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We consider the nature of the two-dimensional mixed state produced on the inner surface of a hollow cylinder
when the superconductivity is destroyed by current. The two-dimensional mixed-state layer constitutes a
structure periodic along the cylinder axis, consisting of alternating annular superconducting regions and
regions in which the macroscopic phase coherence is disturbed and the order-parameter phase undergoes at
certain instants of time 27 jumps at a frequency satisfying the Josephson condition, while the order parameter
oscillates between zero and a certain finite value. This picture is analogous to the phase slippage centers in the
resistive state of a narrow superconducting channel. The current-voltage characteristic of the sample is
calculated, and one of its peculiarities is the presence of an excess current that depends little on the sample

voltage.

PACS numbers: 74.55. + h

1. INTRODUCTION

In the study of the properties of current-carrying
super-conductors a situation frequently arises wherein,
despite of the presence of a constant electric field in
the sample, purely thermodynamic factors favor the
formation of a superconducting state either in the entire
sample or in definite sections of the sample (if the tem-
perature of the superconductor and the magnetic fieldin
these sections are lower than the critical values).

Thus, the coexistence of a constant electric field and
superconductivity is observed in narrow (quasi-one-di-
mensional) superconducting channels in a certain range
of current (the so-called resistive state; see, e.g.,
Refs. 1 and 2). One more example is connected with the
destruction of the superconductivity by current in solid
type-I superconductors, when the sample becomes
stratified into alternating normal and superconducting
domains (the intermediate state). The superconducting
domains cannot be in touch with one another on the
macroscopic sections, for otherwise the sample be-
comes short-circuited. It is clear nevertheless that
near the cylinder axis, where the magnetic field is
weak, the formation of the superconducting state should
be favored.

A peculiar situation takes place when the supercon-
ductivity is destroyed by current in hollow type-I cylin-
drical samples. As noted by L. Landau,® when the cur-
rent through the sample exceeds .7, (v} +73)/2r,7,
(where 7 =chr/2 is the critical current, and »; and
7, are the radii of the inner and outer surfaces of the
cylinder), the intermediate state in the interior of the
sample vanishes and goes over into the normal state.

At the same time, on the inner surface the field is
weak, therefore the normal state is unstable there. The
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state produced near the inner surface of the cylinder is,
however, not purely superconducting, since a constant
electric field is present in the sample. Such a state is
called two-dimensional mixed (TM), and was experi-
mentally observed by I. Landau and Sharvin.! A qualita-
tively similar picture appears on the surface of a bulky
superconducting sample when an external magnetic field
exceeding the critical value is turned off. When turned
off, the magnetic fieldin space vanished rapidly, where-
as in the sample volume, on account of the induced eddy
currents, it retains a large value for a rather long time.
As a result, the formation of the TM state turns out to
be convenient on the surface. This situation was inves-
tigated experimentally in detail by Dorozhkin and Dolgo-
polov.®

In all the listed examples, in some sections of the
superconductor there exists simultaneously a constant
electric field and superconductivity. The primary rea-
son is that the constant electric field penetrates into the
superconductor to a finite depth lg. It is known that this
depth as a rule greatly exceeds the coherence length
£(T) as well as the penetration depth A(T) of a constant
magnetic field (for alloys without paramagnetic impur-
ities we have near the critical temperature lg =1.(4T
/7A)/2 8 where I is the diffusion length of the quasi-
particles I = (27,,)'?).

We are dealing thus with a situation in which the es-
tablished superconductivity exists against the back-
ground of a constant electric field. If the conditions of
the problem are such that the field differs from zero in
macroscopic sections of the sample, then the scalar po-
tential ¢ can assume large values. It is clear that when
the latter increases the superconductivity should be-
come destroyed in the entire volume. This, however,
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does not take place for the following reason. The be-
havior of the superconductor is determined by the gauge
invariant scalar and vector potentials

1 0y
O—q+—2%.
e o

(4
Q=A T2 Vi,
where x is the phase of the order parameter. At some
points of the sample and at definite instants of time, the
phase x undergoes jumps in order to ensure by the same
token a finite, in the mean, gauge-invariant scalar po-
tential &, In these space-time points (which are called
the phase slippage centers’—PSC) the order parameter,
naturally, vanishes. Thus, at the expense of destruc-
tion of the superconductivity in relatively narrow vicin-
ities of the PSC, the existence of superconductivity is
ensured in macroscopic sections of the sample.

The PSC concept turned out to be quite fruitful as ap-
plied to the resistive state of quasi-one-dimensional
superconductors.”® "1 In the present paper we attempt
to use a previously developed approach2 to construct a
model of the TM state that is produced on the inner sur-
face of a hollow cylinder.

According to the premises of the earlier studies,? the
PSC which are essentially dynamic objects, occupy
rather narrow regions in the superconducting structure,
whereas in the bulk of the volume the picture is static,
with the electric field E and all the quantities that de-
scribe the superconductor evolving slowly over scales
of the order of the penetration depth Iz of the electric
field, which exceeds the coherence length and the pene-
tration depth of the magnetic field. Of very great use in
this connection are the ideas advanced by Andreev and
Tekel’ (AT),' that for a weak electric field'’ the struc-
ture of the TM layer in the main volume is determined
by the same factors that take place in the absence of an
electric field.

The picture proposed below can be briefly described
in the following manner. In view of the weakness of the
electric field, the thickness d of the TM layer, which in
our case turns out to be less than Iz, as well as the be-
havior of the order parameter in the layer and the value
of the magnetic field on the boundary with the normal
region are determined locally (i.e., at a given point
along the cylinder axis) are deter mined by the AT solu-
tions!!; these quantities, in turn, vary slowly along the
cylinder axis over scales of the order of Iz. When that
section of the TM layer where the macroscopic phase
coherence is approached, [we shall call this section the
phase slippage region (PSR)], the gauge-invariant po-
tential ¢ increases in absolute value.

In the PSR, in accordance with the premises of the
preceding studies,’ the order parameter executes strong
oscillations, and at the instant when the order param-
eter turns to zero its phase experiences a jump of 27.
The frequency at which the order parameter oscillates
and at which its phase experiences jumps is determined
by the Josephson relation 2 eV =w, so that a poetntial &
that is finite in the measn is ensured.”® This picture
repeats periodically along the cylinder axis, with V in
the relation above representing the potential difference

341 Sov. Phys. JETP 52(2), Aug. 1980

between two neighboring superconducting sections. The
question of the structure of the PSR itself remains as °
yet open.

The proposed picture differs from the model of Gor’-
kov and Dorokov!? primarily because the electric field
in the superconducting TM layer is in our case different
from zero on account of the large penetration depth, lg
> ¢(T),d, and has a component tangential to the layer,

2. MODEL DYNAMIC EQUATIONS OF

SUPERCONDUCTIWITY.

The complete system of dynamic equations that de-
scribe the behavior of a real superconductor with a gap
in the energy spectrum is quite complicated. In addition
for the equations for the modulus of the order param-
eter A and for the potentials Q and &, it contains also
the kinetic equations for the distribution function. A
closed system containing only the superconducting pa-
rameters A, Q, and & can be obtained only near the
critical temperature and under most stringent restric-
tions on the characteristic spatial and temporal scales
of variation of all the quantities. It is therefore quite
useful to consider first the simplest model dynamic
equations, which constitute a time-dependent general-
ization of the Ginzburg-Landau equations. In dimen-
sionless variables, they take the form

wON/ O+ (AQ = 1) A=\ *A=0), (1)
j=x"rot rot Q=—9Q/d31— ¥V —A\*Q. (2)
uA2D+div (A2Q) =0. (3)

The unit length is here the coherence length £(T), the
unit of A is its equilibrium value in the absence of a
magnetic field, and the magnetic field is measured in
units of cZegz. The critical field H, corresponds to H,
=31/, where  is the Ginzburg-Landau parameter.
The potentials Q and ¢ are given by

Q=A4-Vy,
It follows from (2) and (3) that

O =¢-+dy/ot.

J
uA*®—V:Q —Ediv Q=0. (4)

We see therefore that the parameter u is connected with
the depth of penetration of the constant electric field

u=g3(T)/l:*.

At u =12, the system (1)-(4) corresponds to a super-
conducting alloy with a large concentration of paramag-
netic impurities.13 In this paper, just as before,? we
shall, however, regard « as a free parameter. As
noted in the introducil.on, for ordinary superconductors
(with a gap in the energy spectrum), as a rule Iz > &(T).
We therefore consider below the case u <1,

Concerning Eq. (2) we must make one more remark.
The local connection between the field
E=—V0—0Q/ot (5)

and the current, which was proposed in (2), takes place
only in rather dirty superconductors, whereas in the
experiments of Refs. 4 and 5 the samples used were
quite pure. Nonetheless, when considering the simple
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situation, we shall use this equation.

We assume that the sample is a type-I superconductor
with n«1, The wall thickness of the hollow cylinder is
assumed to be small compared with its radius D <7,
By virtue of the axial symmetry of the problem, we di-
rect the z axis along the generator of the inner surface
of the cylinder, and the x axis along the normal to the
inner surface, so that x =0 corresponds to the inner
surface and x =D to the outer one. We assume, of
course, that the wall thickness D is much larger than
the depth of penetration of the field Iy =2"'/2,

As indicated in the introduction, it is assumed in the
considered picture that the PSR, which constitute in es-
sence dynamic formations occupy rather narrow sec-
tions compared with the regions where the static situa-
tion holds. The conditions needed for this purpose will
be discussed later. We consider first the behavior of
all the quantities in the static region.

The thickness d of the TM layer is generally speaking
of the order of unity (i.e., of the order of ¢ in ordinary
units) and is small compared Wl/h the depth of penetra-
tion of the electric field, d<<u™ %, Therefore & changes
little over the thickness of the TM layer. Integrating
the z-component of Eq. (2) with respect to dx from 0 to
d, we obtain

’Ho-—d + L., (6)

where H; is the value of the magnetic field on the bound-
ary between the TM layer and the normal region, and

d

I= j; de=— iAzo, dz (7)

0

is the total superconducting current flowing over the TM
layer (per unit length of the inner periphery of the cy-
linder base).

Since the density of the superconducting layer along
the x axis vanished on the inner surface of the cylinder
and on the boundary of the TM layer with the normal re-
gion, the integration of Eq. (3) with respect to dx yields

un®=dl[./dz,

In the derivation (8) we used the fact that A =0 at x =d.

From (4) we obtain in the same manner

un®+j,.

d
dz 0 9

where

) a0

="
is the density of the normal current that flows out of the
TM layer along the x axis. In Egs. (6), (8) and (9) all
the quantities are functions of the coordinate z and vary
over scales of the order of 1’2,

In the static region we have E=-V® =V, therefore
the chemical potential of the pairs

1 07
2% ot
does not depend on the coordinates.

The values of p,
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n= j‘ Atdz. (8) .

for neighboring static regions differ from each other by
an amount &(-L)-&(L)=V. What is of importance to us
at present is the circumstance that, by virtue of the
continuity of the potential ¢ and of the electric field we
can thus assume that in each region with static condi-
tions the potential ¢ in the TM is connected, accurate
to the constant j,, with the potential ¢,(x,2) in the
normal region by the relations

do.(z,2) | _ .
BRI M (10)

The potential ¢,(x,2) satisfies the equation

O=g.(z=d;z),

V2. (z, 2)=0. (11)

The electric field is periodic, with a structure period
2L ~u~1/? so that the solution of (11) takes the form

sin(n—lci-z) . (12)

(We have chosen a solution that is odd with respect to
the plane z =0.) The average intensity E is defined as E
=V/2L. Using the conditions (10) we obtain

ch[nkL-*(D—z)]

on(@2)=—Ect ), o ch[nkL—"D]
R0

Jne= nk [nkD]_“—-—[d)( "Y+Ez’ ]sm(sz )sin(ililiz). (13)
The quantity j. is of the order of &/L~u'/?®. Esti-
mating the remaining terms in Eq. (9), we see that they
are of the order of ®dL2~ud®. Since d<<L~u"/?  the
term with j,, in this equation is the largest. Thus, Eq.
(9) for the potential & can be solved by successive ap-

proximations

O=—FEz+Q’.
For &’ we obtain in turn

L ’
- k k kD 1 d:
O’ (z)=u V InEz’ sin(iL—z’) sin(—%—z) th“[ nL ]:—k

ka0 —L

The quantity &'(z)~dEz/L < Ez.

For the potential in the normal region we obtain with
the aid of (12)

) ch[nkL (D l)]
@n(z,2)=—Ez+u 2 sh[nkL~'D]

Xjn(z VEzZ' sm(%z) in(nz )izl; .

From this we readily get the distribution of the field E
==Vg, in the normal region. The fact that ¢ =~ -Ez is
evidence that the problem of the structure of the TM
layer should be solved for a specified constant electric
field, which is formed by the macroscopic normal re-
gion adjacent to the TM layer.

Substituting ® =—E z in Eqgs. (6) and (8), we get

wH,—dE=I,, (14)
—unEz=dl/dz. (15)

The quantities Hy(z),d(z) and n(z) can be connected with
one another with the aid of the AT solution. Let us re-
call in this connection the principal result of that refer-
ence. Since the TM layer is narrow, d <L, we need
retain in (1) only the terms @2 and 3%a/3x?, since Q?

« @2 and 3%A/9z22 <« 3%A/dx*. Writing down (1) together
with the z-component of Eq. (2) we have (here and else-
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where we designate the average electric field intensity
by the letter E):

) 2 o 2 — A —
(A*+Qs -1)A Py =0, (16)
2 A = F—A?
—K v-bz—zl- E—-A 0;. (1 7)
These equations have a first integral
_1‘_ A2 2A2 9A ,_zao‘z —
S A=A+ A (a) " (W) —2EQ.=C. (18)

In the interior of the superconducting region (see Fig. 1)
the total current is screened, so that @, =E/A% On the
inner surface of the cylinder we have A =4, aQ,/ax
=-H=0and 9A/3x =0. Hence C=A}/2-Al-EY/AL In
the normal region A =9A/9x =0, 9Q,/dx =~H,, so that

K HE=A — % AS+EYA—2EQ,.

The width of the transition section between the normal
and superconducting regions coincides with the depth of
the screening of the strong magnetic field, which, ac-
cording to Ref. 14, is of the order of »Y2, In this re-
gion & ~%Y%and @ ~%*1/?, so that at E<«x'”? the mag-
netic field on the boundary of the TM layer is

1 1 "
H.,=—K—(Ao’——2—Ao‘) .
and coincides with the AT result.!

The inequality E <!’/? is the limit of applicability of
the AT solution. Actually the electric field is much we
weaker. The critical current that produces on the outer
surface of the cylinder a field £ 1%« is equal to 7,
=2"%nyx, and its density is jo=w/2!/?D. Thus, ata
current of the order of critical we have E ~«/D. The
upper limit of E, according to AT, is Ep,,~ "%, Which is

also much less than »2,

The spatial behavior of A(x) can be determined from
(18) by leaving out of it the terms containing @, which
are significant only over distances on the order of nl/2
from the boundary. According to AT (Ref. 11), A(x) is
expressed in terms of the elliptic sine

d—z
A‘(.’C)=Ao sn m, k] )
where the parameter 2, 0 <k<1, is connected with A,
by the relation

Ao=2"K/ (1+F2) ™. (19)
The thickness of the layer in a magnetic field H is ex-
pressed in terms of the same parameter:

FIG. 1. Schematic dependence of the order parameter A and
of the magnetic field H in the TM layer on the coordinate x
directed into the interior of the sample in the AT model (local
dependence of these quantities in our model). The value x =0
corresponds to the inner surface of the cylinder.
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24k
x (14K
Here K (k) is a complete elliptic integral of the first
kind.

d=(1+k*)"K(k); H,= (20)

When & changes from 0 to 1, the order parameter A,
on the inner surface increases from 0 to 1, the field H,
increases from 0 to H,, and the thickness d of the layer
changes from 7/2 at =0 to logarithmically large val-
ues d=2"121n[1/(1-k)] as k— 1.

In contrast to the AT model, in our case the param-
eter k in Eqgs. (19) and (20) depends adiabatically on z.
With the aid of (14) we obtain in turn

2%
L= {irm -
The dependence of I, on k is shown schematically in Fig.
2.

E rynk () } (21)
®

A specified value I, in the interval =mE/2 <I; <I o
corresponds, generally speaking, to two values of k. It
is shown in the Appendix that only the descending branch
of the I (k) plot is stable. This result is in a certain
sense analogous to the known situation in the one-dimen-
sional case, where the superconducting current and the
order parameter A are connected by the relation js
=A%1-A%!2 and again only the descending branch
(2)!/2< A <1 is stable. The instability of the ascending
branch of I;(k) can be seen also from the following ex-
ample. Assume that the total current.f is less than the
critical current, so that E =0, If the branch 0<k<1
were stable, then a possible solution would be one in
which the superconducting region occupies only part of
the cylinder, with thickness d(k) determined by the con-
dition I =I,2k/(1 +k%), and the entire current would flow
through the superconducting region. In the actual case
this is not so, and the superconducting region extends at
S < F, over the entire sample.

We express 7 in (8) in terms of k& with the aid of the
AT solution:

2
n= W[K(k) —E(k)1, (22)
where E(k) is a complete elliptic integral of the second
kind. It is now easy to integrate Eq. (15):

al. dk. (23)

Here k, is an integration constant located on the de-
scending branch of the I (k) defined by Eq. (21), and &

FIG. 2. Schematic plot of I((k¥). Curves 1, 2, and 3 corres-
pond to different values of E/n: E{<E,<Ej.
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> k. Expression (23) gives the dependence of the pa-
rameter & of a coordinate z along the cylinder axis, and
determines by the same token the behavior of the layer
thickness d(z), of the magnetic field Hy(z) on the bound-
ary, and of the order parameter Ay(z) within the limits
of one static region -L <z <L, These static regions
form a periodic structure along the cylinder axis and
are separated from one another by the PSR.

Figure 3 shows the force lines of the electric field and
the boundary of the TM layer as functions of the coor-
dinate z along the cylinder axis. The shaded sections
correspond to the PSR, where the static approximation
is violated and the order parameter undergoes strong
oscillations from zero to a certain value of the order of
unity. At the instant of vanishing of the order param-
eter, the superconducting current flowing through the
TM layer, I, (z =L), also vanishes at the points z =L.
The amplitude 8/,(L) of its oscillations can be estimated
from Eq. (8), which is valid also in the nonstationary
region,

Let the width of the nonstationarity region, i.e., of
the PSR, by zy, with z; < Ig. Then in the static region,
when the distances 6 from the PSR satisfy the condition
21K 82 K<L, the oscillations of I, are small: &I, I,
Integrating Eq. (8) with respect to dz from L - 6z to L,
we find that the amplitude of the oscillations in the PSR
itself are of the order of

aI.(L)~uj n® d.
Since the product A% is always finite (the gauge-invar-
iant potential ¢ itself, of course, becomes infinite at
the phase-slippage instant), we have for 8I4(L)

61,(L) ~dEbdz/L<dE.

Let now the superconducting current near the PSR be
equal to I (L - 6z). With the aid of exactly the same es-
timates we can show that |,(L)-I,(L - 82)|< Ed. Inas-
much as at the instant of phase slippage I,(L) =0, and
the amplitude of its oscillations is small, we always
have I (L)< Ed. It follows therefore that also I (L — 6z)
<« Ed. Since we have chosen 6z «< L, it follows that,
considering the problem of scales z~u"/2~L, it can be
shown that the point z =L corresponds to the value k£ =k,
determined by the condition / (k) =0:

(l+k,‘):"‘—_ %®

K(k:)-——(ﬁ;———'i. (24)

i
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FIG. 3. Distribution of the field E and of the TM layer over
the cylinder thickness. Solid line—force lines of E; dashed
line—boundary of superconducting region; the shaded sections
are annular PSR; the dash-dot line corresponds to the cylinder
axis.
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FIG. 4. Structure of TM layer. The solid lines §how the quan-
tities d(z), Is(2), ®(2) in the static region. The dashed lines
show their behavior in the PSR. The dashed hatched line
shows the position of the TM layer boundary at the instant of
phase slippage.

The period 2L of the structure is obtained from (23),
where we must put 2 =ky, 2 =L. Expression (23) con-
tains the free parameter k;, and the question of its
choice will be discussed in the next section.

As for the properties of the PSR itself, this question
calls for further investigation. It can be assumed that
in this region, at definite instants of times, an instabil-
ity develops and leads to collapse of the order param-
eter and to propagation of a normal section into the in-
terior of the superconducting region. When the normal
section reaches the inner surface of the cylinder, a
phase slippage by 27 takes place. The normal section
then begins to vanish and the superconductivity in the
PSR is restored. This process repeats periodically in
time with a frequency satisfying the Josephson relation.
Figure 4 shows schematically the boundary of the TM
layer (the dashed line shows its position in the PSR at
various instants of time), as well as the behavior of the
potential ¢ and of the superconducting current/, as a
function of the coordinate z along the cylinder axis.

The width of the PSR can be estimated by stipulating
that outside this region the derivative with respect to
time in (2) must be anomalously large. Then all the
quantities are constant in time in first-order approxi-
mation, and the equations that determine them are ob-
tained by averaging the initial equations over the time
(cf. Ref. 2). The derivative is 8Q/dt~ ELQ, and the
value of 3&/8z can be estimated from (3):

o®/0z~Q/uz’,
where z; is the width of the PSR. Thus, the static ap-
proximation is violated in a neighborhood of the PSR
with a width of the order of z; ~ (EL)™/?, Since the ap-
plicability of our model requires z,<<Ig~u"/?, the field
E should satisfy the condition EL > 1, i.e., E> ul’?,

3. CURRENT-VOLTAGE CHARACTERISTIC

We calculate now the current flowing through the
normal region

— jo%(x,Z) dz.
g 0z
With the aid of (12) we get

1=E(D-d)— ¥ arth [’l?]cos (%I-cz) )

R0
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The total current through the sample is

. nkD nk
I=%*Hy+1,=%*H,+ —d) — —z}).
) I,=x E(D—d) ga,th[ I ]cos(L z)
If we average this expreésion over the period 2L of the
structure, then the last term in the left-hand side drops
out, and we obtain

1 L
j=E+ = Lz, (25)

where j =I/D is the average dersity of the total current
through the sample.

It is useful also to write down the free energy of the
sample (in the given field H). As shown by AT, the main
contribution is made here by the magnetic energy norm-
al to the sample surface. The difference AF =F ~F),
between the free energies, where Fy is the free energy
of a purely normal sample, referred to unit length is of
the form!!

1 " L
% = %; Lij (jd—w2H,) dz,
where F =H§rD_/1 2. (We use here the circumstance
that at E> L?~17 and Iz < D the current density is j
»> D% > jo=n/D. It is seen from (25) that at j>> j, the
field is E =~j, so that the free-energy difference is giv-
en by

—————— Jdz. (26)

From a comparison of (25) and (26) we see that the
free energy of the sample and the dissipative function at
a constant total current, whose density is

— 1k
w=ik=j (- 57 j 1dz),

reach a minimum simultaneously, if the integration co
constant k, in (23) is determined from the condition that
the integral

1 L
— | I,dz = max
z]

is a maximum, It is clear from Fig. 2 that this corre-
sponds to a choice of ky such that the function (%)
reaches a maximum

1, (ko) =max. (27)
We shall use henceforth precisely this choice of the in-
tégration constant k.

The maximum field E,,,, at which a TM layer still ex-
ists will be determined from the condition of vanishing
of the maximum of /(k). This coincides precisely with
the condition used by Andreev and Tekel’ to determine
the maximum current. According to their result we
have

9wl F 0,21 (2D/E).

In this case jpug = Emey =0.30%. Since the condition E
> u'/? must be satisfied in order for our model to be
valid, we must postulate the inequality #'/? << x.

Expression (25) for the current-voltage characteristic
(CVC) can be simplified in the case of sufficiently small
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E, i.e., E<nand < J . Atthese values of the field
the parameter k is close to unity. Using the asymptotic
expression K (k) =3 In[8/(1 = k)], which is valid at k— 1,
we obtain from (27) the following value for k, (Ref. 11)

ko=1—(E/%)",
and for ky we get from (24)
_1n[8/(1—k,) ]=x/E,

which corresponds to a thickness d of the TM layer at a
distance L from th e center of the static region, equal to
d=w/2""2E  which is much less than u™!/% at E>u!/2,

The function k(z) is obtained from (23):

In[1/(1—k) ]=711n(x/E)exp(uz2/2). (28)

This yields

2 2% K
L= [’u‘l“ (Eln(x/E) ) ] :
It is now easy to find the CVC, Calculating the inte-
gral in (25), we have
1
J=Etjc (1 - 21n(%/E) ) ’
In ordinary units we obtain

U=R(I~T ), (29)
where S is the total current, U is the voltage on the
sample, R is the sample resistance in the normal state,
and

T =9, [1 - ————1———]

2In (I mex/ )
is the excess current due to the presence of the
superconducting TM layer. In this range of currents,
f,,c depends little on the total current (see Fig. 5).

It follows also from the experimental data of Ref. 4
that there exists an excess current that depends little on
the voltage. It should be noted, however, that the range
of currents used to measure the CVC in the experiment
of Ref. 4, £z 4, lies mainly below the region of ap-
plicability of the results of the present paper:

1< D <<1<0.42§£4

Aig ¢

The expression for the CVC can also be simplified near
the transition of the sample into the fully normal state,
i.e., at Spg = I< Ipe. In the case when maxl, is close
to zero, I, can be approximately represented in the form

20k, E
L= { ( =
Ui\t E,,,,,,)

1 &,
— | =5 =ka)*p,
2 | xdk | } (30)
where &, ~0.58 is the limiting value obtained by AT,
With the aid of (23) and (30) we easily determine the
half-period of the structure
C( E 'h
L= (t-—)

max

where the numerical constant C; is of the order of unity.
It is seen therefore that the formulas obtained below are
valid so long as L>d, i.e., at u<<1=E/En, <1, With
the aid of (23) and (30), expression (25) takes the form
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FIG. 5. Schematic current-voltage characteristic. Curve 1
corresponds to the existence of a TM layer, and the line 2
corresponds to the fully normal state. The dashed curve
shows the section of the CVC (see Ref. 4) lying outside the
region of applicability of the considered model.

N Lo _

=E¥ie stk (1 Tm:) :

In ordinary units this yields expression (28) with an ex-
cess current

bk, 4
I S (1 —m) .

Thus, as S~ f .. the CVC goes over smoothly into the
characteristic of the normal sample. In this case, how-
ever the superconducting state in the TM layer vanishes
jumpwise, and the value of the order parameter on the
inner surface of the cylinder, 4A;, changes jumpwise
from Ay(kn) to zero.

These singularities can be conveniently observed by
measuring the impedance on the inner surface of the
cylinder. The mean value of the impedances

Z_1¢ds

z, LIAS
were Z, is the impedance of the sample in the fully
superconducting state. At not too strong currents, K2
< Fmae» We obtain with the aid of (19) and (28)

Z-Z, 1., (% . ey dy
z. 4ln (E)-‘ge yln“y ’
where a =1 In(»/E) and b =«/aE. An estimate of this
expression yields

72 I\ Lz
. [ T
z. (ym) In ( 7 ) :

If the current is close to the maximum value f,,.,
then the change of A; over the length of the structure is
small, so that Ay=A(k,) and

Z 1+ \
Z. ( 2%t )

When the current increases above .f,4, the impedance
increases jumpwise to its value in the normal sample.

This results agrees with the statement of AT.!

4. GENERALIZATION TO THE CASE OF A
SUPERCONDUCTOR WITH A GAP

As noted above, dynamic equations containing only the
superconducting parameters A, Q, and ¢ can be written
for a superconductor with a gap only under very string-
ent restrictions on the characteristic frequency and
wave vectors of the problem, Thus, if K<< v and w
« v, where y:'r;},, then the sought equations take the
form (cf. Ref. 2)
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kT 7€<3)A’—£@- ( e Q)’ nD n aA

A — 2 = VA - A =
T 8n2T* 2T \ ¢ A+8T via 4Ty Adt 0.
A D o (31)
nay .
DVP — ——O=— — — 32
iT p 0td1vQ, (32)
. 1 4Q noA?
= Ea, 3 WL
)==¢ (V(D c at) 2cT (33)

Equation (31) is similar to that obtained by Gor’kov and
Eliashberg,!® while Eq. (32) is known from the paper of
Schmid and Schdn.®

We introduce the dimensionless quantities
4 c

r=g';  A=A8A"; Q= s U =2 H;
. mohr _ nk nh*
imerl’ O= g e=mgp @
where
. a® ., BUT(T-T)
Yosaon)’ HE)

Now Egs. (31)—-(33) take the form

a 9a 2 2. _VU2A=—
7A—a~;+(A+Q 1)A—V?A=0, (34)
uA(D—V’(D——‘%div Q=0, (35)
F
j=—Vo- —;—E—A’Q, (36)
where
. Ay _ B _ , .
= STT-T) a=[n*/14L(3) 1%

To satisfy the inequalities above together with the re-
quirement #<< 1 it is necessary to have

z T.-T
(7) <<T
Equations (34)-(36) differ from the system (1)-(4) only
in the term with the time derivative in (34), and in the
power of A in (35). ~

After averaging the system (34)-(36) over the time,
we obtain

VIA+A(1-A—Q) =0,
uA®+div(A*Q) =0,
x2rot ot Q=—VO®—A*Q.
For this system we can repeat completely all the argu-
ments of the preceding sections. The only difference is
that now 7 in (8) takes the form

d
n=5Adz.
0

Expressing A(x) with the aid of the AB solution, we
obtain

n=2""1n (1+k)/(1—k). (37)

The remaining results of the preceding sections can be
transferred here without change. Indeed, the CVC at
f<<f,m is determined by near-unity values of the pa-
rameter k, at which expressions (22) and (37) take the
same asymptotic form. As to the CVC in the region
Inae = I I, the quantity n(k,,) does not enter at all in
this expression.

Equations (31)-(33), unfortunately, cannot be used to
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investigate the processes that take place inside the PSR,
since the jumps of the phase should lead to a restructur-
ing of the distribution function in a region of the order
of the quasiparticle diffusion length I, =(D/y)!/?«< I,

for Eqs. (31)-(33) do not hold.

The authors thank A. F. Andreev, L. P. Gor'kov, V.
T. Dolgopolov, I. L. Landau, V. I. Mel’nikov, and Yr.
V. Sharvin for helpful discussions.

APPENDIX

To answer the question of the stability of various roots
of Eq. (21), we turn to Eq. (2). Integrating the z com-
ponent of this equation over the thickness of the TM lay-
er, we have

9Q: ,

»*H,—Ed—I, -—j (a.1)

Estimating the term in the right-hand side we obtain
—J‘ ——-dx~<z
The total current

where the positive constant o ~1,
flowing through the cylinder is

I =2nr (I, +j3j,,,d1: )
(]

When k is varied, the layer thickness changes by an
amount of the order of 6d, and the changes in the dis-
tribution of the normal current occur only over dis-
tances of the order of Iz ~u"'/2, Therefore the changes
of the integral in this expression are of the order of
ddd/lz << 8d. This means that when variation is carried
out in (A.1) with respect to k, it must be assumed that
I, is constant. As a result, for a small deviation of ok
from k, satisfying Eq. (21), we obtain

O(Gk)

—[nan Ed]Sk=2

It follows therefore that only the descending branch of
the function I, (k) in (21) is stable.
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DA weak electric field is ensured by the fact that the critical
current for a cylindrical sample is proportional to the radius
of the cylinder, and its density, and hence also the electric
field strength, is inversely proportional to the thickness D
of the cylinder walls. Since it is expressed in the units cus-
tomarily used in superconductivity, the electric field inten~
sity turns out to be low.
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