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A (2 + 1)-dimensional factorized theory is developed for the scattering on infinite one-dimensional 
objects-"straight-line strings." The conditions for factoring the S matrix of straight strings-the tetrahedra 
equations-are determined. The tetrahedra equations are also the conditions of 2-invariance of a statistical 
system on a three-dimensional lattice. An explicit solution is obtained for the tetrahedra equations in the 
special "static" limit. This solution makes it possible to construct a parametric family of operators (transfer 
matrices) that commute at different values of 8. 

PACS numbers: 05.50. + q 

1. INTRODUCTION 

In an examination of the problem of ( I +  1)-dimension- 
a1 nonrelativistic particles with 6-function pair inter- 
action, Yang has found that in the case of distinguish- 
able particles the conditions for the self-consistency of 
the Bethe substitution a r e  special functional relations 
that must be satisfied by the two-particle scattering 
amplitudes. Similar relations (factorization equations) 
were deduced subsequently in the study of (1+ 1)-dimen- 
sional relativistic factorized S matrices (see the re -  
view2 and the references therein). In a formal con- 
struction of a factorized S matrices, these relations 
can be used a s  the equations that make it possible, 
jointly with the analyticity and unitarily conditions, to 
calculate explicitly all  the elements of a two-particle 
S matrix." Some explicit solutions of the factorization 
equations can be found in the reviewZ and in Refs. 4-6. 

In the most general case of a relativistic factorized 
scattering theory, involving n different species of par- 
ticles (numbered by the index i = l , 2 ,  . . . , n), the fac- 
torization equations take the form7 

where s:~(O) is the two-particle S matrix; i and j (k and 
2 )  designate the species of the initial (final) particles, 
and 6' is  the difference between the rapidities of the col- 
liding particles. Summation from 1 to n over all the 
repeated indices k is implied in (1.1). The functional 
relations with the structure (1.1) will be called the t r i -  
angles equations. 

B a ~ t e r ~ ~ ~  has formulated in a number of paper a sta- 
tistical eight-vertex lattice model and constructed its 
exact solution in the case of a rectangular lattice. 
Baxter has also shown1° that the remarkable properties 
of the eight-vertex model manifest themselves most 
clearly if it is  formulated on a general irregular lattice 
made up by intersection of a large number L of arbi- 
trarily directed straight lines on a plane (the axes of 
the lattice). For the model with the irregular lattice to 
remain exactly solvable, the vertex statistical weights 
must be assigned a special dependence on the vertex 
angle (i.e., the angle of intersection of the two axes in 
the given vertex). The Baxter model with irregular lat- 

tice has a remarkable symmetry, which Baxter called 
2-invariance. The partition function of the model is 
not altered by arbitrary parallel shifts of any of the lat- 
tice axes. We note that such shifts, generally speaking, 
alter significantly the coordination structure of the lat- 
tice. In fact, the 2-invariance of the Baxter model is  
connected with the fact that the corresponding vertex 
weights satisfy the triangles equations (1.1), where 
S:: a r e  the vertex weights (the indices i, j ,  k, and I de- 
note the states of the four edges joining in a given ver- 
tex, and in the Baxter model they take on two values, 
i = A), and O is  the vertex angle. Actually, any non- 
trivial solution of the triangles equation (1.1) makes it 
possible to construct a lattice statistical model that 
possesses 2- invar ian~e.~ '"  

All 2-invariant lattice systems a re  apparently exactly 
solvable. At any rate, the transfer matrix of any Z-in- 
variant model placed on a regular lattice defines a fully 
integrable quantum systems that can be investigated by 
the inverse-problem quantum method recently pro- 
posed by Faddeev. Sklyanin, and Takhtadzhyan (Ref. 
12).2' 

It can thus be said in a certain sense that the exis- 
tence of a large class of two-dimensional exactly solv- 
able problems is due to the presence of nontrivial solu- 
tions of the triangles equations (1.1). The meaning of 
the triangles equations for factorized S matrices and 
for 2-invariant lattice systems is briefly discussed in 
Sec. 2. 

The present paper i s  an attempt to generalize some 
of the constructions mentioned above to include the case 
of three-dimensional space. A natural three-dimen- 
sional analog of the irregular Baxter latticelo i s  a lat- 
tice made up of an aggregate of intersecting planes in 
three-dimens~onal space. It is  possible to formulate on 
this lattice a rather general class of statistical sys- 
tems by attaching fluctuating variables (colors) to the 
lattice faces and by specifying vertex statistical weights 
for all the lattice vertices. We shall define a three-di- 
mensional statistical system a s  2-invariant if its par- 
tition function remains unchanged for all  parallel shifts 
of the planes making up the lattice. The 2-invariance 
requirement leads to special functional equations that 
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must be satisfied by the vertex weights; we shall call 
them the tetrahedra equations. The tetrahedra equa- 
tions a r e  the three-dimensional analogs of the triangles 
equations (1.1). 

At the same time, the tetrahedra equations can be 
interpreted as the facterization conditions for a specific 
(2+ 1)-dimensional scattering theory. In this theory the 
scattering objects a r e  not particles, but one-dimen- 
sional formations of the type of infinite linear domain 
walls; we shall call them "straight strings." While 
such a scattering theory is unusual, it appears to be 
the closest (2+ 1)-dimensional analog of the (1+ 1)-di- 
mensional purely elastic S matrices. Just  a s  in the 
(1 + 1)-dimensional case, scattering leaves unchanged 
all  the kinematic state parameters (the directions and 
velocities of all  the "straight strings"), and a "multi- 
string" S matrix can be factorized into S matrices of 
elementary ("three-string") collisions. The factoriza- 
tion relations-the tetrahedron equations-impose lim- 
itations on the form of these "three-string" amplitudes. 

Even in the simplest cases, the number of indepen- 
dent functional relations contained in the tetrahedra 
equations i s  very large and, a t  any rate i s  many times 
more than the number of unknown functions. Our prin- 
cipal hypothesis is  that in spite of this circumstance 
the tetrahedra equations admit of nontrivial solutions. 
Unfortunately, we did not succeed in obtaining even one 
complete solution: the main difficulty in the investiga- 
tions of the tetrahedra equations i s  the presence of a 
complicated algebraic relation between the variables in 
the equations. It is  possible, however, to consider a 
special limiting case ("the static limit") in which the 
tetrahedron equations, remaining nontrivial, become 
greatly simplified. In the present paper we formulate 
a concrete model of a factorized scattering theory of 
straight strings (or equivalently, a statistical system 
on a three-dimensional irregular lattice) and obtain an 
explicit solution of the corresponding tetrahedra equa- 
tions in the static limit. Although the presence of solu- 
tions in the static limit i s  only a necessary and by for 
not sufficient condition for the existence of the solutions 
of complete tetrahedra equations, we regard the result 
a s  a significant confirmation of our hypothesis. 

The plan of the article is  the following. Section 2 is 
devoted to (1 + 1)-dimensional factorized S matrices and 
to two-dimensional 2-invariant lattice systems, and i s  
introductory in character. In Sec. 3 is formulated a 
(2+ 1)-dimensional theory of scattering of straight 
string, and the thetrahedra equations a re  derived a s  
the condition for factorization of a multistring S ma- 
trix. In Sec. 4 the tetrahedra equations a r e  obtained a s  
the conditions of 2-invariance of statistical systems on 
a three-dimensional irregular lattice. The static limit 
of the tetrahedron equations is formulated in Sec. 5. In 

FIG. 1. Diagram representing 
the two-particle matrix Sf; ( 8 ) ;  
e=o,-0, .  

Sec. 6 we obtain an explicit solution of the static tetra- 
hedra equations for a concrete model. It i s  shown in 
Sec. 7 that this solution defines on a two-dimensional 
lattice a parametric family of transfer matrices which 
commute a t  all  values of the parameter. 

2. FACTORIZED SCATTERING THEORIES, 
TRIANGLES EQUATIONS, AND Z-INVARIANT 
LATTICE SYSTEMS IN  TWO-DIMENSIONAL SPACE. 

We present in this section a brief survey of the 
(1 + 1)-dimensional factorized scattering theory and of 
2-invariant statistical systems on a flat lattice, since 
many details of these two-dimensional constructions 
will serve a s  the source for analogies in the treatment 
of the three-dimensional case. 

Factorized S matrices (see, e.g., Ref. 2 and the ref- 
erences therein) ar ise ,  for example, in the study of 
quantum scattering in models of the (1 + 1)-dimensional 
field theory with soliton behavior, such a s  the sine- 
Gordon model (see Refs. 14 and 12). These S matrices 
contain only purely elastic channels, in which the fol- 
lowing a r e  conserved: a )  the total number of particles, 
and b) the set of individual momenta of all  the particles. 
If we assume for the sake of argument that the scatter- 
ing theory contains n species of particles A, (i = l , 2 ,  
. . . ,n)  having identical masses m ,  and if we describe 
the asymptotic states of these particles by the values 
of their rapidities 8,, defined by the formulas 

where p: is  the two-momentum of the a-th particle, 
then the restrictions a) and b) above a r e  equivalent to 
the existence of a finite expansion. 

. , j,, 
= C 11. I ? .  . t , (01 ,  0 2 ,  . . . , OL) I A,,  (Oi), . . . , :llI,(O~))i,,. (2.2) 

11,  IL 

where 

/A, , (O, ) ,  Az:(02), . . . , A z , ( O ~ ) ) , n  ,out'  

denotes the in (out) state of L particles Ail,A12,. . ., 
A,,, having respective rapidities 8,, 8,, . . ., 8,. 

Relation (2.2) serves simultaneously a s  a definition 
of the L-particle S matrix 

s:;: .": :; (01, . . . , 01-). (2.2') 

Owing to relativistic invariance, the elements of the 
L-particle S matrix a r e  functions of only the rapidity 
differences 

U,6=0.-0a (0.>0a); a. b= l ,  2 , .  . . , L. 

The two-particle S matrix St:(@), defined by the ex- 
pansion (2.2) with L =  2, i s  the principal object in the 
construction of the factorized scattering theory. It can 
be shown2 that its elements a r e  meromorphic functions 
of 8 (of the rapidity difference of the colliding parti- 
cles), and a r e  real  a t  pure imaginary 8; they satisfy 
the two-particle unitarity conditions 

s,,,"' (0)  S,,," (-8) =6?6 ' (2.3) 

and the crossing symmetry relations 
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(we assume that all the particles A, a r e  real: CA, = A,, 
where C i s  the charge conjugation). If we confine our- 
selves to P- and T-invariant scattering theories, then 
the matrix Sg(@) should satisfy in addition the relations 

It will be convenient hereafter to represent the matrix 
S:i(O) by the diagram shown in Fig. 1. To each of the 
two intersecting lines (which can be arbitrarily regarded 
as space-time particle trajectories) is assigned one of 
the rapidities 8, and 0, (el> B,), and the outer ends of 
the lines a r e  marked by the indices i, j and k, I, which 
designate the species of the initial and final particles. 

For  a purely elastic S matrix, an arbitrary L-parti- 
cle element is factorized into L (L - 1)/2 two-particle 
S matrices (see Ref. 2). Concretely speaking, to con- 
struct the L-particle S matrix (2.2') (we assume for 
the sake of argument that 8, > @,> . . . > 8,) it i s  neces- 
sary to consider a diagram consisting of L intersecting 
lines I,: 

sh 0,-XI 0,=& (2.6) 

where xfl= (xO,xl) a r e  the coordinates of the Minkowski 
plane, while the parameters 5, a r e  arbitrary (an ex- 
ample of such a diagram for the case L = 4 is shown in 
Fig. 2). The described diagram has, generally speak- 
ing, L(L - 1)/2 vertices-points of pairwise intersec- 
tion of the lines (i t  is  assumed that no three lines ever 
intersect in a single point). We set the intersection 
points of lines I, and I ,  in correspondence with two- 
particles S matrices s(@,,), where @,,= 8, - 8,; a >  b. 
Next, we assign to the upper (lower) "external" ends 
of the lines I, the indices i, Cia), which number the 
species of the initial (final) particles, and label L (L 
- 2) "inner" segments of the lines I, with summation 
indices k,; s = 1,2,. . ., L(L - 2). The L-particle S ma- 
trix (2.2') i s  equal to the product of two-particle S ma- 
tr ices over all the vertices of the diagram, and sum- 
mation from 1 to n must be carried out over all the 
"inner" indices k,. 

For a prescribed two-particle S matrix S::(@), the 
described procedure is not unambiguous. The point is 
that by specifying the rapidities el, @,, . . ., 8, we do not 
define uniquely the structure of the diagram; for given 
directions of the lines I ,  it i s  possible to have essen- 
tially different diagrams that differ by parallel shifts of 
one or  several lines. Different diagrams, obviously, 
correspond to different formal expressions for the L-  
particle S matrix in terms' of the two-particle matrices. 
For the entire construction of the factorized S matrix 

FIG. 2. Diagram representing the four-particle S matrix 
S:;:;:;:; (0,. 0,. 0,. 0,). The intersections of the straight lines 
correspond to two-particle S matrices. 

to be self-consistent it is necessary that the L-particle 
S matrices constructed from such different diagrams 
actually coincide. The physical reasons for this re- 
quirement a r e  discussed in Ref. 2. It i s  easily under- 
stood that to satisfy this requirement it suffices to have 
equality of the triangular diagrams shown in Fig. 3 for 
all  values of the outer indices i,, i,, i,, j , ,  j,, j ,  and for 
all values of the rapidities P,, P,, and 0,. The equality 
of the triangles on Fig. 3 i s  expressed in essence by 
the functiuklal equation (l.l), which must be satisfied 
by the two-particle S matrices of any factorized scat- 
tering theory. We shall call Eqs. (1.1) the factorization 
relations o r  the triangles equations. 

At present, an appreciable number of explicit exam- 
ples of factorized S matrices is known. Most were ob- 
tained by direct solution of the triangles equations (1.1) 
and of the unitarity and analyticity conditions (2.3) and 
(2.4). Examples can be found in a number of pa- 
pers . '~~ '  ' 

Judging from the very method by which it is  con- 
structed from two-particle S matrices, the matrix 
element (2.2') of a multiparticle S matrix can be re-  
garded a s  a partition function of a certain lattice sta- 
tistical system connected with a definite irregular lat- 
tice. More accurately speaking it is  necessary to con- 
sider the analytic continuation of the L -particle S ma- 
tr ix to pure imaginary values of all  the rapidities 

e.=ia.. (2.7) 

In this case all  the elements of the matrices S:;(@,,), 
and hence of the matrix (2.29, will be real. We choose 
real  variables a, such that 

n>a,>a,>. . . >aL>O. (2.8) 

Following this continuation, the diagram representing 
the L-particle S matrix (see Fig. 2) can be treated a s  
a certain irregular lattice on a Euclidean plane (x1,x2) 
consisting of L intersecting lines I ,  specified by the 
equations 

x' sin an-xi cos ~ = t . .  (2.9) 

The variables a,,= i@,, a r e  the geometric intersection 
points of the lines 1, and I,. We shall call the points of 
intersection of the lines I, and I ,  the vertices of the lat- 
tice V,,, and the quantities %,(a> b) the vertex angles. 
The segments of the lines I, that join two "neighboring" 
vertices a r e  the edges (bonds) of the lattice. The i r -  
regular lattice described above will be designated 
4P({aJ, (5,)). 

Statistical models on the l a t t i ~ e Y ( { ~ ) ,  {t,)), which 
a r e  connected with factorized S matrices (we shall call 
them S-models) a r e  formulated in analogy with the Bax- 

FIG. 3. "Factorization relation," viz., the equality of tri- 
angle diagrams that differ from each other by parallel shift 
of any of the straight lines I. 
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ter  eight-vertex m ~ d e l ~ - ' ~ :  the fluctuation variables 
i = l , 2 , .  . . , n ("spins" or  "colors '~ a r e  se t  in corre- 
spondence with the edges of the lattice. Each configu- 
ration of colors i, j, k, and I on the four edges meeting 
in a given vertex V,, (see Fig. 1) is assigned a statis- 
tical weight ~::(ia,,), which i s  a function (common to  
all vertices) of the vertex angle a,,. 

Thus, the two-particle S matrix plays the role of the 
matrix of the vertex weights. The partition function is 
defined a s  the sum over all the color configurations of 
all  the edges of the lattice s{a,,), {(,,)I, and each con- 
figuration is taken with a weight equal to  the product of 
the vertex weights over all the vertices. Owing to  the 
symmetry property (2.4), it does not matter which of 
the angles, a,, or  n - a,,, is regarded a s  the vertex 
angle a t  a given vertex V,,. 

To determine completely the partition function of an 
S model on a lattice H{q,}, (4,)) it is necessary to  spe- 
cify the boundary conditions. The simplest possibility 
corresponds to the following definition of the partition 
function: 

Summation over all the indices i,, a =  1,. . ., L ,  is im- 
plied here. 

In the formulation of the S model on the lattice 
fl{a,}, (43) it i s  understood that the number L is chosen 
to be large enough to permit the system to exhibit sta- 
tistical properties. 

The partition function of any S model has a remark- 
able symmetry: for a latticey({aJ,{t,}) it does not 
depend on the choice of the parameters t,, although the 
coordination structure of the lattice can change sub- 
stantially when these parameters a r e  changed. The in- 
variance of the partition function under arbitrary par- 
allel shifts of the lattice axes 1, i s  ensured by the tri- 
angle equations (1.1) for the matrix of the vertex 
weights S::. This symmetry was f i rs t  observed by 
Baxterl0 for the exactly solvable eight-vertex model on 
the'lattice 9({a3, it,,)). Baxter called it 2-invariance, 
a designation we shall also use. Thus, all  the S models 
a r e  2-invariant. 

Many regular lattices a r e  particular cases of the lat- 
ticeY({a,), (5,)). For example, a regular lattice of 
parallelograms with N columns, M rows, and vertex 
angle ol [we designate such a lattice by yNM(ol) j i s  ob- 
tained by putting 
al=m2=. . . =a,, a ~ , , = a ~ + ~ = .  . . =an.+u=ai-a, N+M=L 

and by choosing 4, in suitable f a ~ h i o n . ~ '  

Baxter" has shown that the partition function of an 
exactly solvable eight-vertex model on a lattice 

FIG. 4. Diagram showing the operator matrix T: b). The 
ends of the long horizontal line are assigned the matrix in- 
dices k and I ,  while the ends of the transverses correspond 
to the operator symbols of this matrix. 

FIG. 5. Graphic representation of Eq. (2.14). Diagram b i s  
obtained from a by successively shifting the transverses from 
right to left. 

~({CY,}, (53) in the thermodynamic limit (L - m) is  sim- 
ply expressed in terms of the partition function of an 
eight-vertex model on a lattice y , ( a ) ( ~ ,  M - m): the 
proof is  entirely based on the 2-invariance property 
and can therefore be easily generalized to include the 
case of an arbitrary S model.' 

The S models defined on a lattice Y,(a) a r e  fully 
integrable and can be investigated by the inverse-prob- 
lem quantum rnethod.l2*l3 In particular, any S model on 
a lattice .!?,(a) i s  connected with a parametric family 
of transfer matrices T(a), which commute a t  different 
values of a: 

T (a)  ~ ( a ' )  =T (a') T (a) .  (2.11) 

The commutativity of (2.11) follows almost trivially 
from the relations (l.l).4' To  verify this, we consider 
the operator matrix 

S " ~  (a) = ~:t (ia) sZ; (ia) . . . &,.,-*i~ (ia), (2.12) 

where {i}= {i,, . . ., i,} and (j}= { j , ,  . . ., j,} a r e  the op- 
erator indices. This matrix has exactly the meaning 
of the global monodromy matrix, which plays the prin- 
cipal role in the quantum inverse-problem method.12*13 
It i s  convenient to represent it by the diagram shown in 
Fig. 4, where the graphic designation of Fig. 1 i s  used 
for the vertex-weight matrix S:j(iol). It i s  easily un- 
derstood that the trace ~ : ( a )  of the matrix coincides 
with the transfer matrix of the S model on the lattice 
Y,(cy) with the periodic boundary conditions: 

T(a)=T;(a). (2.13) 

From (1.1) follows directly the relation 
~Y'(in-icz') T,,' (a') Tf,: (a)  =T:: (a)  T~~ (a') s:;,, (ia-tar) (2.14) 

(we have left out the operator symbols of the matrices 
Ti), which i s  illustrated in Fig. 5. If we multiply both 
halves of (2.14) by ~:";(ia' - i a )  and sum aver k,  k', 1 ,  
and 1 ' ,  we obtain (2.11) by using the condition (2.3). 

3. FACTORIZEDTHEORY OF SCATTERING OF 
STRAIGHT STRINGS IN  (2 + 1)-DIMENSIONAL 
SPACE-TIME 

In a space-time of dimensionality greater than two 
there can exist no nontrivial scattering theory that en- 
sures  conservation of a l l  the kinematic parameters (in- 
dividual momenta) in the collisions. This i s  true when 
it comes to  the theory of particle scattering. With an 
aim of aconstructing a (2+ 1)-dimensional theory that 
is a s  close as possible an analog of the two-dimensional 
factorized scattering theory (see Sec. 1)' we consider 
formally the scattering of one-dimensional objects- 
"straight strings." As the prototypes of the "straight 
strings" we can take infinite straight walls that ar ise  in 
a number of models of (2+ 1)-dimensional classical 
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field theory, for example in the (2+ 1) -dimensional 
Higgs model or in the (2+ 1)-dimensional since-Gordon 
model. We shall have in mind quantum objects of this 
type. The analysis is  formal, i.e., without reference 
to any concrete model of field theory; in particular, 
many of the assumptions that we intend to use a r e  in all  
probability not valid for the models mentioned above. 

Assume that there exist quantum states corresponding 
to uniform free  motion of an infinite straight string, 
and characterized by a constant momentum density 
along the string. The kinematics of such a state is  de- 
scribed by a velocity 2-vector v, and the direction of 
this vector determines the orientation of the string on 
the plane (the vector v is normal to the direction of the 
string), while the length v =  Iv I is  equal to the velocity 
(see Fig. 6). For a relativistically covariant descrip- 
tion it i s  most convenient to introduce a unit 3-dimen- 
sional vector 

""=(no, n),  n,nu-n2-nz=-I, 

nn=v/ (I-us)'", n=v/u(l-u2)'". (3.1) 

Let, in addition, the "single-string" state be charac- 
terized by a certain quantum number (color), which 
canassume one ofn values: i =  1,2,  ... n. We canimag- 
ine the string to be painted a certain color i over its 
entire length. 

We assume next that there exist stationary states 
corresponding to two arbitrarily directed crossing 
strings moving uniformly with velocities v, and v, [in 
analogy with (3.1), we can introduce two 3-dimensional 
vectors nf and n:]. We assume that the two parts of 
this string, into which it i s  divided by the point of 
intersection with the other string, can be painted dif- 
ferent colors. Accordingly, the two-string state i s  
characterized by four colors (i,, i,, i,, i,), a s  shown in 
Fig. 7. It is  important that al l  the characteristics of 
the two-string state (direction and velocity of each 
string, the presence of the intersection point, the col- 
oring of each string element) remain unchanged in the 
course of motion, and therefore this state i s  more 
readily the state of f ree  motion rather than a scatter- 
ing state. 

The situation is change if we consider a state with 
three moving straight strings s,, s,, and s, (here and 
elsewhere, when dealing with multistring states, we 
use the symbol s, far the strings; a= l , 2 , .  . . , L, where 
L i s  the number of strings), described by the respec- 
tive unit vectors nf, ng, and nt. A s  t -  -*, the three 
points of the pairwise intersection of the strings a r e  
well separated in space, and the color state of each of 
the strings s,, a =  l ,2 ,3 ,  is  described by three colors 
(i,, &, j,), as shown in Fig. 8a. The entire state i s  

FIG. 7. Two infinite intersecting strings moving with ve- 
locities vi and v2 .  The intersection point divides each string 
into two elements; the indices ii, i2, i,, and i, denote the 
colors of these elements. 

characterized consequently by nine colors. The string 
velocities a r e  s o  directed that the size of the triangle 
in Fig. 8a decreases in the course of time. The instant 
of vanishing of this triangle will be called the collision 
of the three strings s,, a= l , 2 ,3 .  

Our most important assumption, analogous to the as-  
sumption that no particles a r e  produced in collisions in 
the (1  + 1)-dimensional factorized scattering theory, is  
that after the collision there a r e  produced only states 
of three "diverging" strings, having the same velocities 
and directions a s  the initial "converging" strings. The 
string that diverge after the collisions, which we shall 
likewise designate s,, a= l , 2 , 3 ,  can differ from the in- 
itial ones only in the colors of the "inner" segments of 
each of the strings. 

The possible state produced a s  a result of collision 
from the state shown in Fig. 8a, is  shown in Fig. 8b, 
where in the general case k: + k,. The states corre- 
sponding a s  t -  -* (t-+*) to the three converging (di- 
verging) strings s,, s,, and s, shown in Fig. 8a (Fig. 
8b) will be called the in (out) states of the three-string 
scattering. 

The gist of our assumption concerning the "pure 
elastic" character of the scattering of straight strings 
can be expressed by the formula 

This formula serves also a s  a definition of the three- 
string S matrix 

which plays the principal role in our analysis. In (3.3) 
it is  taken into account explicitly that owing to the rel- 
ativistic invariance the elements of the three-string S 
matrix can depend only on the scalar products of the 
vectors nt: 

FIG. 6. Infinite straight string uniformly moving perpendicu- 
lar to its length. The subscript i= l , 2 . .  . . , n denotes 
the color of the string. 

FIG. 8. Initial (a) and final (b) states of the scattering of 
t h e e  straight strings si, s2, and SQ. 
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By definition, the three-string S matrix has the sym- 
metry 

We assume also T-invariance of the theory of the scat- 
tering of straight string, which can be expressed by 
the relation 

The three-string S matrix must obviously satisfy the 
unitarity relation 

(3.7) 
where the asterisk denotes complex conjugation. Since 
the analytic properties of the amplitudes (3.3) a r e  a t  
present not quite clear, we do not know how to present 
in the general case (3.7) in the form of an analytic re-  
lation [similar to (2.3)J that is  valid for all complex z . 

We turn now to multistring scattering processes. We 
consider states containing L straight strings s, 
= (s,, s,, . . . , s,), whose motion is described respective- 
ly by the unit vectors nt = {$,. . . , n;). As t - - these 
states describe an aggregate L of diverging strings that 
intersect in a definite manner. The term "diverging 
strings" means here a string arrangement such that the 
given kinematics (set of velocities) excludes the possi- 
bility of any three -string collisions in the future. Any 
string s, is divided by the points of its intersection with 
the other strings into L elements: to outer segments 
and L-2 inner ones; altogether we have thus L' seg- 
ments. 

L-string out states a re  defined a s  those which have a t  
t - -  definite coloring of all L2  segments. The in states 
a re  similarly defined. Then the assumption that L- 
string scattering is "pure elastic" means that any out 
state of the strings s,= {s,, . . . , s,), described by the 
vectors nQ = {n;, . . .,nil, can be expanded into a finite 
superposition of in  states, each of which is described 
by the same set  of vectors {nQ) and has the same col- 
oring of all  the outer segments of the strings s, a s  the 
out states; the inner segments of the strings, how- 
ever, can change color a s  a result of the scattering. 
The coefficients of this expansion constitute the ele- 
ments of the L-string S matrix. 

In analogy with the (1 + 1)-dimensional purely elastic 
particle-scattering theory (see Sec. 2), where the L-  
particle S matrix is. expressed in terms of a product of 
L(L - 1)/2 two-particle S matrices, we shall assume 
that the L-string purely elastic S matrix is  a product of 
L(L - 1)(L - 2)/6 three-string S matrices, in accord- 
ance with the representation of L-string scattering a s  a 
sequence of L(L - 1)(L - 2)/6 three-string collisions. 
It i s  important that the sequence in which these three- 
string collisions take place depends not only on the di- 
rections and velocities of all the strings s,, but also 
on their initial arrangement (asymptotic coordinates). 

Depending on the asymptotic coordinates of the strings, 
different sequences of three-string collisions a re  pos- 
sible, corresponding obviously to different formal ex- 
pressions for the L-string S matrix in terms of the 
three-string scattering amplitude. For the entire fac- 
torized theory of scattering of straight strings to be 
self-consistent it i s  necessary that the L -string S ma- 
tr ices corresponding to different sequences of the 
three-string collisions actually coincide; this require- 
ment is perfectly analogus to the factorization condi- 
tions for  (1 + 1) -dimensional S matrices (see Sec. 2). 

To clarify the foregoing and derive the string analog 
of Eq. (1.1), we consider the scattering of four strings, 
s,, s2, s,, and s,, characterized respectively by the 
vectors n:, n[, n t ,  and n!. The initial state of these 
strings is  shown schematically in Fig. 9a. It is  seen 
from this figure that there exist two alternative se- 
quences of three-string collisions that make up the en- 
t ire considered process. One of them begins with col- 
lision of strings s,, s,, and s, (turning-over of triangle 
Ia on Fig. 9a), and the other begins with collision of 
strings s,, s,, and s, (turning-over of triangle Ib in 
Fig. 9a). 

We consider in greater detail the f i rs t  possibility. 
After collision of the strings s,, s,, and s,, corre- 
sponding to the factor 

in the four-string S matrix, the state shown in Fig. 9b 
is produced. This i s  followed by collision of strings 
s,, s,, and s, (turning-over of triangle IIa on Fig. 9b), 
the result of which is the state shown in Fig. 9c. The 
succeeding events evolve a s  shown in Figs. 9d and 9e. 
The state of Fig. 9e, which is the result of four three- 
string collisions corresponds to diverging strings and 
is the final state of the scattering. The four-string S 
matrix describing the process Fig. 9a- Fig. 9e and 
corresponding to this sequence of three-string colli- 
sions, is  given by the left-hand side of Eq. (3.9) below. 

As an alternate, the process of scattering of the state 

FIG. 9. One of the two possible sequences of configurations 
of four strings si, s2, s,, and s4 constituting the four-string 
scattering process. 
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of Fig. 9a could s tar t  with turning over of triangle Ib. 
Then, four successive three-string collisions likewise 
result in the final stat  of Fig. 9e, but the intermediate 
states differ from those shown in Figs. 9b-d. The 
four-string S matrix corresponding to this sequence of 
collision is given by the right-hand side of (3.9). 

The factorization condition for the S matrix of 
straight strings i s  the requirement that the four-string 
S matrices corresponding to these two sequences of 
three-string collisions be equal: 

The six variables z(la,  z " ~ ' ,  z(14', and 
z(24) a r e  not independent, but a r e  connected by the a l -  
gebraic relation 

Thus, relations (3.9) constitute the functional equa- 
tions that must be satisfied by the three-string S ma- 
trix in any factorized theory of scattering of straight 
strings. These equations a r e  a direct analog of the t r i -  
angles equations (1.1). For reasons that will be made 
clear in the next section, we shall call (3.9) the tetra- 
hedra equations. It can be shown that when the tetra- 
hedra equations a r e  satisfied an L-string S matrix with 
any L '- 4 does not depend on the sequence of the three- 
string collisions that make up the entire L-string scat- 
tering process. 

The number of independent functional equations con- 
tained in (3.9) is  in general quite large; a t  any rate,  
this number exceeds substantially the number of inde- 
pendent elements of the three-string S matrix (3.3). A 
most critical question in the entire proposed theory is  
the existence of solutions of the tetrahedra equations. 
Although at present we do not know of any explicit solu- 
tion of these equations, we shall present in Secs. 6 and 
8 our arguments in favor of their compatibility. 

In concluding this section, we note the following cir-  
cumstance. In (1  + 1)-dimensional space, the factor- 
ized scattering theory is  a rather special particular 
case of the general relativistic particle-scattering 
theory, which admits, generally speaking, of al l  possi- 
ble inelastic processes. In contrast, the (2+ 1)-dimen- 
sional theory of scattering of straight strings cannot 
be a t  al l  self-consistent if it is not factorized. 

4. 2-INVARIANT STATISTICAL SYSTEMS ON A 
THREE-DIMENSIONAL IRREGULAR LATTICE 

A (1+ 1)-dimensional factorized S matrix, a t  Eucli- 
dean values of the external momenta, can be regarded 

a s  a statistical system on a two-dimensional irregular 
lattice Y({a,),  (0,)). The (2 + 1) -dimensional theory of 
scattering of straight strings admits of an analogous 
interpretation. 

We consider in three-dimensional Euclidean space an 
irregular lattice made up of intersections of L arbi- 
trarily oriented planes, which we shall designate s,, n 
= 1 , 2 , .  . ., L, i.e., in the same manner a s  used to des- 
ignate the straight strings in the preceding section. 
The direction of each plane s, can be described by a 
unit normal vector n: = {n:, n:, n3; the plane s, is  thus 
given by the equation 

where f a  a r e  real  numbers. The lattice structure is  
completely determined by the se ts  of vectors {n:) and 
of numbers I[,(. We call this the L?'({n:),{[,)) lattice. 
We shall assume that no four of the planes s, have a 
common point. 

The planes s, divide the three-dimensional space into 
polyhedra-the lattice cells. Pa i r s  of planes, sa and 
s,, intersect in straight lines la,. Each plane s, is  
broken up by the lines of intersection with the other 
planes into polygons, which we shall call the faces of 
the lattice. A distinction can be made between "outer" 
and "inner" faces: the "outer" faces a r e  not compact 
(in particular, they a r e  infinite in area) ,  and the com- 
pact faces a r e  called "inner." The points of intersec- 
tions of tr iads of planes s,, s,, s, a r e  called the lattice 
vertices (and a r e  designated v,,,), while the segments 
of the lines la ,  between "neighboring" vertices a r e  the 
bonds (edges) of the lattice Y ( { n : ) ,  {fa)). Each vertex 
i s  the junction of six bonds, twelve faces, and eight 
cells. 

The following formulation of a statistical system on a 
lattice Y({nf), (6,)) is  a direct generalization of the 
formulation of the S models on the two-dimensional lat- 
tice T({a,), (5,)) (see Sec. 2). We associate the faces of 
the lattice ~({n;) ,  (6,)) with the summation variables o r  
colors, which take on n values: i,= l , 2 , .  . ., n. The 
subscript p numbers here the faces. For each vertex 
V,,, we specify a se t  of n12 statistical weights (vertex 
weights) corresponding to all  possible i colors on the 
12 faces meeting in the given vertex. The set of ver-  
tex weights for a given vertex weights for a given ver- 
tex can be treated a s  a matrix with 12 indices-the 
vertex-weight matrix. We assume that the vertex- 
weight matrix is a function (the same for all  vertices) 
of the relative orientation of the three planes intersect- 
ing at the given vertex. The relative orientations of the 
planes s,, s,, and s, can be described by three vari- 
ables: 

z i ~ h ~ ~  -na'L~z.bv, Z ' ' ~  Z ( ~ ~ ' = I I ~ ' ~ ~ Z ~ ~ :  (a) 

it is  convenient three angles defined by 
z i a b  =co j  R'"", z i ? d = c o s  0 ( * l ,  z i b ~ l = c o s  e ( b c 1 ,  (4.2) 

Thus, the elements of the matrix of the vertex weights 
a r e  functions (which we assume to be analytic) of the 
three angles 8. 

To introduce a concrete notation for the vertex- 
weight matrix we consider the vertex produced by 
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intersection of the three planes s,, s,, and s, (see Fig. 
10a). Let the faces adjacent to this vertex have 12 col- 
ors: i,, k,, j, and k:; a= l , 2 ,3 ,  a s  marked in Fig. lb. 
This figure shows separately the three planes (s,, s,, 
s,) a s  seen by the observer. We designate the vertex- 
weight element corresponding to this disposition of the 
colors on the faces in the following manner: 

The angles 0(12), @(I3) ,  and 8(23) a r e  shown in Fig. 10. 

We stipulate that the vertex-weight matrix satisfy r e -  
lations (3.5) and (3.6) and, in addition, that it have the 
"crossing symmetry": 

The partition function 2 of such a system on the lat- 
tice Y((n3, (5,) is  defined a s  the sum over all  the pos- 
sible colors of al l  the faces of the lattice, with each 
color configuration taken with a weight equal to the 
product of the vertex weights over a l l  the lattice ver-  
tices. At an arbitrary choice of the matrix (4.3), the 
partition function depends both on the se t  of directions 
{nt} and on the parameters (5,). In analogy with the 
two-dimensional case, however, we can stipulate 2-in- 
variance of the statistical system. In this case this 
stipulation is  formulated a s  the requirement that the 
partition function 2 be independent of the choice of the 
parameters 5,. In other words, the partition function 
must no be changed by a parallel transfer of any of the 
planes s, making up the lattice. 

The 2-invariance requirement is  equivalent to def i- 
nite functional equations for the vertex-weight matrix 
(4.3) (the tetrahedra equations), which can be obtained 
in the following manner. We consider four planes 
(s,, s2,  s3, and s,) with normals np, n t ,  n f ,  and n[, 
which form a tetrahedron in three-dimensional space 
(see Fig. l l a ) .  Each of the planes s,, a= 1 ,2 ,3 ,4  i s  
divided by the lines of intersection with the other plane 
into seven faces, six outer and one inner. We have 
thus altogether 24 outer and 4 inner faces (the latter 
are ,  in fact, the faces of the tetrahedron). We assign 
to the four vertices of the tetrahedron vertex-weight 

FIG. 10 a) Intersection of three planes s,, s2, and s3 (the ver- 
tex of the lattice). b) The planes s,, s2, and s3 a s  seen by an 
observer on Fig. a. The indices in, k,, j,, k,'; a = 1 , 2 , 3  de- 
note the colors of the faces. The indicated coloring of the 
cases corresponds to the vertex weight (4.3). 

FIG. 11. Tetrahedra equation. The vertices of the tetrahedra 
correspond to the vertex-weight matrices (4.3). The colors 
of all the faces are fixed and the same in both sides 
of the equation; summation i s  carried out over all the colors 
of the inner faces. 

matrices (4.3). Next, we fix the colors i,, . . .,i,, of 
all  the outer faces and sum the product of these four 
matrices over a l l  possible color combinations of the 
four inner faces. We call the resultant quantity the 
statistical weight of the tetrahedron. The aggergate of 
these statistical weights can be regarded a s  a matrix 
with 24 indices i,, . . .,i,, whose elements depend on the 
relative orientations of the planes s,, a = 1 ,2 ,3 ,4  (i.e., 
a r e  functions of the angles - 

By parallel displacement of any of the planes s, (say 
s,) we can transform the tetrahedron shown in Fig. l l a  
into the turned-over tetrahedron shown in Fig. l lb .  
The 2-invariance requirement is  satisfied if for any 
color combination of the 24 outer faces and for all  
orientations of the planes s,, s,, s,, s, the statistical 
weights of the tetrahedra of Figs. l l a  and l l b  a r e  
equal. It is readily understood that the requirement 
that the statistical weights of the tetrahedra of Figs. 
l l a  and l l b  be equal coincides exactly with the condi- 
tions for factorization of the straight -string S matrix 
(3.9), if the vertex-weight matrix (4.3) i s  identified 
with the three-string matrix (3.3). There exists thus 
a formal connection between the factorized theory of 
scattering of straight strings and the 2-invariant sta-  
tistical systems on a three-dimensional lattice, a con- 
nection fully analogous to that discussed in Sec. 2 for 
the two-dimensional case. 

2-invariant systems on a two-dimensional lattice a r e  
fully solvable. We propose that 2-invariant systems 
on the lattice Y({nt}, (5,)) (if they exist) a r e  also exact- 
ly solvable. 

5. STATIC LIMIT OF THE TETRAHEDRA EQUATIONS 

The algebraic equation (3.10) that connects the vari-  
ables z ( O b )  greatly complicates the investigation of the 
tetrahedra equations (3.9). In this paper we study a 
certain limiting case of these equations-the static 
limit. In this and following sections the discussion is in 
terms of the theory of the scattering of straight strings 
(see Sec. 3). 

Given the reference frame, the kinematics of an  L -  
string state containing the strings s,, a= 1,2 , .  . ., L,  
can be described by a set  of velocity 2-vectors v,, a 
= 1,. . ., L [see (3.1)]. We consider the L-string ampli- 
tudes and go formally to the limit v, - 0, a= 1,. . . , L ,  
where v, = Iv, I. In this limiting case, which we call the 
static limit, the scattering amplitudes depend only on 
the directions of a l l  the strings on the plane, i.e., 
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actually on the se t  of angles between the directions of 
the various strings. For example, the elements of the 
three-string S matrix (3.3) in the static limit a r e  func- 
tions of two independent angles. 

We introduce a suitable notation. We agree to  repre- 
sent the asymptotic states of the scattering of the 
strings s ,  by means of diagrams of the type shown in 
Figs. 8 and 9, on which a r e  marked the colors of a l l  
the string segments and the angles between the string 
directions. We can then rewrite (3.2) in the static lim- 
it a s  follows: 

(5.1) 

The triangular diagram in the right (left) sides of the 
equations denotes the in (out) state, and the expansion 
coefficients 

denote a three-string S matrix in the static limit. This 
matrix has the symmetries 

The last of these equalities expresses the P-invariance 
of the scattering theory. 

Using the analogy with particle scattering theory (Sec. 
2), we make the assumption (which will be verified by 
the result of Sec. 6) that the elements of the static S 
matrix (5.2) a r e  real  in the "physical region" 

Then the unitarity condition (3.7) takes in the static 
limit the form 

Equation (5.5) allows us to forget that the diagrams in 
the right and left sides of (5.1) a r e  states of different 
type (in and out, respectively), and regard (5.1) a s  a 
formal rule for transformation of the diagrams. This 
"diagram calculus" can be extended to include the case 
of arbitrary L-string diagrams. Any of the lines s ,  
constituting the L-string diagram can be parallel- 
shifted, and each passage of a given line through the 
intersection point to the other two lines (i.e., each 
turning-over of the triangle) corresponds to an expan- 
sion in accord with Eq. (5.1). For example, a five- 
string diagram is expanded into a superposition of dia- 
grams: 

We have left out the colors of some of the string seg- 
ments; these colors a r e  assumed fixed and equal in 
both sides of the equation. 

For the described rule for transformation of L-string 
diagrams to be unique, it is  necessary to stipulate that 
the coefficients of the expansion of any given diagram 
into diagrams obtained from the given one by a definite 
parallel shift of several lines s, not depend on the se- 
quence of these shifts. This requirement is  equivalent 
to the following functional equation for the coeffi- 
cients (5.2): 

i3k313k3" i i~*h .a~ ,"  
S k,l,i,l," (01, H,) S i , k2 l2"k , ' (0 ,  ,0, 2- 0 , )  

Is". 1,". I..,. h.." l ~ l ~ k ~ l ~ "  I lk , i l k l '  

(5.7) 
Relation (5.7) is  the tetrahedra equation (3.9) in the 
static limit. 

6. MODEL OF TWO-COLOR STRINGS. SOLUTION OF 
TETRAHEDRA EQUATIONS IN THE STATIC LIMIT 

We consider now a concrete model of a (2+ 1)-dimen- 
sional theory of scattering of straight strings. Let the 
color index i take on two values, i = 1,2.  We shall say 
that the segments of the straight strings can be colored 
in two ways, black or white. We say that an L-string 
state i s  allowed if al l  the segments of its strings s,, a 
= 1 ,2 , .  . . , L,  a r e  so colored that an even number of 
black segments meet a t  each point of intersection of 
two strings. Next, let all the elements of a three- 
string S matrix, which transform the allowed states 
into forbidden ones. be equal to zero. Then the scat- 
tering theory can be formulated in closed fashion in the 
sector of the allowed states." This scattering theory 
will be assumed invariant to P and T inversions, and 
also symmetrical with respect to replacement of al l  
the black segment by white ones and vice versa (color 
symmetry). 

We consider in this section the described model of 
two-color strings in the static limit (see Sec. 5). All 
the independent nonzero elements of the three-string S 
matrix a r e  defined in this model a s  the coefficients of 
the following expansions (in the formulas that follow, 
the black and white segments a r e  represented by thick 
and thin lines, respectively): 
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We seek for the described model the solution of the 
"static" tetrahedra equations; this solution has the 
property 

n(0,, 0?)--0. r(0, .  0?)--0. (6.2) 

In this case there a re  11 different nonzero elements of 
the three-string S matrix. Obviously, the amplitudes 
s and o must satisfy the symmetry relations 

s (0 , ,  0?) =s(Bz, A,) =s(0,,  n-0,-0,). 

1s(0,, 0?) =u(e2. 8,) =o(e,. n-0,-A,), (6.3) 

and the eight amplitudes v ,  u, b,  c ,  I ,  g, t ,  and w 
must be symmetrical with respect to the interchange 
6, - 6,. 

The unitarity condition (5.5) imposes significant lim- 
itations on the form of the three-string amplitudes. 
For example, the unitarity conditions for channels 
(6.lg) and (6.lh) a r e  of the form 

consequently 
g(01,Bs) =-~1(0, ,  0;). h(0i, Oz)=~h(ez, el),  (6.5) 

where E i s  an arbitrary sign, c2= 1, which is yet to be 
determined. Similarly, considering the unitarity con- 
ditions for the channels (6.la) to (6.lf), (6.li), and 
(6.lj), we get 

sz=o==tz=wz=l, 

(here E, i s  an  undetermined sign, .sf= I) ,  and 
z2(0,, ez)+hZ(O,, 0,)-I, ~ ~ ( o , ,  e , ) + ~ ~ ( e , ,  e , )=l .  (6.7) 

We turn now to the tetrahedra equations. The con- 
crete form of these equations for the model considered 
can be obtained both by writing out explicitly the gen- 
era l  relations (5.7) and directly, by considering all  
possible "initial" states of four strings, expanding 
them in t e rms  of the "final" states by two different 
methods (that differ in the sequence of the three-string 
collisions), as explained in Sec. 3, and equating the 
coefficients of these alternative expansions. The total 
number of the equations involved here is very large 
(several hundred). Six of them a r e  shown in the Ap- 
pendix by way of illustration. 

We have written out 50 different equations (chosen 
randomly) and have verified that all a re  satisfied by 
the formulas 

~ ( 0 1 ,  0,) =0(0,, 0:) =t(B,, 8,) =ra(0,, 02) = 1 ,  

~ 0 ~ ( 0 , / 2 + 0 ~ / 2 )  1'" 
(6.8) 

h(0,. 0,)=u(0.. 0 , )=-es(0, .  0.)=e2[ 
cos (0,JZ)cos (0?/2) ' 

where cl and E, are  arbitrary signs, c:= cz= 1. 

7. TRANSFER MATRIX OF THREE-DIMENSIONAL 
LATTICE SYSTEM 

It was explained in Sec. 4 that the solutions of the 
tetrahedra equations can be used to construct a lattice 
statistical system on any three-dimensional lattice 
9 (in:), (6,)) that has 2-invariance. In this section we 
show that the static solution obtained in the preceding 
section makes it possible to construct a parametric 
family of transfer matrices ~ ( 0 )  that commute at all  
values of the parameter 8. 

We consider a planar lattice consisting of N arbitrar-  
ily directed intersecting straight lines s,, a =  1,. . ., N 
[i.e., in fact the lattice ~({a,}, (5,)) defined in Sec. 21. 
The detailed structure of this lattice i s  of no impor- 
tance whatever in the reasoning that follows (this may 
be, e.g., a regular rectangular lattice). We shall 
therefore designate it simply by 3'. An example of the 
lattice Y is shown in Fig. 12. The convex dashed con- 
tour on this figure encloses all the intersection points 
of the lines s,. The agregate of bonds contained within 
the contour will be called the interior of the lattice, 
and the bonds crossing the contour will be called the 
outer bonds. 

Each inner bond of the lattice should be colored in 
one of two ways, black or  white. We introduce a cer- 
tain space a of the color states of the lattice, spanning 
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FIG. 12. Example of lattice Y. 

all the possible color states of all  the inner bonds (the 
allowed color states a r e  defined a t  the beginning of Sec. 
51, with all the outer bonds assumed to be white. We 
define a family of operators T(0) that act in the space 
@ in the following manner. 

Let {i,) be a certain allowed color state of the inner 
bonds of the lattice Y (the subscript r numbers the 
bonds). We introduce an auxiliary line s, directed a t  
an angle 0 to  the "horizontal," and not crossing the 
inner part of the lattice, a s  shown in Fig. 13a. This 
line, a s  well a s  the entire outer part of the lattice Y on 
Fig. 13a, i s  all colored white. Figure 13a can be re -  
garded a s  a diagram corresponding to the ( N +  1)-string 
case in the static limit (see Secs. 5 and 6). By parallel 
shift of the line s we can move it over the entire inner 
part of the lattice 3. This procedure consists of suc- 
cessively transferring the line s through all the inter- 
section points of the lines s, contained inside the lat- 
tice 3. Each such elementary shift (turning-over of 
some triangle) corresponds to an expansion in accord 
with Eqs. (6.1) with coefficients (6.8). The result i s  an 
expansion of the diagram of Fig. 13a in terms of dia- 
grams of the type of Fig. 13b. In the right side of this 
expansion there a r e  terms of two types. We shall des- 
ignate a s  "correct" all those expansion terms in which 
the entire line s i s  white after being transported 
through the lattice, a s  i s  also the entire outer part of 
the lattice; the remaining terms will be called "incor- 
rect." The coefficients of the correct terms in the ex- 
pansion of Fig. 13 a r e  the matrix operators of the op- 
erator T(0). 

The operators T(0) can be regarded a s  transfer ma- 
trices of certain three-dimensional lattice system of 
the type described in Sec. 4, with a special "white" 
boundary condition. In view of the equality a(@,, 0,)= 0 
[see (6.2)] a completely white lattice i s  an exact 
eigenvector of the operators T(8) for all  0. 

We shall show that the operators T(0) commute a t  
different values of 0, i.e., 

T ( 0 )  T (0') =T(0') T ( 0 ) .  (7.1) 

a + 1 incorrect terms 1 

FIG. 13. Definition of operator T(0 ) .  Only the outer part of 
the lattice 9 i s  shown explicitly. The coefficients T [ { j  (0)  
in the right-hand side of the equation are the matrix elements 
of this operator. The meaning of the termL'incorrect terms" 
is explained in the text. The dashed line /z is the "horizontal". 

a + ( incorrect terms ' 
FIG. 14. Diagram equation resulting from successive shifting 
of the auxiliary lines s and s ' over the inner part of the lattice 
9; first to be shifted i s  s, followed by st. 

We introduce two auxiliary straight lines, s and s', 
which do not pass through the interior of the lattice 
and a r e  directed respectively a t  angles 0 and 8' to the 
horizontal, as shown in Fig. 14a. Both lines s and s', 
a s  well a s  the entire outer part of the lattice Y, a r e  
white. We transfer in succession (first s and then s') 
the two auxiliary line over the inner part of the lattice 
Y. The result of the transfer i s  shown in Fig. 13b. 
The coefficients of the correct terms in the right-hand 
side of the expansion on Fig. 14 coincide with the ma- 
tr ix elements of the product ~(0')T(8).  

Since the coefficients in the expansions (6.1) satisfy 
the static tetrahedra equations, the result of any shift 
of the lines s and s' does not depend on the sequence in 
which the shift is  made. In particular, the same ex- 
pansion shown in Fig. 14 can be obtained by shifting the 
lines s and s' in the sequence shown in Fig. 15. The 
diagrams 15a and 15b a r e  equal because s(0,, 8,) = 1, 
a(0,, 0,)= 0, and the outer part of the lattice is  white. 
Similar arguments were used to obtain the equations in 
Figs. 15c and 15d. The coefficients of the exansion in 
Fig. 15d a re  the matrix elements of the operator 
T(O)T(O'). Equation (7.1) i s  therefore valid. 

For a three-dimensional lattice system specified by 
the operator T(8) and by some fixed 8, Eq. (7.1) means 
that there exists an infinite series of operators that 
commute with the transfer matrix and with one another. 
Of course, this still does not prove complete integra- 
bility of this system. The family of operators T(0) can 
hardly contain the complete set  of the integrals of mo- 
tion. We propose that the static solution of the tetra- 
hedra equations, obtained in Sec. 6, is  the limiting case 

FIG. 15. Sequence of shifts of lines s and sf, whereby st is 
shifted over the inner part of the lattice ahead of s. 
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of a certain solution of the "complete" tetrahedra equa- 
tions (3.8). If this is  so, then there exists apparently 
a larger family of commuthg operators T(8, u) that 
depend, besides on the direction 8 of the auxiliary line 
s, also on the rate u a t  which this line i s  shifter over 
the lattice 2'. The family T(0) determined by us is  then 
the limiting case of T(8) = T(0, u) I,,,. 

I thank A. A. Belyavin, A. V. ~ i k h a l l o v ,  A. M. 
Polyakov, and V. A. Fateev for helpful discussions, 
and also Yu. G. Stroganov for pointing out an e r ro r  in 
the initial draft of the article. 

APPENDIX 

In the cited equations we used the following abbrevia- 
t ions: 

 his method was first proposed by Karowski, Thun, Truong, 
and ~ e i s z ?  

 he Mangles equations a r e  in fact a component part of the 
quantum inverse-problem problem, since this equation is 
satisfied by the R matrix that defines the commutation rela- 
tions between the elements of the g l o k l  monodromy matrix 
(see Ref. 13). 

3)0f course, the lattice yNM(a)  does not differ in its coordi- 
nate structure from a rectangular lattice, and we speak of 
a lattice of parallelograms only to maintain the geometric 
meaning of the parameter a,. 

4)~he idea of the derivation presented below stems from the 
papers of ~axter' and of Faddeev, Sklyanin, and Takhtadz- 
hyan.'2 

5 ) ~ n  the "lattice" interpretation (see Sec. 4) of this model, the 
condition for allowed states corresponds to the fact that in 
the three-dimensional lattice Y ( { n , ) { [ , ) )  it is permissible 
to color the faces black and white only in a way that the black 
faces form closed surfaces without edges. 

'c. N. Yang, Phys. Rev. 168, 1920 (1968). 
2 ~ .  B. Zamolodchikov and Al. B. Zamolodchikov, Ann. Phys. 
(NY) 120. 253 (1979). 

3 ~ .  Karowski, H. Thun, T. Truong, and P. Weisz, Phys. 
Lett. 67B, 321 (1977). 

4 ~ .  Berg, M. Karowski, V. Kurak, and P. Weisz, Nucl. 
Phys. B134. 125 (1978); B. Berg and P. Weisz, Commun. 
Math. Phys. 67, 241 (1979). 

5 ~ .  Shankar and E. Witten, Phys. Rev. D 17, 2134 (1978). 
6 ~ .  Pisarski. Princeton Preprint. 1978. 
IA. B. Zamolodchikov, Sov. Scient. Rev., Harwood Acad. 

Publ., 1980, Vol. 2, p. 1. 
a ~ .  J. Baxter, Ann. Phys. (NY) 70, 193 (1972). 
'R. J. Baxter, ibid.  76, 1, 15, 48 (1973). 
'Q. J, Baxter. Phil. Trans. Roy. Soc. 289. 315 (1978). 
"A. B. Zamolodchikov. Commun. Math. Phys. 69, 165 (1979). 
1 2 ~ .  D. Faddeev, V. K. Sklyanin, and L. A. Takhtadzhyan, 

Teor. Mat. Fiz. 40, 194 (1979). 
1 3 ~ .  D. Faddeev, h e p r i n t  LOMI R-2-79, Leningrad. 1979. 
I4v. E. Korepin and L. D. Faddeev, Teor. Mat. Fiz. 25, 

147 (1975). 

Translated by J. G. Adashko 

Influence of spatial dispersion on the image forces and 
electron energy spectrum above the surface of liquid 
helium 
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An analytic expression is obtained for the potential of the electrostatic image forces above the surface of liquid 
helium, with account taken of the spatial dispersion of its dielectric constant. The calculated frequencies of 
the transition between the surface electron levels agree well with the experimental data for He3 and He4. 

PACS numbers: 67.40. - w, 67.50. - b 

1. INTRODUCTION helium under the influence of electrostatic image forces 
were Cole and  ohe en''^ and   hi kin.^ The existence of 

The f i rs t  to point out the possibility of the onset of such surface (two-dimensional) states was experiment- 
localized electronic states over the surface of liquid ally confirmed by Brown and  rimes^'^ for ~ e * ,  and 
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