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We consider the nature of the two-dimensional mixed state produced on the inner surface of a hollow cylinder 
when the superconductivity is destroyed by current. The two-dimensional mixed-state layer constitutes a 
structure periodic along the cylinder axis, consisting of alternating annular superconducting regions and 
regions in which the macroscopic phase coherence is disturbed and the order-parameter phase undergoes at 
certain instants of time 2?r jumps at a frequency satisfying the Josephson condition, while the order parameter 
oscillates between zero and a certain finite value. This picture is analogous to the phase slippage centers in the 
resistive state of a narrow superconducting channel. The current-voltage characteristic of the sample is 
calculated, and one of its peculiarities is the presence of an excess current that depends little on the sample 
voltage. 

PACS numbers: 74.55. + h 

1. INTRODUCTION s t a t e  produced near  the inner  sur face  of the cylinder i s ,  

In the study of the p roper t i es  of current-carrying 
super-conductors a situation frequently a r i s e s  wherein, 
despi te  of the p resence  of a constant e lec t r ic  field in 
the sample ,  purely thermodynamic fac tors  favor  the 
formation of a superconducting s ta te  e i ther  in  the en t i re  
sample  o r  in definite sect ions of the sample  (if the tem- 
pera ture  of the superconductor and the magnetic field in 
these sect ions a r e  lower than the c r i t i ca l  values).  
Thus, the coexistence of a constant e lec t r ic  field and 
superconductivity is observed in nar row (quasi-one-di- 
mensional) superconducting channels in a cer tain range  
of c u r r e n t  (the so-called res i s t ive  s t a t e ;  s e e ,  e.g., 
Refs. 1 and 2). One m o r e  example is connected with the 
destruction of the superconductivity by c u r r e n t  in solid 
type-I superconductors, when the sample  becomes 
s trat i f ied into al ternat ing normal  and superconducting 
domains (the intermediate  s tate) .  The superconducting 
domains cannot be in touch with one another  on the 
macroscopic sect ions,  f o r  otherwise the s a m p l e  be- 
comes short-circui ted.  I t  is c l e a r  nevertheless  that 
near  the cylinder ax i s ,  where the magnetic field is 
weak, the formation of the superconducting s t a t e  should 
b e  favored. 

A peculiar situation takes place when the supercon- 
ductivity is destroyed by c u r r e n t  in hollow type-I cylin- 
d r ica l  samples .  A s  noted by L. ~ a n d a u , ~  when the cur-  
r e n t  through the sample  exceeds YC (Y: +r$) /2 r1rz  
(where rc = c ~ , r 2 / 2  is the c r i t i ca l  c u r r e n t ,  and r1 and 
Y, a r e  the rad i i  of the inner and ou te r  s u r f a c e s  of the 
cylinder),  the intermediate  s t a t e  in the in te r io r  of the 
sample  vanishes and goes over  into the normal  s tate .  
At the s a m e  t ime,  on the inner  sur face  the field is 
weak. therefore the normal  s ta te  is unstable there. T h e  

however, not purely superconducting, s ince  a constant 
e lec t r ic  field is presen t  in the sample.  Such a s t a t e  is 
called two-dimensional mixed (TM), and was experi-  
mentally observed by I. Landau and ~ h a r v i n . ~  A qualita- 
tively s i m i l a r  picture appears  on the  sur face  of a bulky 
superconducting sample  when an ex te rna l  magnetic field 
exceeding the c r i t i ca l  value is turned off. When turned 
off, the magnetic f ie ldin space  vanished rapidly, where- 
a s  in the sample  volume, on account of the induced eddy 
cur ren ts ,  i t  r e ta ins  a l a r g e  value f o r  a r a t h e r  long time. 
A s  a resu l t ,  the formation of the TM s ta te  turns out to 
b e  convenient on the surface.  This  situation was  inves- 
tigated experimentally in  detai l  by Dorozhkin and Dolgo- 
~ o ~ o v . ~  

In a l l  the l is ted examples,  in  s o m e  sect ions of the 
superconductor there ex i s t s  simultaneously a constant 
e lec t r ic  field and superconductivity. The  p r i m a r y  rea-  
son is that the constant e lec t r ic  field penetrates  into the 
supercond.uctor to a finite depth l E .  I t  is known that this 
depth a s  a ru le  greatly exceeds the coherence length 
((T) a s  well a s  the penetration depth X(T) of a constant 
magnetic field (for alloys without paramagnet ic  impur-  
i t ies  we  have near  the c r i t i ca l  t empera ture  l E  =1,(4T 
/TA)"',~ where lE  is the diffusion length of the quasi- 
par t ic les  I ,  = ( 8 ~ ~ ~ ) ~ ' ~ ) .  

We a r e  dealing thus with a situation i n  which the es-  
tablished superconductivity ex i s t s  against  the back- 
ground of a constant e lec t r ic  field. If the conditions of 
the problem a r e  such that the field differs  f r o m  z e r o  in 
macroscopic sect ions of the s a m p l e ,  then the s c a l a r  po- 
tential cp can a s s u m e  l a r g e  values. I t  is c l e a r  that when 
the la t t e r  increases  the superconductivity should be- 
come destroyed in the en t i re  volume. This ,  however, 
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does not take place for the following reason. The be- 
havior of the superconductor is determined by the gauge 
invariant scalar and vector potentials 

where x is the phase of the order parameter. At some 
points of the sample and a t  definite instants of time, the 
phase x undergoes jumps in order to ensure by the same 
token a finite, in the mean, gauge-invariant scalar po- 
tential a. In these space-time points (which a r e  called 
the phase slippage centers7-PSC) the order parameter, 
naturally, vanishes. Thus, at  the expense of destruc- 
tion of the superconductivity in relatively narrow vicin- 
ities of the PSC, the existence of superconductivity i s  
ensured in macroscopic sections of the sample. 

The PSC concept turned out to be quite fruitful a s  ap- 
plied to the resistive state of quasi-one-dimensional 
superconductors.''2'7~10 In the present paper we attempt 
to use a previously developed approach2 to construct a 
model of the TM state that is produced on the inner sur-  
face of a hollow cylinder. 

According to the premises of the earl ier  s t u d i e ~ , ~  the 
PSC which a r e  essentially dynamic objects, occupy 
rather narrow regions in the superconducting structure,  
whereas in the bulk of the volume the picture i s  static, 
with the electric field E and all  the quantities that de- 
scribe the superconductor evolving slowly over scales 
of the order of the penetration depth lE of the electric 
field, which exceeds the coherence length and the pene- 
tration depth of the magnetic field. Of very great  use in 
this connection a r e  the ideas advanced by Andreev and 
Tekel' (AT)," that for a weak electric field" the struc- 
ture of the TM layer in the main volume is determined 
by the same factors that take place in the absence of an 
electric field. 

The picture proposed below can be briefly described 
in the following manner. In view of the weakness of the 
electric field, the thickness d of the TM layer, which in 
our case turns out to be less than lE, a s  well a s  the be- 
havior of the order parameter in the layer and the value 
of the magnetic field on the boundary with the normal 
region a r e  determined locally (i.e., at  a given point 
along the cylinder axis) a r e  determined by the AT solu- 
tions"; these quantities, in turn, vary slowly along the 
cylinder axis over scales of the order of l E .  When that 
section of the TM layer where the macroscopic phase 
coherence is approached, [we shall call this section the 
phase slippage region (PSR)], the gauge-invariant po- 
tential @ increases in absolute value. 

In the PSR, in accordance with the premises of the 
preceding s t ~ d i e s , ~  the order parameter executes strong 
oscillations, and at  the instant when the order param- 
eter turns to zero i ts  phase experiences a jump of 2.71. 
The frequency a t  which the order parameter oscillates 
and at which its phase experiences jumps is determined 
by the Josephson relation 2 eV = w ,  so  that a poetntial @ 
that is finite in the measn is e n s u r e d . ' ~ ~  This picture 
repeats periodically along the cylinder axis, with V in 
the relation above representing the potential difference 

between two neighboring superconducting sections. The 
question of the structure of the PSR itself remains a s  
yet open. 

The proposed picture differs from the model of Gorf- 
kov and ~ o r o k o v ' ~  primarily because the electric field 
in the superconducting TM layer i s  in our case different 
from zero  on account of the large penetration depth, lE 
>> [(T),d,  and has a component tangential to the layer. 

2. MODEL DYNAMIC EQUATIONS OF 
SUPERCONDUCTIVJTX 

The complete system of dynamic equations that de- 
scribe the behavior of a rea l  superconductor with a gap 
in the energy spectrum is  quite complicated. In addition 
for the equations for  the modulus of the order param- 
eter  A and for the potentials Q and a ,  it contains also 
the kinetic equations for the distribution function. A 
closed system containing only the superconducting pa- 
rameters A, Q, and @ can be obtained only near the 
critical temperature and under most stringent restr ic-  
tions on the characteristic spatial and temporal scales 
of variation of al l  the quantities. It is therefore quite 
useful to consider f i rs t  the simplest model dynamic 
equations, which constitute a time-dependent general- 
ization of the Ginzburg-Landau equations. In dimen- 
sionless variables, they take the form 

The unit length is here the coherence length [(T), the 
unit of A i s  its equilibrium value in the absence of a 
magnetic field, and the magnetic field is mea.sured in 
units of c2et2.  The critical field H, correspmds to H, 
- - - ' "x ,  where H. is the Ginzburg-Landau parameter. 
The potentials Q and @ a r e  given by 

It follows from (2)  and (3)  that 

d 
uAZa)-V2(L,  - - div Q=0. 

at 
(4) 

We s e e  therefore that the parameter u is connected with 
the depth of penetration of the constant electric field 

At u = 12, the system (1)-(4) corresponds to a super- 
conducting alloy with a large concentration of paramag- 
netic impurities.13 In this paper, just a s  before,' we 
shall, however, regard u a s  a f ree  parameter. As 
noted in the introduc.,on, for ordinary superconductors 
(with a gap in the energy spectrum), a s  a rule lE >> [(T). 
We therefore consider below the case u << 1. 

Concerning Eq. (2) we must make one more remark. 
The local connection between the field 

and the current, which was proposed in (2), takes place 
only in rather dirty superconductors, whereas in the 
experiments of Refs. 4 and 5 the samples used were 
quite pure. Nonetheless, when considering the simple 
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situation, we sha l l  use  this equation. 

We a s s u m e  that the sample  is a type-I superconductor 
with x<< 1. The wall thickness of the hollow cylinder is 
assumed to be  s m a l l  compared with i t s  rad ius  D << r .  
By vir tue of the axial  symmetry  of the problem, we  di- 
r e c t  the z ax i s  along the generator  of the inner  sur face  
of the cylinder, and the x ax i s  along the normal  to the 
inner  sur face ,  s o  that x = O  corresponds to  the inner  
sur face  and x = D  to the ou te r  one. We a s s u m e ,  of 
course ,  that the wall thickness D is much l a r g e r  than 
the depth of penetration of the field lE = u " / ~ .  

A s  indicated in the introduction, i t  is assumed in the 
considered picture that the PSR, which constitute in es -  
sence  dynamic formations occupy r a t h e r  nar row sec-  
tions compared with the regions where the s ta t i c  situa- 
tion holds. The conditions needed f o r  this purpose will  
b e  discussed la te r .  W e  consider  f i r s t  the behavior of 
a l l  the quantities in  the s ta t i c  region. 

The  thickness d of the TM layer  is generally speaking 
of the o r d e r  of unity (i.e., of the o r d e r  of 5 in ordinary 
uni ts)  and is s m a l l  compared wi the depth of penetra- 
tion of the e lec t r ic  field, d << u-", Therefore  9 changes 
litt le over  the thickness of the TM layer .  Integrating 
the z-component of Eq. (2) with r e s p e c t  to dx f r o m  0 to 
d ,  we obtain 

where  H, is the value of the magnetic field on the bound- 
a r y  between the TM layer  and the normal  region, and 

is the total superconducting c u r r e n t  flowing over  the T M  
layer  (per  unit length of the inner  periphery of the cy- 
linder base) .  

Since the density of the superconducting layer  along 
the x ax i s  vanished on the inner  sur face  of the cyl inder  
and on the boundary of the TM layer  with the normal  r e -  
gion, the integration of Eq. (3) with r e s p e c t  to  d x  yields 

In the derivation (8) we  used the fact  that A = O  a t  x =d. 

F r o m  (4) we obtain in the s a m e  manner  

where 

is the density of the normal  cur ren t  that flows out of the 
TM layer  along the x axis.  In Eqs. (6), (8) and (9) a l l  
the quantities a r e  functions of the coordinate z and vary 
over  s c a l e s  of the o r d e r  of u-"~. 

In the s ta t i c  region we have E = -V+ = V p ,  therefore 
the chemical  potential of the p a i r s  

does not depend on the coordinates. The  values of p, 

f o r  neighboring s ta t i c  regions differ f r o m  each  o ther  by 
an amount 9(-L)-9(L) = V. What is of importance to u s  
a t  p resen t  is the c i rcumstance  that, by v i r tue  of the 
continuity of the potential cp and of the e lec t r ic  field we 
can thus a s s u m e  that in each region with s t a t i c  condi- 
tions the potential 9 in the T M  is connected, accura te  
to the constant pp,  with the potential cp,(x,z) in the 
normal  region by the relat ions 

The  potential cp,(x, z )  sa t i s f ies  the equation 

The  e lec t r ic  field is periodic, with a s t r u c t u r e  period 
~ L - u " ' ~ ,  s o  that the solution of (11) takes the f o r m  

(We have chosen a solution that is odd with r e s p e c t  to 
the plane z =O.) The average  intensity E is defined a s  E 
= v / ~ L .  Using the conditions (10) we obtain 

nkD dz' 
~ $ t h [ ~ ] ] ~  z [ @ ( z ' ) + ~ z ' ] s i n  ( $ z ' ) s i n  ( T z ) .  (13) 
k f O  -L 

The  quantity j, is of the  o r d e r  of @/L-u ' /~@. Est i -  
mating the remaining t e r m s  in Eq. (9), we s e e  that they 
a r e  of the o r d e r  of chd~-'  - udQ. Since d << L - u'"~, the 
t e r m  with j,, in this equation is the la rges t .  Thus,  Eq. 
(9) f o r  the poteatial 9 can  b e  solved by success ive  ap- 
proximations 

o=-Ez+UJ1. 
F o r  9' we  obtain in turn 

nkD dz' 
@' ( z )  =I! a r j q ~ z '  .in ( @ - z ' )  L sin (*z) L th-I[-] -. 

k+O -L 
L nk 

The quantity 9 ' (z)  - ~ E z / L  << Ez . 
F o r  the potential in the normal  region we obtain with 

the aid of (1 2) 

F r o m  this we readily get the distribution of the field E 
=-Vcp, in the normal  region. The fac t  that 9 - -Ez is 
evidence that the problem of the s t r u c t u r e  of the T M  
layer  should be  solved f o r  a specified constant e lec t r ic  
field, which is formed by the macroscopic normal  re -  
gion adjacent to the TM layer. 

Substituting 9 = - E z  i n  Eqs. (6) and (B),  we get 

The quantities H o ( z ) , d ( z )  and q ( z )  can  be  connectedwith 
one another  with the aid of the AT solution. Le t  u s  r e -  
ca l l  in this connection the pr incipal  r e s u l t  of that re fe r -  
ence. Since the T M  layer  is nar row,  d << L, we need 
retain in  (1) only the t e r m s  Q: and a2a/ax2, s ince  Q: 
<< ~3 and a2A/az2 << a2A/ax2. Wri t ing down (1 ) together 
with the z-component of Eq. (2) we have (here  and else-  
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where we designate the average electric field intensity 
by the letter E): 

These equations have a first  integral 

In the interior of the superconducting region (see Fig. 1) 
the total current is screened, s o  that Q, =E/A~.  On the 
inner surface of the cylinder we have A =A,, a ~ J a x  
=-H = o and aa/ax =o. Hence c =A;/Z - A: - E ~ / A ~ .  I, 
the normal region A = ah/& =0, a ~ J a x  =-Ho, so  that 

1 
xZH,"=A," - - Ao4+ClA2-2EQ,. 

2 

The width of the transition section between the normal 
and superconducting regions coincides with the depth of 
the screening of the strong magnetic field, which, ac- 
cording to Ref. 14, is of the order of nl/ '. In this re- 
gion A - nl/ 'and Q - x'" / 2, SO that a t  E <<nl' the mag- 
netic field on the boundary of the TM layer i s  

1 1 a=-(A:--*:)Ih, 2 

and coincides with the AT result." 

The inequality E << nl /  ' is the limit of applicability of 
the AT solution. Actually the electric field i s  much we 
weaker. The critical current that produces on the outer 
surface of the cylinder a field "'x is equal to Fc 
=21f2rrn, and its density is j , = ~ / 2 ~ " ~ .  Thus, a t  a 
current of the order of critical we have E -x/D. The 
upper limit of E ,  according to AT, is  Em,,- n, which is 
also much less than nlf2. 

The spatial behavior of A(x) can be determined from 
(18) by leaving out of i t  the terms containing Q,  which 
are  significant only over distances on the order of nl/ ' 
from the boundary. According to AT (Ref. l l) ,  A(x) i s  
expressed in terms of the elliptic sine 

d-x 
~ ( x ) = ~ . s n [ ~ , k ] .  

where the parameter k, 0 k < 1 ,  is connected with A. 
by the relation 

A,=Zm1>k/ (l+kX)'". (1 9) 
The thickness of the layer in a magnetic field Ho is ex- 
pressed in terms of the same parameter: 

FIG. 1. Schematic dependence of the order  parameter  A and 
of the magnetic field H in the TM layer on the coordinate x 
directed into the interior of the sample in the AT model (local 
dependence of these quantities in our model). The value x = 0 
corresponds to the inner surface of the cylinder. 

2'"k 
d=(l+k2)'"K(k); H o  =-----. 

x (1+k2) (20) 

Here K(k) is a complete elliptic integral of the first  
kind. 

When k changes from 0 to 1, the order parameter A. 

on the inner surface increases from 0 to 1, the field Ho 
increases from 0 to H,, and the thickness d of the layer 
changes from 7/2 a t  k = O  to logarithmically large val- 
ues d = 2-I / ln [l/(l - k)] as  k -- 1. 

In contrast to the AT model, in our case the param- 
eter k in Eqs. (19) and (20) depends adiabatically on z .  
With the aid of (14) we obtain in turn 

The dependence of I, on k is shown schematically in Fig. 
2. 

A specified value I, in the interval -1r~/2  <I, < I ,  ,, 
corresponds, generally speaking, to two values of k. It 
is shown in the Appendix that only the descending branch 
of the I,(k) plot is stable. This result is in a certain 
sense analogous to the known situation in the one-dimen- 
sional case, where the superconducting current and the 
order parameter A a r e  connected by the relation j, 
= A  '(1 - h2)' / ', and again only the descending branch 
($)I / ' C A CL 1 is stable. The instability of the ascending 
branch of I,(k) can be seen also from the following ex- 
ample. Assume that the total c u r r e n t x i s  less than the 
critical current, s o  that E = 0. If the branch 0 -( k < 1 
were stable, then a possible solution would be one in 
which the superconducting region occupies only part of 
the cylinder, with thickness d(k) determined by the con- 
dition 1=1,2k/(l +k2),  and the entire current would flow 
through the superconducting region. In the actual case 
this is  not so, and the superconducting region extends a t  
f < xc over the entire sample. 

We express q in (8) in terms of k with the aid of the 
AT solution: 

where E(k) is a complete elliptic integral of the second 
kind. I t  is now easy to integrate Eq. (15): 

Here ko is an integration constant located on the de- 
scending branch of the Is(k) defined by Eq. (21), and k 

FIG. 2. Schematic plot of I,(k). Curves 1, 2, and 3 corres- 
pond to different values of E/U: El < E2 < E 3  
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> ko. Expression (23) gives the dependence of the pa- 
rameter k of a coordinate z along the cylinder axis, and 
determines by the same token the behavior of the layer 
thickness d(z),  of the magnetic field Ho(z) on the bound- 
ary, and of the order parameter Ao(z) within the limits 
of one static region -L < z < L.  These static regions 
form a periodic structure along the cylinder axis and 
a re  separated from one another by the PSR. 

Figure 3 shows the force lines of the electric field and 
the boundary of the TM layer a s  functions of the coor- 
dinate z along the cylinder axis. The shaded sections 
correspond to the PSR, where the static approximation 
is violated and the order parameter undergoes strong 
oscillations from zero to a certain value of the order of 
unity. At the instant of vanishing of the order param- 
eter, the superconducting current flowing through the 
TM layer, I, (z =L),  also vanishes a t  the points z =*L. 
The amplitude 6Zs(L) of its oscillations can be estimated 
from Eq. (8), which is valid also in the nonstationary 
region. 

Let the width of the nonstationarity region, i.e., of 
the PSR, by z l ,  with zi  << Is. Then in the static region, 
when the distances 62 from the PSR satisfy the condition 
zl<< & < < L ,  the oscillations of I, a r e  small: 61,<<1,. 
Integrating Eq. (8) with respect to dz from L - & to L ,  
we find that the amplitude of the oscillations in the PSR 
itself a re  of the order of 

~ I * ( L ) - U  j ,,mdz. 
L-6 .  

Since the product A'+ is always finite (the gauge-invar- 
iant potential Q itself, of course, becomes infinite a t  
the phase-slippage instant), we have for 61s(L) 

61, ( L )  -dEGz/L<dE. 
Let now the superconducting current near the PSR be 

equal to I,(L - 62). With the aid of exactly the same es- 
timates we can show that II,(L) - I,(L - &)  1 <<Ed. Inas- 
much a s  a t  the instant of phase slippage I,(L) =0, and 
the amplitude of its oscillations is small, we always 
have Is(L) << Ed. It follows therefore that also Zs(L - &)  
<<Ed. Since we have chosen 62 << L,  i t  follows that, 
considering the problem of scales z -u"/' - L, i t  can be 
shown that the point z = L corresponds to the value k = kl 
determined by the condition 1.*(ki) =0: 

FIG. 3. Distribution of the field E and of the TM layer over 
the cylinder thickness. Solid line-force lines of E; dashed 
line-boundary of superconducting region; the shaded sections 
are annular PSR; the dash-dot line corresponds to the cylinder 
axis. 

FIG. 4. Structure of TM layer. The solid lines show the quan- 
tities d(z), I&), @(z)  in the static region. The dashed fines 
show their behavior in the PSR. The dashed hatched line 
shows the position of the TM layer boundary at the instant of 
phase slippage. 

The period 2L of the structure is obtained from (23), 
where we must put k =ki, z =L. Expression (23) con- 
tains the f ree  parameter ko, and the question of i ts  
choice will be discussed in the next section. 

As for the properties of the PSR itself, this question 
calls for further investigation. It can be assumed that 
in this region, a t  definite instants of times, an instabil- 
ity develops and leads to collapse of the order param- 
eter and to propagation of a normal section into the in- 
terior of the superconducting region. When the normal 
section reaches the inner surface of the cylinder, a 
phase slippage by 2n takes place. The normal section 
then begins to vanish and the superconductivity in the 
PSR is restored. This process repeats periodically in 
time with a frequency satisfying the Josephson relation. 
Figure 4 shows schematically the boundary of the TM 
layer (the dashed line shows i ts  position in the PSR at  
various instants of time), a s  well as  the behavior of the 
potential Q and of the superconducting current Is as  a 
function of the coordinate z along the cylinder axis. 

The width of the PSR can be estimated by stipulating 
that outside this region the derivative with respect to 
time in (2) must be anomalously large. Then all the 
quantities a re  constant in time in first-order approxi- 
mation, and the equations that determine them a r e  ob- 
tained by averaging the initial equations over the time 
(cf. Ref. 2). The derivative is a ~ / a t  - ELQ, and the 
value of a@/& can be estimated from (3): 

d a l d z - Q / u z t Z ,  

where z i  is the width of the PSR. Thus, the static ap- 
proximation is violated in a neighborhood of the PSR 
with a width of the order of z ,  - (UEL)"'~. Since the ap- 
plicability of our model requires z l  << lE-u~112  , the field 
E should satisfy the condition EL >> 1,  i.e., E >> u'". 

3. CURRENT-VOLTAGE CHARACTERISTIC 

We calculate now the current flowing through the 
normal region 

d q n  ( x ,  z )  
I,,= - 5 - d x .  

* d z  

With the aid of (12) we get 
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The total current through the sample is 

If we average this expression over the period 2L of the 
structure, then the last  te rm in the left-hand side drops 
out, and we obtain 

where j =Z/D is the average dersity of the total current 
through the sample. 

It is useful also to write down the f ree  energy of the 
sample (in the given field H). As shown by AT, the main 
contribution is made here by the magnetic energy norm- 
a l  to the sample surface. The difference AF =F - F ,  
between the f ree  energies, where FN is the f ree  energy 
of a purely normal sample, refer red  to unit length is of 
the form" 

where F,, =H$D/I~. (We use  here the circumstance 
that a t  E >> L"- 1: and l E  << D the current density i s  j 
>> D" >> j , ~  H/D. I t  is seen from (25) that a t  j >> j, the 
field i s  E - j, s o  that the free-energy difference is giv- 
en by 

From a comparison of (25) and (26) we s e e  that the 
f ree  energy of the sample and the dissipative function a t  
a constant total current, whose density i s  

reach a minimum simultaneously, if the integration co 
constant ko in (23) is determined from the condition that 
the integral 

i s  a maximum. It is clear from Fig. 2 that this corre- 
sponds to a choice of ko such that the function Is(k) 
reaches a maximum 

~ . ( k , )  =max. (27) 
We shall use henceforth precisely this choice of the in- 
tegration constant ko. 

The maximum field Em, a t  which a TM layer still ex- 
ists  will be determined from the condition of vanishing 
of the maximum of Is(k). This coincides precisely with 
the condition used by Andreev and Tekel' to determine 
the maximum current. According to their result we 
have 

In this case j,, =E,, =0.30x. Since the condition E 
>>uW2 must be satisfied in order for our model to be 
valid, we must postulate the inequality u in  << x. 

Expression (25) for the current-voltage characteristic 
(CVC) can be simplified in the case of sufficiently small  

E ,  i.e., E << x and f<< f ,,. At these values of the field 
the parameter k is close to unity. Using the asymptotic 
expression K(k) =; ln[8/(1 - k)], which is valid a t  k- 1 ,  
we obtain from (27) the following value for ko (Ref. 11) 

k,=l- ( E l x )  ", 
and for ki we get from (24) 

l n [ 8 / ( 1 - k , )  ] =x lE ,  

which corresponds to a thickness d of the TM layer at  a 
distance L from the  center of the static region, equal to 
d = x / 2 1 J 2 ~ ,  which is much less than u'lf2 at  E >>uiJ2. 

The function k(z)  is obtained from (23): 

This yields 

It is now easy to find the CVC. Calculating the inte- 
gral  in (25), we have 

In ordinary units we obtain 

C ~ = R ( Y - Y ~ ~ ~ ~ ,  (29) 
where 4is the total current,  U i s  the voltage on the 
sample, R i s  the sample resistance in the normal state, 
and 

is  the excess current due to the presence of the 
superconducting TM layer. In this range of currents, 
Ax, depends little on the total current (see Fig. 5). 

It follows also from the experimental data of Ref. 4 
that there exists an excess current that depends little on 
the voltage. It should be noted, however, that the range 
of currents used to measure the CVC in the experiment 
of Ref. 4, f 2 & ,  lies mainly below the region of ap- 
plicability of the results of the present paper: 

The expression for the CVC can also be simplified near 
the transition of the sample into the fully normal state, 
i.e., a t  $--f<<f,,. In the case  when ma% is close 
to zero,  Is can be approximately represented in the form 

where k, - 0.58 is the limiting value obtained by AT. 
With the aid of (23) and (30) we easily determine the 
half-period of the structure 

where the numerical constant C ,  i s  of the order of unity. 
It is seen therefore that the formulas obtained below a r e  
valid s o  long as  L>>d,  i.e., a t  u<<1 -E/E,,<< 1. With 
the aid of (23) and (30), expression (25) takes the form 
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FIG. 5. Schematic current-voltage characteristic. Curve 1 
corresponds to the existence of a T M  layer, and the line 2 
corresponds to the fully normal state. The dashed curve 
shows the section of the CVC (see Ref. 4) lying outside the 
region of applicability of the considered model. 

In ordinary units this yields expression (28) with an ex- 
cess  current 

Thus, a s  4- 4- the CVC goes over smoothly into the 
characteristic of the normal sample. In this case, how- 
ever the superconducting state in the TM layer vanishes 
jumpwise, and the value of the order parameter on the 
inner surface of the cylinder, Ao, changes jumpwise 
from A,,(&,) to zero. 

These singularities can be  conveniently observed by 
measuring the impedance on the inner surface of the 
cylinder. The mean value of the impedances 

were 2, is the impedance of the sample in the fully 
superconducting state. At not too strong currents, f 
<<fmm, we obtain with the aid of (19) and (28) 

where a =+ l n j x / ~ )  and b = X / U E .  An estimate of this 
expression yields 

If the current is close to the maximum value fm,, 
then the change of A, over the length of the structure is  
small, so  that A, = ~ , ( k , )  and 

Z 1+km2 z= (=)'IX. 

When the current increases above f,,, the impedance 
increases jumpwise to its value in the normal sample. 
This results agrees with the statement of AT." 

4. GENERALIZATION TO THE CASE OF A 
SUPERCONDUCTOR WITH A GAP 

As noted above, dynamic equations containing only the 
superconducting parameters A, Q, and can be written 
for a superconductor with a gap only under very string- 
ent restrictions on the characteristic frequency and 
wave vectors of the problem. Thus, if 9k2c< y and w 
<< y ,  where y = 72, then the sought equations take the 
form (cf. Ref. 2) 

?quation (31) is similar to that obtained by Gor'kov and 
~ l i a s h b e r g , ' ~  while Eq. (32) is known from the paper of 
Schmid and ~ c h S n . ~  

We introduce the dimensionless quantities 

where 

NOW Eqs. (31)-(33) take the form 

where 

To satisfy the inequalities above together with the re- 
quirement u<< 1 i t  is necessary to have 

Equations (34)-(36) differ from the system (1)-(4) only 
in the term with the time derivative in (34), and in the 
power of A in (35). 

After averaging the system (34)-(36) over the time, 
we obtain 

V2A+A(1-A"--Q')=O, 
uA@+div(A2Q) =0 ,  

xZ rot rot Q=-VQ-AzQ.  

For this system we can repeat completely a l l  the argu- 
ments of the preceding sections. The only difference is 
that now 17 in (8) takes the form 

q=j ~ d z .  
0 

Expressing A(x)  with the aid of the AB solution, we 
obtain 

The remaining results of the preceding sections can be 
transferred here without change. Indeed, the CVC a t  
.f<<Jfm, is determined by near-unity values of the pa- 
rameter k, a t  which expressions (22) and (37) take the 
same asymptotic form. As to the CVC in the region 
JMr - 9% f,,, the quantity ~ ( k , )  does not enter a t  a l l  in 
this expression. 

Equations (31)-(33), unfortunately, cannot be used to 
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investigate the processes that take place inside the PSR, 
since the jumps of the phase should lead to a restructur- 
ing of the distribution function in a region of the order 
of the quasiparticle diffusion length I, = ( D / ~ ) ' / ~  << l E ,  
for Eqs. (31)-(33) do not hold. 

The authors thank A .  F. Andreev, L. P. Gor'kov, V. 
T. Dolgopolov, I. L. Landau, V. I. Mel'nikov, and Yr. 
V. Sharvin for helpful discussions. 

APPENDIX 

To answer the question of the stability of various roots 
of Eq. (21),  we turn to Eq. (2). Integrating the z com- 
ponent of this equation over the thickness of the TM lay- 
er ,  we have 

Estimating the term in the right-hand side we obtain 

where the positive constant a - 1 .  The total current 
flowing through the cylinder i s  

.7=2nr (Is + jnz clz ) . 
I 

When k is varied, the layer thickness changes by an 
amount of the order of 6d, and the changes in the dis- 
tribution of the normal current occur only over dis- 
tances of the order of z , -u -"~ .  Therefore the changes 
of the integral in this expression a r e  of the order of 
d6d/ lE<< 6d. This means that when variation is carried 
out in ( A . l )  with respect to k ,  i t  must be assumed that 
I, is constant. A s  a result, for a smal l  deviation of bk 
from k ,  satisfying Eq. (21) ,  we obtain 

It follows therefore that only the descending branch of 
the function I, (k) in (21) is stable. 

')A weak electric field i s  ensured by the fact that the critical 
current  for a cylindrical sample is  proportional to the radius 
of the cylinder, and its density, and hence also the electric 
field strength, is  inversely proportional to the thickness D 
of the cylinder walls. Since it is  expressed in the units cus- 
tomarily used in superconductivity, the electric field inten- 
si ty turns out to be low. 
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