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The main types of plasma instabilities in two-dimensional electron systems are investigated from the point of 
view of amplifying two-dimensional plasma waves. Structures consisting of two plasma layers or of a plasma 
layer above a conducting half-space are considered. The conditions for the onset of two-stream, kinetic, and 
dissipative instabilities are found. Under certain conditions the instability criteria differ qualitatively from 
their three-dimensional analogs. The critical drift velocities and oscillation growth factors are calculated. 
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Experimental  s tudies  of p lasma waves in two-dimen- 
sional e lec t ron  s y s t e m s  c a r r i e d  through during the  
l a s t  th ree  years'-3 have confirmed the principal theo- 
r e t i c a l  conclusions concerning the dispersion law for  
such  oscillations. The is ' s  repor t4  includes a detailed 
review of these  studies. Cer ta in  specific charac te r i s -  
t i c s  of two-dimensional plasmons-their gapless  spec- 
t r u m ,  complicated dispersion law, and relatively low 
group  velocity-make them v e r y  at t ract ive objects f o r  
physical r e s e a r c h  and open up prospects  fo r  interesting 
applications. F r o m  th i s  point of view it would certainly 
be desirable  to work with two-dimensional plasmons a s  
with "ordinary" traveling waves (e.g. ul t rasonic waves), 
i.e., t o  modulate them,  amplify them, etc. We note 
that the experimental r e s u l t s  now available re la te  to  
the case  of standing plasma waves, whose presence  was 
detected ei ther  by a change in the Q factor  of a resona-  
t o r  (in the c a s e  of e lec t rons  above a liquid helium s u r -  
face)  o r  by the resonant  absorption of radiat ion in the 
f a r  infrared (in the c a s e  of the inversion layer  in a 
metal  insulator-semiconductor s t ructure) .  

In this  paper we examine the principal types of plas- 
ma instabilities in two-dimensional s y s t e m s  a s  they 
re la te  to the problem of amplifying two-dimensional 
plasma waves. As in the three-dimensional problem, 
a wave may become unstable a s  a resu l t  of the dr if t  
of one par t  of the plasma with respec t  to another (see,  
e.g., Ref. 5). 

A specific feature of the case  we a r e  considering i s  
that the two p a r t s  of the plasma a r e  spatially separated:  
for example, they may be two paral le l  thin plasma 
layers ,  o r  a plasma layer  above a conductive half- 
space. In  such sys tems  coupled waves a r i s e  and ampli- 
fication can be achieved a t  a cer tain drifr velocity. The 

coupling coefficient depends on the distance between the 
l a y e r s  and on the plasmon momentum; this consider- 
ably complicates the dispersion law for  the waves. In 
addition, the c r i t e r ion  for  instability may differ sub- 
stantially f r o m  i t s  three-dimensional analog. In par -  
t i cu la r ,  it turns out that the beam instability i s  char-  
acter ized by a threshold drift  velocity that depends on 
t h e  distance between the two plasma layers .  At below- 
threshold drift  velocities. instability can a r i s e  only for  
plasmons whose wave number k l i es  within a ce r ta in  in- 
t e rva l :  k ,,,, < k <  k ,,,, ( k  ,.,,,, = 0 in the three-dimensional 
case) .  

What was sa id  above i s  valid for the beam instability 
of a cold plasma. When the thermal  motion of the par-  
t i c l e s  is taken into account, wave amplification a s  a 
resu l t  of kinetic instability becomes possible. The most 
favorable c a s e  f o r  the development of th i s  instability i s  
rea l ized  when the  effective m a s s e s  of the part ic les  of 
the moving and s tat ionary p lasmas  differ greatly. Final- 
ly, when e lec t rons  a r e  strongly sca t te red  i n  one of the 
p lasmas  and the drift  velocity is low enough the s i tua-  
t ion  is reminiscent  of the amplification of sound by a n  
e lec t r ic  cur ren t  in a piezoelectric medium. 

Es t imates  show that  in the case  of e lectrons above a 
helium film on a conductive backing, amplification be- 
gins  a t  comparatively low drift  velocities of the c a r r i e r s  
in the  backing. At present ,  such a sys tem i s  the most 
promising for  obtaining amplification of two-dimen- 
sional plasma waves. 

The problem of oscillations in  spatially nonuniform 
plasma s t r e a m s  has been discussed in the l i terature.  
F o r  example, ~ i k h a ; l o v s k i i  and ~ a s h i t s k f i v n v e s t i ~ a t e d  
the stability of two neighboring electron s t r e a m s  separa -  
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ted by a thin transition layer of thickness 6. They as-  
sumed that k5<< 1 and that the wave frequency was small  
a s  compared with the cyclotron frequency (the case of 
a strongly magnetized plasma). The dispersion equa- 
tion for waves in a plasma layer with sharp  boundaries 
has also been found for the same limiting case of a 
strong magnetic field." The present paper is concerned 
with a system of plasma layers that a r e  very thin com- 
pared with the distance A between them, but for which 
the parameter kA can assume arbitrary values. We 
also treat plasma (Langmuir) waves in the absence of 
a magnetic field. Thus, the results  obtained below do 
not overlap the results  of the papers cited above since 
they a r e  actually obtained for an opposite limiting case. 
We also note that the structures we discuss a r e  precise- 
ly those that either have already been realized experi- 
mentally o r  can be easily produced by current techni- 
ques. As far  a s  we know, however, no experiments 
have been done up to now in which one plasma has been 
caused to drift relatively to another, so that no ob- 
servations of the amplification of two-dimensional waves 
have been reported. 

1. BEAM INSTABILITY 

Let us consider two thin parallel plasma layers sepa- 
rated by a dielectric gap, and let us assume that one 
of them moves with respect to the other with the drift 
velocity u. One can think of several  ways to  realize 
such a system experimentally. F i r s t ,  the system could 
consist of two thin semiconducting o r  semimetallic films 
deposited on opposite sides of a dielectric plate. Sec- 
ond, having produced an inversion layer in a sufficiently 
thin semiconducting plate, one can obtain an enrich- 
ment layer on the opposite side of the plate; in this 
case  we have electron- and hole-type plasma layers 
separated by a depletion region. Finally, by using 
modern molecular epitaxy techniques one can produce 
layered structures in which a two-dimensional electron 
gas forms .at the boundary of heterojunctions a s  a result 
of loss of electrons from donar levels o r  from the 
valence band of one component of the structure to the 
conduction band of 

For simplicity we shall assume the dielectric constant 
& to be the same in the regions inside and outside the 
gap between the plasma layers. Since the thickness of 
t he  layers i s  assumed to be much smaller  than the wave- 
length of the oscillations, the equation for the electro- 
stat ic potential cp takes the form 

Here 2, is the z coordinate of the i-th layer (both layers 
being perpendicular to the z axis) and fi, i s  the non- 
equilibrium addition to the surface density of the plasma 
Nsi in the i-th layer. 

The quantity 3i can be obtained from a self-consistent 
solution of the kinetic equation for the electron distr i-  
bution function in which the field V q  of the plasma wave 
is taken into account. If we consider only a cold colli- 
sion plasma, however, it is  sufficient to use the equa- 
tion of motion 

FIG. 1. Curves 1 and 2 are graphs of the lower and upper 
limits in inequality (3), respectively. The instability region 
is  the region between the curves. 

in which ( ( r ,  t )  i s  the displacement of the electron liquid 
from the equilibrium position. Then we obviously have 
-$,= -Nsi divt; , and the s e t  of equations i s  thus closed. 

Let us assume that the drift velocity in the f i r s t  layer 
is  directed along the x axis. Then if we assume that 
al l  the quantities a r e  proportional to expi(kx- w t )  we 
easily obtain the dispersion equation 

oi l=2neZNs,k/m,~,  

in which m, is the effective mass  of a particle in the i-th 
layer and A i s  the distance between the layers. 

Instability a r i s e s  when a pair of complex conjugate 
roots of Eq. (2) appears. The case w, =w, =w,  can be 
analyzed simply and completely since the equation r e -  
duces to a biquadratic one. The following double in- 
equality must be satisfied for instability to appear: 

As k -  0 ,  the left-hand side of ineqality (3) tends to the 
constant value u* = 2 ( 2 n ~ , e ~ h / r n & ) ' ~ ~ .  Thus, if u> u*, 
waves of arbitrari ly long wavelength will be unstable 
(as in the three-dimensional case5). If 14 < u*, however, 
the wave number k must lie in the interval [k,,,, k,,J if 
unstability is to develop (see Fig. 1). 

Equation (2) can be analyzed simply in the case in 
which w,>> w ,  and kA<< 1. Then kin = O  if U > ~ ( T ~ N ~ , ~ ~ A /  
m,&)1'2 and k,,,,O if u <  ~ ( I T J V , , ~ ~ A / ~ , & ) ' ~ ~ .  The upper 
limit k,, obviously exists in the general case:  a s  a 
function of w, the left hand side of Eq. (2) has four 
rea l  roots,  whereas the right-hand side i s  independent 
of w and assumes arbitrari ly smal l  positive values a s  
k increases. Thus, a value k,,,,, can always be found 
such that a l l  four solutions of (2) a r e  rea l  k >  k,,. We 
note that the rea l  part  w' of the root that leads to in- 
stability is given by w' = h / 2  when w ,  = w , ,  and by 
w' = ku when w, >> w,. 

2. KINETIC INSTABILITY 

Now let us take the thermal motions of the plasma 
particles into account and let us assume that a t  a given 
temperature the thermal velocities of the particles in 
the two plasmas differ greatly (urn<< v,,) a s  a result  
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of a l a r g e  difference between the  effective m a s s e s  in  
them (m, >> m,). Fur ther ,  l e t  u s  consider a frequency 
region in which w - w, >> kv, (a  cold plasma). We shal l  
a s s u m e  that the velocity distribution function for  the 
plasma part ic les  in  l ayer  1 is a Boltzmann function with 
i t s  center  shifted by the  quantity u. We sha l l  use  the 
equation that de te rmines  the  plasma oscillations of a 
two-dimensional nondegenerate g a s  [see f rom Eq. (6) 
of Ref. 10 . Then the dispersion equation for  the 
coupled oscillations h a s  the  f o r m  

w-ku 

where r, i s  the two-dimensional sc reen ing  rad ius  in 
layer  1. 

The ineqality 1 w - ku I<< bTl is sat isf ied near  the in- 
stability threshold, and the solution of Eq. (4) can be  
easily found: 

w Z  kr, ku-w' 
Im o=w" = - e - 2 ' h . - .  

2 o' ( 1 + k r J z  ku,, 

A s  is  evident f rom (5), instability is most  likely to 
develop when bo - 1. 

3. DISSIPATIVE INSTABILITY 

In th i s  sect ion we shal l  consider  the situation in which 
t h e  plasma in one of t h e  l a y e r s  (say the f i r s t  one) is 
highly collisional s o  that t h e r e  a r e  no plasma osci l la-  
tions in that layer .  We shal l  descr ibe  the electron g a s  
in that l ayer  by the two-dimensional conductivity u 
which, generally speaking, depends o n  the tensi le  field 
and on the diffusion constant D. Then we easi ly  obtain 
the following dispersion equation: 

It is not difficult to  s e e  f r o m  Eq. (6) that when 

the imaginary part  w N  of the  frequency changes s ign 
while the r e a l  par t  is equal  to  ho. 

Neat the threshold the growth factor  is given by 

A s  u - m, the solution to Eq. (6) obviously becomes 

Thus,  the growth fac tor  f o r  waves with a fixed value of 
k passes  through a maximum a s  the dr if t  velocity in- 
c r e a s e s  from the  threshold value. 

It is easy t o  d i scern  a n  analogy between th i s  c a s e  and 
the  amplification of ultrasound in a piezoelectr ic  semi-  
conductor. The par t  played by the velocity of sound is 
played h e r e  by the phase velocity u, of a plasmon in 
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l ayer  2 ,  whose dispersion law differs  f rom t h e  simple 
relat ion w a k1I2 because of the interaction with the c a r -  
r i e r s  in the f i r s t  layer .  We note that i n  the easi ly  
rea l ized  limiting c a s e  k A  << 1 the coupling between the 
l a y e r s  does not become s m a l l ,  whereas in  the amplifi- 
cation of ultrasound the interaction of the electron 
s t r e a m  with the  la t t ice  is s m a l l ,  a s  a ru le ,  because 
the  electromechanical  coupling constant itself is 
small .  

4. A PLASMA LAYER ABOVE A CONDUCTING 
HAL F-SPACE 

All the instabilities of two-dimensional plasma waves 
investigated h e r e  c a n  a l so  occur  i n  the c a s e  (which is 
evidently e a s i e r  to  rea l ize  experimentally) in which 
one of the plasma layers  is replaced by a bulky conduc- 
t o r .  I t  is obvious, fo r  example,  that beam instability 
will a r i s e  because of the coupling of a surface plasmon 
of the mass ive  conductor with a two-dimensional plas-  
mon i n  the  thin film. The  formulas  of Sec. 1 remain  
valid provided one of the plasma frequencies  w, i s  r e -  
placed by the frequency w , / n  of a sur face  plasmon, 
where w, is the "three-dimensional" plasma frequen- 
cy." 

The phase velocity of two-dimensional plasmons in 
inversion l a y e r s  of semiconductors  is equal in o r d e r  of 
magnitude to lo7-10' cn?/sec ( see  Ref. 1). Grea t  dif- 
ficulties would be encountered in attempting to achieve 
such  drif t  velocities in a solid. However, one might 
propose the following experimental  setup: a n  electron 
beam moves in vacuo along the  ax i s  of a hollow dielec- 
t r i c  cylinder onto the ou te r  sur face  of which a thin 
semiconductor o r  semimeta l  film has  been deposited. 
In the mos t  rea l i s t i c  c a s e ,  in which kR>> 1 (R i s  the 
rad ius  of the beam),  the problem obviously reduces 
to  the two-dimensional c a s e  t rea ted  above. We note 
that  the development of two-stream instability i s  the 
mos t  practicable in such a s y s t e m ,  s ince the beam 
velocity can  be made considerably higher than in a 
sol id-state  plasma. 

Dissipative instability can  be obtained i n  a l ayer  of 
e lec t rons  above a liquid-helium film deposited on a 
bulky conducting substrate .  In th i s  sys tem the surface 
charge  density may be of the o r d e r  of 10'-loY cm-"nd 
then the necessary c a r r i e r  dr i f t  velocity in  the sub- 
s t r a t e  is much lower than in solid body s t ruc tures .  The 
corresponding formulas a r e  s imi la r  to those presented 
i n  Section 3. F o r  example,  the threshold dr if t  velocity 
is 

where A is the thickness of the helium film and c ,  Do, 
and a, a r e  the subs t ra te  dielectr ic  constant,  diffusion 
constant ,  and conductivity, respectively (the dielectric 
constant of helium is taken a s  unity). 

If the plasmon wavelength i s  much g r e a t e r  than A 
while k 2 ~ , / o 0  - @rZD<< k A  (rD i s  the Debye rad ius  in the 
subs t ra te ) ,  u, will be independent of k.  We obtain the 
following expressions fo r  the r e a l  and imaginary par t s  
of the frequency near  the amplification threshold: 
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(e+l)oz" u-u, oT=kuo, or' = --, 
8x0, u, (9 ) 

The inequality k2^/2,<< kA is easily compatible with the 
inequality kA<< 1 over a wide range of substrate carr ier  
densities and temperatures. For N, - 10' cm-2 and 
A - lo-' cm, we obtain u, - 10' cm/sec for virtually all 
values of k (for which, of course, k < ~ ' , / ' ) .  In connec- 
tion with this estimate we note that the drift velocities 
in some semiconductors a r e  much higher (e.g., 5 x lo7 
cm/sec in InSb). 

"AS before, we assume the dielectric constant to  be  the same 
in all of space. No r ea l  difficulty i s  encountered in taking 
the differences in the values of & in various regions into 
account, but the resulting formulas,  although they a r e  very 
cumbersome, do not a l te r  the qualitative picture. 
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The effect of thin silicon oxide films on the propagation of infrared surface electromagnetic waves (SEW) over 
copper is investigated. The SEW spectra are used to determine the optical constants of the films and 
substrates. The SEW spectraof natural oxide films on aluminum and on molybdenum are obtained. 
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Surface IR electromagnetic waves (SEW), which can 
propagate over the surface of a well-conducting metal 
to distances up to several  centimeter^,"^ a r e  very sen- 
sitive to the surface state of the metal and to the pre- 
sence of thin films on the surface. The increase of the 
SEW absorption following the deposition of a film, with 
the absorption increasing near the film oscillation fre- 
quencies, permits the development of a new effective 
spectroscopic method-the spectroscopy of surface elec- 
tromagnetic waves .'' 

This method was used for an experimental investiga- 
tions of silicon monoxide films on copper, of apatite on 
~ i l v e r , ~  and of films of cellulose acetate and benzene on 
copper.5 Investigation of the absorption of the SEW has 
made i t  possible to obtain a dependable spectrum of a 
monomolecular Langmuir film of siloxane acid on the 
surface of ~ o p p e r . ~  The spectrum obtained by us  earl- 
ier4 for the SEW of a silicon monoxide film on a copper 
surface differs noticeably from that calculated by using 
the published data on the optical constants of silicon 
monoxide.' In the present paper we have used the SEW 
spectra to determine the optical constants of silicon- 
oxide films on copper surface and of the natural oxide 

film on aluminum and molybdenum in the 10-pm region 
of the spectrum (C02 laser). 

1. THEORY 

Surface optical excitations exist on the interface of 
two media with dielectron constants E that have opposite 
signs. Agranovich and ~ i n z b u r ~ '  have developed the 
crystal optics of surface waves and have shown that, in 
analogy to three-dimensional crystal optics, the pro- 
pagation of SEW can be described by introducing the 
SEW refractive index (which we designate by xx) ,  which 
connects the frequency v and the excitation wave vector 
kx.1-3 When damping is taken into account, the refrac- 
tive index of SEW becomes complex, and i t s  imaginary 
part defines the SEW absorption coefficient a. The re- 
ciprocal of the absorption coefficient is called the path 
length L (distance over which the SEW intensity attenu- 
ates by a factor e =2.72). 

Consider an air-metal interface. Air  has =1; using 
for the metal the Drude formula for the dielectric con- 
stant, we obtain2 
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