
forces,  and coupled to the o-world by "bridges" of 
mass ive  par t i c les  xi  andwith the y, worlds by the  
br idges xi, .  The mos t  s t r ingent  bounds on the  p a r a m -  
eters of such  a picture c o m e  f r o m  cosmology based  
on the theory of the hot Universe (the big-bang model). 
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z-world could have disappeared a s  a result of a peculiar 
phase transition above the Planck temperature. 
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Calculation of the energy levels of p-mesic molecules of 
hydrogen isotopes in the adiabatic representation of the 
three-body problem 
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N. F. Truskova 
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The energy levels E,, of the mesic molecules ppp, pdp, ptp, ddp, dtp, and ttp in the states ( J v )  of the 
rotational and vibrational motion are calculated. The calculations are made in the adiabatic representation of 
the three-body problem, in which the wave function of the p -mesic molecule is expanded with respect to a 
complete set of solutions to the quantum-mechanical two-center problem. A numerical investigation was 
made into the rate of convergence of the expansion. For the weakly bound states (J = 1, u = 1) of the mesic 
molecules ddp and dtp the values ~ , , (ddp  ) = - 1.91 eV and E ,  ,(dtp ) = - 0.64 eV were obtained. 

PACS numbers: 36.10.Dr 

1. INTRODUCTION . =5626.51 eV.' 

At the  Laboratory of Nuclear Prob lems  at the  Joint 
Institute f o r  Nuclear Research ,  Dubna, a n  experimental  
measurement  was recent ly made1 of the rate of fo rma-  
t ion l,,, of the m e s i c  molecules  d t p  and the  lower bound 
A,,, 7 10' sec- I  was obtained. According t o  the calcula- 
tions of Ref. 2 ,  the high rate of th i s  p rocess  is due t o  
the  resonance mechanism of formation of the m e s i c  
molecules d t p  in  the weakly bound rotational-vibra- 
tional state with quantum numbers  J =  1, u = 1. The 
binding energy of th i s  state, &,,= 1 eV, was calculated 
earlier2 f o r  the f i r s t  t i m e  by perturbation theory  
real ized in the adiabatic representat ion of the th ree-  
body problem.'-' 

F o r  the  detailed study of p -mes ic  molecular  pro- 
cesses in a mixture of hydrogen isotopes and, in  
part icular ,  to descr ibe  the p r o c e s s  of resonance for-  
mation of the m e s i c  molecules d t p  , it i s  necessary  to 
know the i r  energy levels  to an accuracy -0.01 eV, 
which is -lo-' mesic-atomic energy units &, =2m,Ry 

In  the presen t  paper ,  we present  the resu l t s  of cal-  
culations of the energ ies  &,, of various (Ju) states of 
p - m e s i c  molecules  of the hydrogen isotopes. The cal- 
culations are made in the adiabat ic  representat ion of 
the  three-body problem, i n  which the  wave function of 
t h e  p - m e s i c  molecule is expanded in a complete set of 
solutions to the quantum-mechanical two-center prob- 
lem.'-= In  this  approach, the or iginal  eigenvalue 
problem f o r  the  nonrelativistic Schradinger equation in 
a six-dimensional space  reduces  to  the solution of a 
Sturm-Liouville problem f o r  a sys tem of ordinary in- 
tegro-differential equations. The  m a t r i c e s  of the coef- 
ficients of this sys tem (the effective potentials of the 
three-body problem in the adiabatic representat ion)  
are calculated with the necessary accuracy by means of 
t h e  algori thms of Refs. 8-13. 

The corresponding Sturm-Liouville problem is solved 
numerically with the  required relat ive accuracy in the 
framework of the continuous analog of Newton's 
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method14*15 by means of a l g o r i t h m ~ ' ~ - ' ~  realized in the 
form of a se t  of programs written in FORTRAN-4. All 
the calculations were made with a CDC-6500 computer. 
In our preceding papers, this Sturm-Liouville problem 
was solved in the two-level approximation,8 and also by 
perturbation theory.' The results  of these calculations, 
and also the results  of the best variational calcula- 
t i o n ~ ' ~ * ~ ~  a r e  compared with the values of E,, obtained 
in the present paper. 

2. FORMULATION OF THE PROBLEM 

The wave functions Qn,(r, R) and the total energies En, 
of the states br) of p-mesic molecules of the hydrogen 
isotopes a re  found from the nonrelativistic SchrBdinger 
equation in the six-dimensional (r  , R) space4: 

(H-Em,) Y,, (r, R) =0, (1) 

where (in units with e =f i  = 1) 

Here, R is the vector joining the nuclei of the mesic 
molecules a and b with masses M a  and M ,  (in what 
follows, Ma z-M,);  r is the vector joining the center of 
the interval R and the g- meson with mass  m,; ra and 
7 ,  a re  the distances from the nuclei a and b to the p -  
meson. 

The motion of the y - meson in the mesic molecule is 
characterized by the three parabolic quantum numbers 
n s[n,n,m], and the relative motion of the nuclei a and 
b by the set  of quantum numbers T =(Jm,vh), where J 
and m, a r e  the total orbital angular momentum of the 
three-body system and its projection onto the z axis of 
the laboratory coordinate system, v is the vibrational 
quantum number, and X =*(-)' is  the total parity of the 
three-body system. 

The most interesting energy levels of the mesic 
molecules correspond to the ground state of the motion 
of the p -  meson, i.e., the state with quantum numbers 
n =(000]. In the absence of a magnetic field, the energy 
of the p-mesic molecules does not depend on the quan- 
tum number m,, and in what follows we shall therefore 
omit it. Thus, for states with n =[000] and given total 
parity X the wave function depends only on the quantum 
numbers d and v :  

Y.,(r, R)=<r, Rlnz)=(r, RlJv)=Y,.(r, R). (4 

These wave functions satisfy the orthogonality relation 

The adiabatic basis with respect to which the wave 
function ( r , R ( ~ v )  of the state (JV) of the mesic molecule 
is  expanded is a complete set  of solutions to  the quan- 
tum-mechanical two-center p r ~ b l e m , ~  i.e., the problem 
of the motion of the IJ.- meson in the Coulomb field of 
two fixed nuclei a and b separated by the distance R: 

C@.(r; R),=Yzkz9.(r; R), 

9.(r; R)=<r; RIc)=(r; Rl  knzmp), 

where 

is the Hamiltonian of the two-center problem, E,(R) i s  
the term corresponding to the state I j )  of the discrete 
spectrum of this problem, and k is the momentum of the 
p -  meson corresponding to the state I c) of the continu- 
ous spectrum of this problem. 

The states 13) = 1 jp) of the discrete spectrum a r e  
labeled by the se t  j=[nln,m] of parabolic quantum num- 
be r s  n,, n,, m and parity p =(g,u) under inversion 
r- -r about the origin. In the spheroidal coordinates 

the solutions cp,(r;R), which a r e  bounded in the region 
l s [ < ~ o , - I - ~ q s l , O s q c 2 n , O d R ~ - ,  canbe  represen- 
ted in the form 

They satisfy the orthogonality relation 

The continuum states I c) Iksp) of the two-center 
problem a r e  characterized by the momentum k of the 
p -  meson, the se t  s =[%m] of parabolic quantum num- 
bers  n, and m,  and the parity p. The corresponding 
solutions, which a r e  bounded in the region 1 c [<a, 
- 1 < q ~ l , O d c p < 2 n , O c R < . ~ ,  

satisfy the orthogonality relation 

The dependence of the wave function Q,,(r,R) on the 
angular variables 8 and @ of the vector R ={R, 8, a} in 
the laboratory coordinate system, and also on the 
azimuthal angle rp of the vector r ={[,q, in the co- 
ordinate system which rotates with the vector R, is 
separated by means of a symmetrized combination of 
normalized Wigner D functions : 

which correspond to total parity X = +(-)J.4 

Using the solutions (7b) and (8b) and the functions (9), 
we can represent the wave function (4) in the form of 
the  expansion 
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The functions 

n p J v ( R )  = ( R ;  jpIJv)=(R; nln2mp(Jv), 

~ . ~ ' " ( k ,  R )  = ( R ;  ksp I Ju)=(R; kn,mp I I v ) ,  
(11) 

which a r e  regular a t  R =O and bounded on the half-axis 
0 c R <  a, describe the relative radial motion of the 
nuclei a and b in the p-mesic molecule and satisfy an  
orthogonality relation that follows from (5), (7b), and 
(8b): 

When one imposes on the wave function (1Oa) boundary 
conditions corresponding to the correct limit of dis- 
sociation of the p-mesic molecule into a mesic atom and 
a nucleus,' the solutions 

wa(b,  rl; R ) ,  w y ( b ,  I; R ) ,  cpSg(E, rl; k, R ) ,  cp..(S, 9; k,  R )  

in the expansion (lob) a r e  usually replaced by the linear 
combinations (in which the arguments a r e  omitted) 

with similar combinations for cp,, and cpsB. 

The transformation (12a) induces a transformation 
for the functions xj, E~::(R) and =x::(R): 

~ = 2 - " ( ~ r - k u ) ,  U F ~ - " - %  (UP+ X U )  (12b) 

and a similar transformation is induced for X$(k, R) 
and xZ(k, R). Since the relation 

c p j g ~ r + q i ~ ~ j u = c p ~ ~ ~ + c p ~ ~ b  (13) 

is satisfied, the expansion (lob) preserves its form 
with a changed meaning of the index p :  

p=(g, u)+p=(a,  b ) .  

Substituting the expansion constructed in this manner 
for the wave function ?Ir,,(r,R) in Eq. (1) and averaging 
it over the variables a, 8, cp,  C;, 77, we arrive at an 
infinite system of ordinary integro-differential equations 
on the half -axis 0 6 R e  m: 

with the boundary conditions (0 c k< m) 

x i  (0) =0, lim xi  ( R )  =0, i=1 ,2 , .  . . 
R+* 

where M = ~ , / m , ,  E," =En, - El, is the energy of the 
state (JU) of the p-mesic molecule measured from the 
energy E,, of the ground state of the mesic atom (m,,Ma), 
and a l l  quantities a r e  measured in units of e =fi = ma = 1. 

The system of equations (14) is written in the "two- 
component f ~ r m " ~ , ~ :  

xi  ( R )  =x~'"(R)  = ( ) , X .  ( I ,  R )  =~ ."(k .  R )  = 

U R  U b R  - 1 0 
Li"(R)= ( (iib,*(R) ( )  ) I =  ( 0  1 ) 

with similar expressions for the matrices Cf,(k, R), 
fi,,(k,R), and dss1(k, k ' , ~ ) .  

The potentials U,p,jp,(R) a r e  calculated using expres- 
sions that follow from the transformations (12a) and 
(12b): 

U,, jm(R),=1/2 ((Via, Viw. ju)  - (Vig, ju+Vtu, j g ) I  -2ME1.60, 

Ui., jb ( R )  2 ' 1 2  (( V , ,  jg-Viu. 2.) + (Vig, iY-  Viu, jz) J r  

Ue,  ja(R) ='/z((Via. ja-Viu la) - ( V U .  j u - v i u .  18) 1, 
(17) 

Utb, jb(R),=1/2{(Vip, ja+Viu. ju)  + (Via, juf Viu, ju))-2MEia6ij. 

The potentials v,,,,, = V,,.,,(R), etc., a r e  expressed 
i n  terms of the t e rms  E ~ ( R )  and the matrix elements 
HI;)@), H::)(R), Q ! ~ ) ( R ) ,  and B{:)(R), which a r e  
defined a s  f o l l ~ w ~ ~ - ' ~ ~ "  '13: 

Similar relations hold for V,,,,,(R) and Viu,j,(R) with the 
obvious substitution g- u on the right-hand side of Eqs. 
(18) and (19). 

For the potentials V,, ,, .(k, R), which couple the states 
of the discrete, 1 i ) ,  and continuous, 1 c ) ,  spectra of the 
two-center problem, the relations (18) and (19) hold a s  
before. 

The potentials VSp,,,,.(k, k', R),  which couple the con- 
tinuum states Ic) and I c ' )  of the two-center problem, 
can be represented in the general case in the form 

The potentials V,,, ,,(k, R), like those in (18), can be 
represented a s  

The expressions for the potentials V,,,,,(k, R), 
Vs,s,U(k,R), and Vsu,stg(k, R) are  constructed a s  in (18) 
and (19). 

Using the asymptotic behavior of the matrix elements 
(') R ,HIT  '(R), Q~;)(R), B:~)(R) in the limit R - we Hfj ( 

find that the origin for  the measurement of the energy 
En, (in units with e =ti =ma = 1) is4 

( 2 M )  -'V,., ,.(-) =Ela(m).=E,.=-'/z, 

i.e., it is equal to the energy of the ground state of the 
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mesic atom (m,, Ma). At the same time, U,,,,,(m) =O. 

Solving the singular Sturm-Liouville problem (14)-(15) 
with the potentials (17)-(21), we can find the energy 
levels &, and the wave functions x,(R) and x,(k,R) of the 
mesic molecules. 

3. SOLUTION TO THE STURM-LIOUVILLE PROBLEM 
FOR A SYSTEM OF ORDINARY DIFFERENTIAL 
EQUATIONS 

To solve the singular Sturm-Liouville problem (14)- 
(15) for the infinite system of ordinary integro-differ- 
ential equations on the ray 0 c R  < m we approximate it 
by the regular Sturm-Liouville problem for a finite 
system of equations of dimension N on the finite interval 
0 c R c R, (Refs. 22 and 23): 

with boundary conditions 

The numerical investigation of the convergence of 
the expansion (10) made in the present work shows that 
for  the calculation of the energy levels of the p-mesic 
molecules with accuracy -0.1 eV it is  sufficient to  se t  
N,=13, ~ , = 6 ,  R,=60, k,=10. T h e i n t e r v a l o s k s k ,  
for each state I ks) i s  divided up by NLS) points k, 
(0 = 1,2 , .  . . , N:')) with step Aka and a l l  integrals over 
k a r e  replaced by sums of the form 

where q (k , )~k ,  a re  the weights of Simpson's quadra- 
ture formula. When the continuous spectrum is made 
discrete in this manner, the total number of pairs of 
equations in the system (22) is 

In the present work N, =119, i.e., the total number of 
equations in the system (22) i s  2N =264. 

The potentials V,,(R), which couple the states I i) 
= (n,n,m) and I j) = (ninim') of the discrete spectrum of 
the  two-center problem for all  se ts  of quantum num- 
be r s  satisfying the condition 

and also the potentials V,,(R) and vjj(R), which couple 
the (g , u) pair of states ) 1) = 1 000) to the three pairs of 
states 1 j) = 1300), 1210), ( 120) in the shell n =4, were 
calculated by means of the algorithms of Refs. 8 and 9 

FIG. 1. Schematic form of the matrix of effective potentials 
Ujj(R) used in the solution of the system of equations (22a). 
The numbers Ni and 4 are the dimensions of the matrices 
Uij(R) and Ul,(k,R) which couple the states of the discrete 
spectrum and the states of the discrete and continuous spec- 
tra, respectively. The broken lines show the matrix used in 
the program BAAP. 

over the interval R =O. 1(0.1)20(1)100 with relative 
e r r o r  -loq7. The total number of potentials Vij(R) used 
was 436. 

The potentials V,,(k, R), which couple a pair of ground 
states of the two-center problem, (000g) and 1000u), 
to the pairs I ksg) and I ksu) of states of the continuum, 
were calculated with absolute accuracy -lo-= on the 
interval R = 0.1(0.1)5(0.2)11(0.5)20."~* For the states 
s =[n,m] =[00], the potentials were calculated for the 
values k =0.2(0.1)1(1)10 WiS) = 18), for the states 
[lo], [20], [01], and [ll] fork =0.2(0.1)1(0.2)2(1)10 
&lS)=22), and for the states [30] for k=0.2(0.2)2(1)5 
(iVLS) = 13). The total number of potentials Vls(k, R)  and 
VS,(k, R) used was 476. 

The diagonal matrix elements V,,,(k,R), V ,,,, (k, R), 
etc., which couple the pairs of states I c) = 1 kqmg) and 
1 c ' )  = I &mu) of the continuous spectrum of the two- 
center problem, were calculated in Ref. 13 with ab- 
solute accuracy for the se ts  n, =0,  1,  2, 3, and 
m =O,1 for the values k=0.2(0.1)1(0.2)2(1)10 in the 
interval R =0.1(0.1)5(0.2)11(0.5)20. 

The general form of the matrix of the potentials &R) 
calculated at the present time is shown in Fig. 1. 

For the numerical solution of the Sturm-Liouville 
problem (22) we used the algorithms of Refs. 16-18 
constructed on the basis of the continuous analog of 
Newton's method" and its modifications.15 The re -  
quired values of &,, x,(R), and Xs(k, R)  were calcula- 
ted by means of the programs ITER (Ref. 17) and BAAP 

TABLE I. Binding energies -&,, (eV) of the ( J v )  states of the 
mesic molecules ppp , pdp,pt~.  
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(Jul 

Method 
,001 , ,lo, , ,001 1 0 ,  100, , 110, 1 

Tw-level 
approximation 
Perturbation 
theory 
ITER 
BAAP 
Variational 
calculation 

PPW PtW P ~ W  
247.31 

253.55 

252.81) 
252.95 
253.09 ['eb] 

207.28 

213.85 

213.96 
213.97 
213.0 [*"I 

215.68 

221.49 

221.52 
221.52 
221.28 

101.47 

107.33 

106.95 
106.96 
107.23 [20]  

92.21 

101.30 

99.06 
99.01 
- 

91 35 

98.79 

97.36 
97.40 - 



TABLE II. Binding energies -E, (eV) of the (Jv) states of the TABLE IV. Contribution of the various states I j )  = Inpzrn) of 
mesic molecules ddp and dtp. the spectrum of the two-center problem to the binding energy 

-cJ, (eV) of the mesic molecules (Ediscr =EY; +c~&,). 

Mesic molecule dtp 

322.69 

85.34 Perturbation theory 
86.31 ITER* 

325.04 
- Variational calculation 

Mesic molecule d d ~  

317.04 1 32,21 1 230.10 ] -u.47 1 99.90 I Two-level approximation 

(Jul 

319.09 34.70 
319.15 
319.15 BAAP 

Variational calculation 

Method 

*The calculations with the program ITER were made for R, =20. 
**The values obtained with the program BAAP for R, =60. For 
R, =20, we have -Eii (ddp) =1.39 eV and - ~ ~ ~ ( c l t j 4 )  =0.17 eV, i.e., 
these values are just the same as the results obtained by the pro- 
gram ITER. 

(Ref. 18). The initial approximations for  E, and x,(R) 
were calculated using the program system,'' which 
makes it possible t o  solve a part ial  Sturm-Liouville 
problem for a system of -40 ordinary differential equa- 
tions. The  initial approximations fo r  the functions 
xs(k, R )  were taken equal to zero. 

The program ITER makes it possible to solve the 
partial Sturm-Liouville problem (22)-(23) for  a system 
of ordinary differential equations of dimension -300 for  
the  matrix of potentials shown in  Fig. 1. 

The program BAAP is constructed on the basis  of the 
program ITER to  solve the  problem (22)-(23) with a 
mat r ix  of potentials of special form, which contains 
only the potentials Ulj(R), Uj1(R), U,(k, R), Usl(k, R) 
Uj,(R), and USs(k, R) (in Fig. 1, this  matrix is indicated 
by the broken lines). This makes it possible to shorten 
the computing t ime by an  order  of magnitude compared 
with the program ITER. 

With the chosen method of dividing the interval 
0 GR aR, by the points R,, a t  which the values of the 
potentials Oil(?'), $,,(k, R),  and cSl(k, R)  a r e  specified, 
and also for  the chosen values of N,, N,, NLS), R,, the 
relative accuracy in the solution of the Sturm-Liouville 
problem (22) by means of the algorithms ITER and 
BAAP is 10-4-10-5. 

4. DISCUSSION OF THE RESULTS 

The resul t s  of the calculations a r e  given in Tables 
I-V. In the f i r s t  row of Tables 1-111 we give t he  

TABLE 111. Binding energies -&, (eV) of the (Jv)  states of the 
mesic molecule ttp. 

values of E ~ , ,  = cg)  calculated in the two-level approxima- 
tion (N, =l,N,=O) of the adiabatic method of Refs. 4-7 
by means of the algorithm SYSTEM. In this approxima- 
tion, the matr ix  of the potentials C(R) consists of only 
one block ell(R) (see Fig. I), the accuracy in the cal- 
culation of the energy &, for deep levels in 1-5 eV, and 
&;Y)(ddp) = -0.64 eV. The  (J= 1,  v = 1) stationary state 
of the mesic  molecule d tp in  this approximation i s  
absent, and instead there  is a quasistationary s ta te  
with energy &iY)(dtp) = +0.47 eV and width -0.2 eV. With 
the extension of the system of equations (22), this quasi- 
stationary level moves to the boundary of the continuum, 
and for  N, =4,  N ,  = O  the quasistationary state becomes 
stationary. In the variational calculations of Refs. 19 
and 20, the (J= 1, v = 1) stationary state of the molecule 
d t p  was ?ot found. 

(Ju) 

(001 

Method 

Tw*level approximation 
Perturbation theory 
ITER 
BAAP 
Variational calculation 

IJvI 

(00) 1 (00  1 (101 1(111  1 (201 1 , 3 0 1  

In the second row of Tables 1-111 we give the values 
of = Egv + c!?:~, calculated perturbatively in accordance 
with the algorithm of Ref. 3; the contribution of the dis- 
c re te  spectrum E, = E:) + E:/~~,! , ,  was calculated by means 
of the program SYSTEM for  Ni =13,Ns =0,  and the func- 
tions x,, and x,,, found in the solution of th is  system, 

a )  
were used to calculate the contribution cC,,, [see  (25)]. 

1 

The third row contains the resul t s  of calculations of 

361.56 

362.89 
362.95 
362.95 
361.4 [Irn]  

TABLE V. Contribution of the discrete and continuum states of 
thetwo-center problem to the binding energy 4, (eV) of the 
mesic molecules. 

[iml 1.591 1.114 1.213 0.948 0.310 0.282 
1.779 1.639 1.725 1.797 0.409 0.39; 

0.465 - 0.321 0.104 0.067 
[2001 0.332 0.229 0.232 0.181 0.059 0.053 
[ti01 0.221 0.138 0.284 0.245 0.048 0.051 
[020] 0.001 0.003 0.000 0.001 0.008 0.003 
[tot] - 0.130 - 0.099 0.021 0.015 

0.000 - 0,000 0.001 0.001 
6 2 8  0.088 0.088 0.069 0.022 0.019 

4 [ 0.075 0,041 0.tM 0.087 0.017 0.018 
0.001 0.002 0.000 0.001 0.003 0.002 

- e(21aircr 4.428 3.849 3.648 3.747 1.002 0.908 
- ediacr 251.075 105.085 219.049 94.888 1.560 0.261 

[ m l  

PPP P ~ C  d d ~  d t p  

246.947 101.236 215.401 91.141 0.558 -0.645 

46.81 

48.00 
48.69 
48.70 
- 

81.61 

83.68 
83.87 
83.88 
75.2 

43.23 

45.15 
45.24 
45.24 - 

*Values obtained in accordance with Eq. (24). In the two-level 
approximation of the system (14), we obtain &li' (ddp) = -9.640 eV 
and ~110' (dtp) = 0.474 eV instead of the given values. 

-El,, 

- E X  
ldC7 

-e!gt 
-&('A1 

J" 
-&(0)-& (2) 

Ju Jo 

- e ~ u  

287.65 

289.19 
289.15 
289.15 
288.72 ['O] 

170.95 

1i2.79 
172.64 
172.65 
- 
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I dtCL 
ddC 2711.27 PPCL 

2528.52 

0.558 * 
1.002 

0.349 

1.351 

1 909 

1.907 

PdC 
2663.23 

246.947 

4.127 

1.688 

5.615 

252,562 

252.954 

-0.645 * 
0.906 

0 374 

1.280 

0.635 

0.636 

215 401 

3.604 

2 199 

5.803 

221.204 

221.543 

101.236 

3.849 

1.723 

5 572 

106.808 

106.982 

91.141 

3.747 

2.321 

6.068 

97.203 

97399 



c ,  by the program ITER with completely filled matrix 
of potentials d(R), the form of the matrix being shown 
in Fig. 1. The fourth row contains the results  of cal- 
culations by the program BAAP. 

In all  the listed cases we used only the diagonal 
matrix elements (20), which couple the states I ks) of 
the continuum, i.e., the potentials in Eqs. (22) have the 
form fissr(k, k',R) = ~, , (k ,~ )6 , ,~6(k  - k'), and in the 
potentials O,,(~,R) allowance is  made for only the lead- 
ing term 

o,.. (k ,  R )  =1MkZ. 

In the fifth row, we give the results  of the best varia- 
tional  calculation^.^^ s20 

In the calculations, we used the following values of 
the masses of the particles (in units of the electron 
mass m,) and the value of ~ y ' ~ :  

m,=206.769, Mp=1836.152, Md=3670.481, 
MC=5496.9i8, Ry=13.6058 eV. 

It can be easily seen in Tables 1-111 that the values of 
E ,  calculated by perturbation theory a r e  very close to 
the values calculated by the programs ITER and BAAP. 
  he values of E, calculated by these two programs a r e  
equal to a high accuracy (-lo-' eV). This means that 
in calculations to this accuracy the contribution of the 
potentials d , , ( ~ )  for i #  j #  1 can be ignored. As a rule, 
the results  of calculations of E, with the boundary con- 
ditions (22b) for R,=60 and R,=20 do not differ to ac- 
curacy -10' eV, and therefore the calculations by means 
of the program ITER were made for R,=20. An ex- 
ception was the weakly bound states (J= 1, v = 1) of the 
mesic molecules ddp and d tp ,  for which the values of 
cJu calculated for R, = 20 and R, = 60 differ appreciably 
(see Table 11). 

Having calculated the functions x,(R) and x,(k,R) by, 
for example, the program BAAP, we can find the con- 
tribution made to & ,  by each pair of states ( j )  = Inln2m) 
and I c) = ( kn2m) of the two-center problem. In turn, 
this makes it possible to investigate numerically the 
ra te  of convergence of the expansion (lob) and deter- 
mine the minimal number of terms in this expansion 
needed to calculate E, with the given accuracy. 

To this end, we represent the energy E, of the state 
(Jv) in the form of a sum analogous to the perturbation 
theory ser ies  of Ref. 3: 

(0)  ($1 
eru=er. +e,. , (24) 

where 
8," 

E::) = (2M) J dR X, ( R )  

The functions x,(R) and x,(k,R) a r e  normalized by the 
condition 

which approximates the normalization condition ( l l a )  
in the same sense in which the system of equations (22) 
approximates the system (14). The sums on the right- 
hand sides of Eqs. (25a) a r e  to  be understood in accord- 
ance with the definitions (16), for example, 

etc. 

Note that &$) and &g) calculated in accordance with 
Eqs. (24) and (25a) a r e  only approximately equal to the 
analogous quantities calculated by perturbation theory in 
Refs. 3 and 7; this is because the employed functions 
xI(R) and x,(k,R) differ from the functions constructed 
in perturbation theory already in the second order in 
(2 M)-'. 

In Table IV, we give the contributions - ~ 2 )  [nln2m] 
of the different states I j) = In,n2m) of the discrete spec- 
trum of the two-center problem to the binding energy 
-c,. It can be seen that these values exhaust the con- 
tribution of the states I j) of the discrete spectrum to 
accuracy -0.1 eV. 

In Fig. 2, we have plotted the functions &k) [kn2m] 
corresponding to  the level (J= 1, v = 1) of the mesic 
molecule dtp.  It is readily seen that a significant con- 
tribution to &::,,, is made only by the region of values 
0 6k c3.  

In Fig. 3 we have plotted for the state (J= 1, v = 1) of 
the mesic molecule the values of -&El [nl], and also the 
functions 

(.I 
-e,. ( k ) =  - E::) [kn.m],  

"I.." 

(28) 

which shows the contribution of the states I j) and (ks)  
to the binding energy -&,,(dtp). 

In Table V we give the relative contributions of the 
discrete and continuous spectra of the two-center 
problem to c,. It is readily seen that for the deep 
levels the decisive contribution t o  &, is made by the 
pair of states I j)  = IOOOg), 1000u), whereas for the 
weakly bound s ta tes  it is necessary to take into account 

FIG. 2. Contribution of various [knzm] continuum states of the 
two-center problem to the binding energy of the (J = 1, v = 1) 
level of the mesic molecule dtp. 
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FIG. 3. Comparison of the contributions of the discrete and 
continuous spectra of the two-center problem to the binding 
energy of the (J = 1, v = 1) level of the mesic molecule dtp . The 
contributions summed over the quantum numbers [nzm] a r e  
given: 

the contributions E Z )  [ j] and &g) [ks]  f r o m  the excited 
states I j )  and I ks). 

F u r t h e r  detai ls  of the investigation into the  conver- 
gence  of our  method of calculating the  energy leve l s  
of the m e s i c  molecules c a n  be  found i n  o u r  communica- 
tion Ref. 25. 

CONCLUSIONS 

In t h i s  paper ,  we have shown tha t  the expansion ( lob)  
of the  wave function !P,(r, R) with respec t  to t h e  adiabatic 
b a s i s  converges fair ly  fas t  and can  be  successful ly used 
for  accura te  calculation of the  energy levels  of p -mes ic  
molecules. In con t ras t  to the e a r l i e r  s tud ies  Refs. 2-3, 
i n  which perturbat ion theory was used to solve the  
problem (22), the r e s u l t s  of the  p resen t  paper  do not 
depend on the value of the s m a l l  p a r a m e t e r  (2M)-', 
which arises naturally in the  adiabatic 

Analysis  of the obtained r e s u l t s  indicates that  the  
re la t ive  accuracy A&/& achieved in the p resen t  paper 
i n  the  calculation of the  energy levels  of p -mes ic  
molecules  f o r  deep  levels  and  -10" f o r  weakly 
bound levels)  may be improved by extending the s y s t e m  
of equations (22), and a l so  by a m o r e  rat ional  choice 
of the  values of R,, k,, AR,  and Ak. 

The  absolute accuracy  i n  the  calculation of t h e  energy 
of the deep levels  achieved in the  p resen t  paper ,  -0.1 
eV, can  also b e  improved by extending the  sys tem of 
equations (22), as follows f r o m  the ana lys i s  of Table 
V. The  absolute accuracy  in t h e  calculation of the 
energ ies  of the weakly bound states of t h e  mesic mole-  
cules  is somewhat higher at -0.05 eV. 

Weakly bound (J= 1, v = 1) s t a t e s  of the m e s i c  molecules  
d d p  (Ref. 6) and d t p  (Ref. 2) were  found earlier. The 
e n e r g i e s  E, of these  states calculated in  the p resen t  
paper f o r  the chosen values of N,, N,, N?), R,, AR, 
and  Ak  are 

Because of the importance of the  obtained resu l t  f o r  
descr ibing the process  of C( catalysis  i n  a mixture of 
deuter ium and tritium:6 it would b e  v e r y  des i rab le  to 

calculate  t h e  e n e r g i e s  of t h e s e  states i n  s o m e  dif- 
f e r e n t  way, using, f o r  example,  var ious  variat ional  
 method^,'^.^^*^^ expanding t h e  solutions rk,(r,R) with 
respect to two-center functions of S turm type of a 
purely d i s c r e t e  s p e ~ t r u m : ~  solving t h e  corresponding 
Faddeev equations in  the  coordinate space,29 o r  direct ly  
solving the  eigenvalue problem f o r  the function 
F:(.$, q ,  R )  in  the three-dimensional  space  (6, q ,  R)." 
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Parity nonconservation in bismuth atoms and neutral weak- 
interaction currents 
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Results are presented of measurements of the natural optical activity of atomic bismuth vapor in the region of 
the M1 transition 4S,,,-2D,,2 at A = 648 nm. The measured value of the circular polarization 
P = - 2R = - 2 Im [A(El)/(Ml)] = (40.4*5.4)~ lo-' agrees with the results of the calculations performed 
within the framework of the Weinberg-Salam method with sin28 = 0.25. 

PACS numbers: 32.30.Jc, 11.30.Er 

Following the discovery of neutral cur rents  in weak 
interactions between neutrinos and nucleons,'-3 the in- 
te res t  in weak-interaction gauge theories, which had 
predicted the existence of these interactions, has in- 
creased,  and the problem of the existence of an  anal- 
ogous interaction between electrons and nucleons has 
become vital. As early as in 1959, Zel'dovich4 has  
indicated that the weak interaction of electrons with 
nucleons can lead to parity nonconservation in atoms. 
The parity-nonconserving interaction of electrons with 
nucleons leads to a mixing of levels of opposite parity 

It i s  known1' that the parity-violating weak interac- 
tion of electrons with nucleons leads to the appearance 
of P-odd correlat ions of the form o 0 p ,  U, .p, and 0, 
x a .p  where o and p a r e  the spin and momentum of the 
electron, and a, is the spin of the neutron o r  proton. 
In heavy atoms,  the parity-nonconservation effects due 
to the correlation of the electron spin with i t s  momen- 
tum a r e  Z t imes  la rger  than the effects due to corre la-  
tion of the spin of the nucleon with the electron momen- 
tum, since the latter a r e  determined only by nucleons 
with unpaired spins. 

in atoms. It can be shown5 that the spatial distribution 
We present  below the resul t s  of a n  experimental 

of the electron spin in the atom has in this  case  a sp i ra l  
search for a parity-nonconserving weak interaction be- 

structure,  which in turn leads to a difference between 
tween electrons and nucleons, initiated by u s  in 1974 

the interaction of right- and left-polarized photons with 
under the influence of discussions with I. B. Khriplovich 

the atoms and, as a consequence, to c i rcular  polariza- at our Institute. 
tion of the radiation and to natural optical activity of 
matter  in the atomic state. We chose for  the investigation the r e d  bismuth line 

A =  648 nm; we s ta r ted  f rom the fact that this  line can 
An important s tep  towards real experiments aimed at 

be  obtained from the dependable tunable cw dye l a se r  
a sea rch  for  this interaction was made by M. Bouchiat 

with a sufficiently narrow line. A shortcoming of this  
and C. B ~ u c h i a t , ~  who called attention to  the enhance- 

transition i s  that i t  l ies  in a region overlapped by the 
ment of the parity-nonconservation effects in heavy 

ra ther  dense spectrum of molecular bismuth (the par -  
atoms,  and proposed an  experiment for  the measure-  

t ial  vapor p re s su re s  of atomic and molecular bismuth 
ment of circular  polarization in the strongly forbidden 

a r e  approximately equal). 
magneto-dipole transition in  cesium. This was soon 
followed by a number of  suggestion^^-^ of studying the The ground s ta te  of the bismuth atom pertains to the 
natural optical activity of vapors of heavy metals near configuration 6p3, i. e . ,  it has three  outer p electrons in 

, the normal magnetodipole transitions. excess of the filled shells. Normal M1 transitions are 
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