (00) | (10} l (00) l (10)
P pap ptu
247.31 101.47 215.68 91.35 | 207.28 9221 |Twodlevel
approximation
253.55 107.33 221.49 98,79 | 213.85 101.30 |Perturbation
theory
252.89 106.95 22152 97.36 | 213.96 99.06 |ITER
252.95 106.96 221,52 97.40 | 213.97 99.01 |BAAP
253,09 [199] | 107.23 [20]] 221,28 [19b] | ~ | 213.0 [tea] - Variational
calculation
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TABLE II. Binding energies —€,, €V) of the (Jv) states of the
mesic molecules ddu and dtu.

(Jv)
Method
(00) | (01) I (10) l (1) l (20)

Mesic molecule dtu
322,69 33.44 224.08 0,64 83.56 Two-level approximation
324.99 35.66 226.74 183 8534 | Perturbation theory
325,05 3581 226.61 1.39 86.31 ITER*
325.04 35.80 226.61 1.91 *+ 86.32 BAAP
324.27 '] | 32.76 ['*®] | 226.55 [2°] - - Variational calculation

Mesic molecule ddu
317.04 32,21 ) 230.10 -0.47 99.90 | Two-level approximation
319.09 34,70 232,61 0.63 103.16 | Perturbation theory
319.15 34.87 232.43 047 102.52 | ITER*
319.15 34.87 232.44 0.64** | 10254 | BAAP
318.07 [*9%] | 32.95 [1*®] - - - Variational calculation

*The calculations with the program ITER were made for R, =20.
**The values obtained with the program BAAP for R,,=60. For
R,, =20, we have —& (ddu)=1.39 eV and —€;(dtp) =0.17 eV, i.e.,
these values are just the same as the results obtained by the pro-
gram ITER.

(Ref. 18). The initial approximations for €, and x;(R)
were calculated using the program system,'® which
makes it possible to solve a partial Sturm-Liouville
problem for a system of ~40 ordinary differential equa-
tions. The initial approximations for the functions
Xs(k, R) were taken equal to zero.

The program ITER makes it possible to solve the
partial Sturm-Liouville problem (22)-(23) for a system
of ordinary differential equations of dimension ~300 for
the matrix of potentials shown in Fig. 1.

The program BAAP is constructed on the basis of the
program ITER to solve the problem (22)-(23) with a
matrix of potentials of special form, which contains
only the potentials U,;(R), U, (R), Uy(k,R), U, (k,R)
U,,(R), and U,(k,R) (in Fig. 1, this matrix is indicated
by the broken lines). This makes it possible to shorten
the computing time by an order of magnitude compared
with the program ITER.

With the chosen method of dividing the interval
O<R <R by the points R, at which the values of the
potentials U,,(r), U,,(k,R), and U, (k,R) are specified,
and also for the chosen values of N;,N,,N{*), R,,, the
relative accuracy in the solution of the Sturm-Liouville
problem (22) by means of the algorithms ITER and
BAAP is 1071075,

4. DISCUSSION OF THE RESULTS
The results of the calculations are given in Tables

I-V. In the first row of Tables I-III we give the

TABLE ITI. Binding energies —£,, (eV) of the (Jv) states of the
mesic molecule ¢fu.

@)
Method
©00) \ 1) | (o) an | @0 | o
361,56 81.61 287.65 4323 | 17095 |4681 |TWOlevel
’ approximation
362,89 83,68 289.19 4545 | 17279 |48.90 |Perturbation theory
362,95 83.87 289.15 4524 | 172.64 |48.69 |ITER
362,95 83.88 289.15 4524 | 172,65 | 4870 |BAAP
361.,4 [192] 75.2 [t92] | 288,72 [20] - - —~ |Variational calculation
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TABLE IV. Contribution of the various states |j) = |nnym) of
the spectrum of the two-center problem to the binding energy
—€;, (V) of the mesic molecules (Egiscr =€F} +£2), ).

(Jo)
n [ninym]

(00) (10) (00) I (10) ‘ (1) (11)

ppp pdp ddp dtp
1 000 246.947 101,236 | 215.401 91144 0.558 -0.645
100 1.591 1114 1213 0.946 0.310 0.282
2 010 1,779 1.639 1.725 1.797 0.409 0.395
001 ~ 0.465 - 0321 0.104 0.067
200 0.332 0.229 0.232 0.484 0.059 0.053
110 0221 0.138 0.284 0.245 0,048 0.051
3 020 0.001 0.003 0.000 0.001 0.008 0.003
101 - 0.130 - 0,099 0.021 0.015
011 - 0.000 - 0,000 0.001 0.001
300 0.128 0.088 0.088 0.069 0.022 0.019
4 210 0.075 0,041 0.106 0.087 0.017 0.018
o 120 0.001 0.002 0.000 0.001 0.003 0.002
— &%iger 4.128 3.849 3.648 3.747 1.002 0.906
— Cgiser 251.075 105.085 | 219.049 94,888 1.560 0.261

values of £, =¢%)’ calculated in the two-level approxima-

tion (N; =1, N, =0) of the adiabatic method of Refs. 4-7
by means of the algorithm SYSTEM. In this approxima-
tion, the matrix of the potentials ﬁ(R) consists of only
one block U,,(R) (see Fig. 1), the accuracy in the cal-
culation of the energy ¢, for deep levels in 1-5 eV, and
£9)(ddy)=-0.64 eV. The (J=1,v=1) stationary state

of the mesic molecule dfuin this approximation is
absent, and instead there is a quasistationary state
with energy £{9(dtp)=+0.47 eV and width ~0.2 eV. With
the extension of the system of equations (22), this quasi-
stationary level moves to the boundary of the continuum,
and for N, =4, N,=0 the quasistationary state becomes
stationary. In the variational calculations of Refs. 19
and 20, the (J=1,v=1) stationary state of the molecule
dty was not found.

In the second row of Tables I-IIl we give the values
of £, =%, +¢2 . calculated perturbatively in accordance
with the algorithm of Ref. 3 the contribution of the dis-
crete spectrum €, =€) + ¢4, was calculated by means
of the program SYSTEM for N;=13,N,=0, and the func-
tions y,, and x,;, found in the solution of this system,
were used to calculate the contribution £, [see (25)].

The third row contains the results of calculations of

TABLE V. Contribution of the discrete and continuum states of
the two-center problem to the bmdmg energy —€,, (eV) of the
mesic molecules.

W)
(00) | (10) (00) l (10) | (11) [¢8V)
pdp : ddp dp
—L1q 23852 2663.23 2711.27
—ef) 246.947 101.236 215401 | 91441 | 0558* —0.645*
—e@ 4427 3.849 3.604 3747 | 1.002 0.906
—e@, 1.488 1.723 2199 2321 | 0349 0.374
—e 5.615 5.572 5.803 6.068 | 1351 1.280
—e® @ | 252562 106.808 221204 | 97.203 | 1909 0.635
—eg, 252954 106.982 | 221543 | 97.399 | 1.907 0.636

*Values obtained in accordance with Eq. (24). In the two-level
approximation of the system (14), we obtain &{f (ddu) =~9.640 eV
and £{{ (dtu) =0.474 eV instead of the given values.
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€,, by the program ITER with completely filled matrix
of potentials IJ(R), the form of the matrix being shown
in Fig. 1. The fourth row contains the results of cal-
culations by the program BAAP.

In all the listed cases we used only the diagonal
matrix elements (20), which couple the states |ks) of
the continuum, i.e., the potentials in Egs. (22) have the
form U Ak, k', R) = Uk, R)S,,.5(k - k'), and in the
potentials U,,(k, R) allowance is made for only the lead-
ing term

O...(k, R)=IMk".

In the fifth row, we give the results of the best varia-
tional calculations.!?2°

In the calculations, we used the following values of
the masses of the particles (in units of the electron
mass m,) and the value of Ry**:

m,=206.769, M,=1836.152, M.,=3670.481,
M,=5496.918, Ry=13.6058 eV.

It can be easily seen in Tables I-III that the values of
€, calculated by perturbation theory are very close to
the values calculated by the programs ITER and BAAP.
The values of € 5 calculated by these two programs are
equal to a high accuracy (~1072 eV). This means that
in calculations to this accuracy the contribution of the
potentials ﬁ‘,(R) for i#j#1 can be ignored. As a rule,
the results of calculations of €, with the boundary con-
ditions (22b) for R, =60 and R, =20 do not differ to ac-
curacy ~10% eV, and therefore the calculations by means
of the program ITER were made for R, =20. An ex-
ception was the weakly bound states (J=1,v =1) of the
mesic molecules ddy and d#u, for which the values of
€, calculated for R, =20 and R, =60 differ appreciably
(see Table II).

Having calculated the functions y,(R) and x(k, R) by,
for example, the program BAAP, we can find the con-
tribution made to €,, by each pair of states |j)=|nn,m)
and |c) = | kn,m) of the two-center problem. In turn,
this makes it possible to investigate numerically the
rate of convergence of the expansion (10b) and deter-
mine the minimal number of terms in this expansion
needed to calculate €, with the given accuracy.

To this end, we represent the energy ¢, of the state
(Jv) in the form of a sum analogous to the perturbation
theory series of Ref. 3:

erv=ele +a,(:) , (24)
where

Rm

ef =@M~ Ry (R)

~f d? J(J+1)—2m* 2M ~
x{ 7 (g~ B G ),
dR’ R R (25)
es2) =edmerteions
N¢

= Y T Y o lnimimi= Y e 211,

ny=0 ny=0 m=0 =1

hm Ny hm
Eeomt = Z, J.dk es [knzm]=2| I dk e [ks],
Ng=0 m==0 0 £ s=1 0 (253)
e/l [11= @M [ Ry (R) U (R)%,(R),

Bm
e, [ks]=(2M)~* | dRx, (R) U, (k, R)1. (K, R).
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The functions y,(R) and x (&, R) are normalized by the
condition
N¢ Rm Ny Rm

Y {Z. aIdRi,’(R)+;J dk':jmdnx.,*(k,ﬂ)}=-1,

p=(a,b) = je=i

(26)

which approximates the normalization condition (11a)

in the same sense in which the system of equations (22)
approximates the system (14). The sums on the right-
hand sides of Egs. (25a) are to be understood in accord-
ance with the definitions (16), for example,

% UuXJ='XuU1¢, hX.n""XuUu, nX,»+Xianb, ;eXn+X|bU:b, X (27)

etc.

Note that €{2’ and £{2) calculated in accordance with
Eqgs. (24) and (25a) are only approximately equal to the
analogous quantities calculated by perturbation theory in
Refs. 3 and 7; this is because the employed functions
x;(R) and x (&, R) differ from the functions constructed
in perturbation theory already in the second order in
@m)™.

In Table IV, we give the contributions -&@’ [nn,m]
of the different states |j) = |nn,m) of the discrete spec-
trum of the two-center problem to the binding energy
—£,. It can be seen that these values exhaust the con-
tribution of the states |j) of the discrete spectrum to
accuracy ~0.1 eV.

In Fig. 2, we have plotted the functions £’ [fn,m]
corresponding to the level (J=1, v=1) of the mesic
molecule dfu. It is readily seen that a significant con-
tribution to €2, is made only by the region of values
0 sk s3.

In Fig. 3 we have plotted for the state (J=1,v=1) of
the mesic molecule the values of -s$§> [n,], and also the
functions

—ey (k)=— 2 ey [kn.m], (28)
which shows the contribution of the states |j) and |ks)
to the binding energy —¢,,(dfu).

In Table V we give the relative contributions of the
discrete and continuous spectra of the two-center
problem to €,. It is readily seen that for the deep
levels the decisive contribution to €, is made by the
pair of states |j) =]000g), [000x), whereas for the
weakly bound states it is necessary to take into account

~&2 [kn,m], eV

0.0} [10]

2.05

FIG. 2. Contribution of various [knym] continuum states of the
two-center problem to the binding energy of the (J =1,v =1)
level of the mesic molecule dtu.
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FIG. 3. Comparison of the contributions of the discrete and
continuous spectra of the two—center problem to the binding
energy of the (J =1,» =1) level of the mesic molecule dti.. The
contributions summed over the quantum numbers [#,m] are
given:

2 ?)
Bu)(m)= zzu [nynom], 8512) (k)=2 E::) [knam].

nym ngm

the contributions €2 [ j] and €@’ [ks] from the excited
states |7) and | ks).

Further details of the investigation into the conver-
gence of our method of calculating the energy levels
of the mesic molecules can be found in our communica-
tion Ref. 25.

CONCLUSIONS

In this paper, we have shown that the expansion (10b)
of the wave function ¥,_.(r, R) with respect to the adiabatic
basis converges fairly fast and can be successfully used
for accurate calculation of the energy levels of u-mesic
molecules. In contrast to the earlier studies Refs. 2-3,
in which perturbation theory was used to solve the
problem (22), the results of the present paper do not
depend on the value of the small parameter (2M)~},
which arises naturally in the adiabatic method.*™

Analysis of the obtained results indicates that the
relative accuracy A&/¢ achieved in the present paper
in the calculation of the energy levels of p-mesic
molecules (~10~2 for deep levels and ~1072 for weakly
bound levels) may be improved by extending the system
of equations (22), and also by a more rational choice
of the values of R,, k,, AR, and Ak.

The absolute accuracy in the calculation of the energy
of the deep levels achieved in the present paper, ~0.1
eV, can also be improved by extending the system of
equations (22), as follows from the analysis of Table
V. The absolute accuracy in the calculation of the
energies of the weakly bound states of the mesic mole-
cules is somewhat higher at ~0.05 eV.

Weakly bound (J=1, v =1) states of the mesic molecules
ddu (Ref. 6) and dty (Ref. 2) were found earlier. The
energies €,, of these states calculated in the present
paper for the chosen values of N;, N,, N{*’, R,, AR,

and Ak are
&(ddp)=—1.91 eV, &, (dtp)=—0.64 eV.

Because of the importance of the obtained result for
describing the process of y catalysis in a mixture of
deuterium and tritium,?® it would be very desirable to
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calculate the energies of these states in some dif-
ferent way, using, for example, various variational
methods,'?:?°%" expanding the solutions ¥, (r,R) with
respect to two-center functions of Sturm type of a
purely discrete spectrum,?® solving the corresponding
Faddeev equations in the coordinate space,?® or directly
solving the eigenvalue problem for the function
F?(&,n,R) in the three-dimensional space (¢,7,R).*

We are grateful to S. S. Gershtefn, Yu. N. Demkov,
M. Kaschiev, I. V. Komarov, S. Yu. Slavyanov, and
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stages in this work.
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Parity nonconservation in bismuth atoms and neutral weak-

interaction currents
L. M. Barkov and M. S. Zolotorev
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Results are presented of measurements of the natural optical activity of atomic bismuth vapor in the region of
the M1 transition ‘S,,-’D;,, at 1 = 648 nm. The measured value of the circular polarization

P= —2R = —2Im[4(E1)/(M1)] = (40.4+5.4) X 1078 agrees with the results of the calculations performed
within the framework of the Weinberg-Salam method with sin’d = 0.25.

PACS numbers: 32.30.Jc, 11.30.Er

Following the discovery of neutral currents in weak
interactions between neutrinos and nucleons,!-3the in-
terest in weak-interaction gauge theories, which had
predicted the existence of these interactions, has in-
creased, and the problem of the existence of an anal-
ogous interaction between electrons and nucleons has
become vital. As early as in 1959, Zel’dovich* has
indicated that the weak interaction of electrons with
nucleons can lead to parity nonconservation in atoms.
The parity-nonconserving interaction of electrons with
nucleons leads to a mixing of levels of opposité parity
in atoms. It can be shown® that the spatial distribution
of the electron spin in the atom has in this case a spiral
structure, which in turn leads to a difference between
the interaction of right- and left-polarized photons with
the atoms and, as a consequence, to circular polariza-
tion of the radiation and to natural optical activity of
matter in the atomic state.

An important step towards real experiments aimed at
a search for this interaction was made by M. Bouchiat
and C. Bouchiat,’ who called attention to the enhance-
ment of the parity-nonconservation effects in heavy
atoms, and proposed an experiment for the measure-~
ment of circular polarization in the strongly forbidden
magneto-dipole transition in cesium. This was soon
followed by a number of suggestions™™ of studying the
natural optical activity of vapors of heavy metals near
the normal magnetodipole transitions.
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It is known'® that the parity-violating weak interac-
tion of electrons with nucleons leads to the appearance
of P-odd correlations of the form o°p, 7, p, and 0,

X 0 -p where 0 and p are the spin and momentum of the
electron, and o, is the spin of the neutron or proton.

In heavy atoms, the parity-nonconservation effects due
to the correlation of the electron spin with its momen-
tum are Z times larger than the effects due to correla-
tion of the spin of the nucleon with the electron momen-
tum, since the latter are determined only by nucleons
with unpaired spins.

We present below the results of an experimental
search for a parity-nonconserving weak interaction be-
tween electrons and nucleons, initiated by us in 1974
under the influence of discussions with I. B. Khriplovich
at our Institute.

We chose for the investigation the red bismuth line
A=648 nm; we started from the fact that this line can
be obtained from the dependable tunable cw dye laser
with a sufficiently narrow line. A shortcoming of this
transition is that it lies in a region overlapped by the
rather dense spectrum of molecular bismuth (the par-
tial vapor pressures of atomic and molecular bismuth
are approximately equal).

The ground state of the bismuth atom pertains to the
configuration 6p%, i.e., it has three outer p electrons in
excess of the filled shells. Normal M1 transitions are
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