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A theoretical study is made of the melting of a monolayer film of atoms adsorbed on a crystal substrate. 
When the periodic structure of a film is commensurable with the external periodic field, the partition function 
of such a system has a dual symmetry. This makes it possible to determine the temperatures of phase 
transitions in an adsorbed film which occur at certain concentrations. 

PACS numbers: 68.45.Da, 68.60. + q, 6 4 . 7 0 . D ~  

1. INTRODUCTION 

A theory of phase transitions in two-dimensional sy s- 
tems was proposed by ~erezinskf i '  and by Kosterlitz 
and T h o u l e s ~ . ~  In the low -temperature phase a gas of 
bound pairs of positive and negative vortices i s  con- 
sidered and it is assumed that some of these vortices 
dissociate on transition to a disordered phase. ~ o s 6  
et aL3 carried out more detailed calculations for such 
a system in the presence of anisotropy. They found 
that the model has a certain thermodynamic symmetry 
associated with dual transformations of the partition 
function. This symmetry has made it possible to study 
an additional phase transition in systems with anistropy 
of order higher than fourth. 

Kosterlitz and Thouless2 also suggested that the melt- 
ing of a two-dimensional crystal can be considered in a 
similar manner. Here, instead of vortices there a r e  
dislocations and the phase transition i s  attributed to 
dissociation of pairs of dislocations which have equal 
but opposite Burgers vectors. These ideas were de- 
veloped by Halperin and Nelson415 who discovered that 
the transition transforms a crystal into an  intermediate 
liquid-crystal phase which retains the long-range 
orientational order. The next transition from the inter- 
mediate phase to a disordered liquid phase involves 
dissociation of disclination pairs. Halperin and Nelson 
also allowed for the influence of the periodic potential 
of the substrate on these phase transitions. 

The presence of the periodic potential of the sub- 
strate makes it necessary to consider, in the ordered 
phase, the states of adatoms which a r e  commensurable 
and incommensurable with the substrate. These states 
a re  separated by a phase transition curve in the phase 
diagram. As pointed out in Ref. 4 ,  this curve may or 
may not intersect the curve representing the transition 
to the liquid-crystal phase, depending on the ratio of 
the lattice periods of the substrate and of the commen- 
surable structure of adatoms. 

We shall study in greater detail the phase transitions 
from commensurable to incommensurable phases and 
from incommensurable to liquid (or liquid-crystal) 
phases. Therefore, we shall not ignore the presence of 
dislocations in the first  case o r  the periodic potential 
in the second, contrary to the earl ier  treatments. This 
can be done in the case when the periodic structure of 
a surface film is commensurable with the external per- 

iodic field (i. e., it can be done a t  the points B and A in 
the phase diagram of Fig. 1) because in this case the 
system has an internal symmetry. 

The presence of an internal symmetry in various 
physical systems is always an important property be- 
cause it makes it possible to study more thoroughly the 
behavior of such systems and their properties. There- 
fore, determination of this symmetry (associated with 
the dual transformation of the partition sum of a sy s- 
tem of absorbed atoms) is  the main task of the present 
study. 

2. DUAL TRANSFORMATIONS 

Following the notation adopted by Halperin and Nel- 
son: we shall describe the energy of an elastic film in 
the form 

where the s t r e s s  tensor i s  

A and p a re  the Lame constants, @(I-)= $(au,,(r)/ax 
- au,(r)/ay) i s  the orientation angle of the side of the 
lattice joining two neighboring atoms relative to a se- 
lected direction, 

is  the energy associated with deviation from the ener- 
getically preferred orientation of the adatom lattice, 
and a, is  the lattice period. 

A dislocation located a t  a point r has the property 
that 

$ du=aob(r)  =n(r)a ,e ,+m(r)a ,ez ,  

where $ du is an integral over a contour going round the 

FIG. 1. Phase diagram: D liquid-crystal phase; ID incom- 
mensurable phase; 111) commensurable phase. 
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point r; b(r) is  the Burgers vector; el and e, a r e  the 
basis vectors of the lattice. In the case of a square 
lattice, we have 

whereas for a triangular lattice, we obtain 

We shall assume subsequently that a,= 1 in all  cases. 

We shall rewrite Eq. (1) in the form 

where ji= p / ~ ,  X = X / T ,  y= y/T and we shall assume 
that u= ue, + ve,. 

We shall begin derivation of the partition function by 
representing Eq. (2) a s  a difference. For this purpose 
we shall introduce a square lattice in the space r. 
This lattice has no relation to the adatom lattice but is 
associated with the cutoff in the space of r. Then, 

where the summation i s  carried out over the nearest 
neighbors. It should be noted that in the case of inte- 
gration in a partition function with large values of 
u(r) and V(u) we have to continue periodically in the 
range lu I 3 Ib 1 and assume that V(u+ b) = V(u) because 
of the translational symmetry of the lattice. There- 
fofe, the integration with respect to u and v has to be 
carried out within one lattice period in order to avoid 
inclusion of the degenerate states in the partition func- 
tion. 

The partition function then becomes 

or ,  following the usual procedure of dual transforma- 
tions (see, for example, Ref. 3) ,  

We shall simplify subsequent steps by considering in- 
itially a square lattice of adsorbed atoms. Then, 

In this expression the finite differences a r e  replaced 
with derivatives for the sake of compactness. 

The partition function i s  not affected if we make the 
substitution J, - - J,. Therefore, we can rewrite the 
partition function in the form 

Following the method of integration of such expres- 
sions considered by Nelson,' we obtain 

where 
4p(p+X) 4ji7 

K,  = 
4P(!J+X) 4PV +- K , = - -  -. 

2p+X ' p+v ' Zji+x p+7 

More cumbersome procedures applied to a triangular 
lattice give exactly the same result. 

We can thus see  that dual transformations of the par- 
tition function result, a s  expected, in the same expres- 
sion a s  calculations carried out using the theory of 
e l a ~ t i c i t y . ~  However, in the subsequent discussion it 
will be convenient to describe the partition function in 
the form given by Eq. (4). 

3. SYMMETRY OF PARTITION FUNCTIONS 

In this section we shall show that a system which al- 
lows fo r  the periodic potential of the substrate com- 
mensurable with the film structure has the dual sym- 
metry. We shall now write Eq. (3) for a triangular lat- 
tice: 

3" au au  3'" a~ +U 

2 d y d x  4 d x d y  

o r  after dual transformations: 

where 
4n3 1 4n2 1 4nZ a-9 p,= -- q,=-- x,=--__. 
3 p '  3 p+X ' 3 W Y  

We shall now allow for the contribution made to the 
partition function by the periodic potential of the sub- 
strate and we shall do this for a concentration corre- 
sponding to the AB line in the phase diagram (Fig. 1). 
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At this concentration the incommensurable lattice per- 
iod is identical with the commensurable lattice period, 
but-in contrast to the commensurable case-the ad- 
atom lattice in the incommensurable phase may move 
freely over the substrate surface. 

Let us assume that the potential of the periodic field 
of the substrate i s  

l'[u (r) 1 =x h,,, exp(iMo(r)},  
( M )  

where 

where in the limit y, - 0 we have h,= y, 
M=p(M,m,+Al,m,), 

M ,  and M ,  integers, and M is the smallest (in respect 
of the modulus) vector which is the common reciprocal 
vector for the film and substrate lattices so  that p i s  
the ratio of the modulus of the vector M to the modulus 
of the reciprocal vector of the adatom lattice (see Ref. 
4). 

After inclusion of a new term representing the com- 
mensurable substrate potential, we find that the term 
with y a s  a partition function represents the contribu- 
tion of the potential of the incommensurable harmon- 
ics.' We shall carry out a series of dual transforma- 
tions following the scheme of Ref. 3. The calculations 
given in the Appendix show that the partition function 
has the dual symmetry in full analogy with Ref. 3: 

The same relationship can be presented in a more con- 
venient form 

Z [ K , ,  K?;  yo, y v ] - Z [ K , ' ,  Kz'; YX, YO], (6b) 

where 

It follows from Eq. (61, representing the internal 
symmetry of the system, that we can consider a phase 
transition from a commensurable to an incommensur- 
able phase and from an incommensurable to a liquid (or 
liquid-crystal) phase without ignoring the presence of 
dislocations in the first  case or  the influence of the per- 
iodic potential of the substrate in the second case. 

It is  shown in Ref. 4 that a phase transition from an 
ordered to a disordered phase, considered ignoring the 
periodic potential of the substrate (i.e., assuming that 
y,= 0) occurs for K,,= 16n. In view of the symmetry of 
Eq. ( 6 ) ,  another singularity of the partition function oc- 
curs a t  K,,.= 168, when yo= 0, For nonzero values of 
y, and yo we can show, using Eq. (6) and the symmetry 
of the partition function relative to the substitution y, - -y,  (see Ref. 3 ) ,  that the temperatures of phase 
transitions a r e  found from the relationships 

16nZp2 3p,+X,+~, 
= 1 (in. 

3 ( & B + T  B )  (2pB+ i n )  

Hence, 

where F, = pR(TA) and pB = pR(TB) a r e  the renormalized 
constants. 

These transition temperatures a r e  also obtained in 
Refs. 4 and 6 but on the assumption that y, = 0 in the 
former case and yo=  0 in the second. Our approach 
provides a more rigorous derivation of the relation- 
ships for TA and T,. 

It follows from these relationships that if 

the phase transitions curves do not intersect and the 
melting passes through an intermediate incommensur- 
able phase.4 In the opposite case the transition occurs 
from a commensurable phase directly to a liquid phase 
(if the temperature is sufficiently high). We shall study 
this transition by considering the case of a deep poten- 
tial relief of the substrate when the adatom system is 
described by a discrete model. We can easily see that 
this corresponds to the y M =  1 case. It is  easiest to dis- 
cuss the situation when y = X +  p. We then have 

and the symmetry of the partition function of Eq. (6) al- 
lows us to determine accurately the temperature of the 
transition a t  the critical melting point of the commen- 
surable phase (i.e., a t  the point C in Fig. 1). 

The expression (6b) can be rewritten in the form 

[it should be noted that the term with yo is introduced 
artificially in Eq. (5) and, therefore, we have yo= 1 al- 
though yo, + l ]  and then we can find directly the phase 
transition temperature 

TZ=3y  ( p + h ) / 4 n 2 p Z .  (9) 

We have given some results which follow from the 
dual symmetry and we hope that further studies of this 
symmetry will give a better understanding of the prop- 
erties of adsorbed films. 

The author is  grateful to L. A.  Bol'shov and V. L. 
Pokrovskii for valuable discussions. 

APPENDIX 

We shall now show that the investigated systems 
have the dual symmetry described by Eq. (6). We shall 
carry out a series of dual transformations following a 
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scheme proposed in Ref. 3. Dual transformation of Eq. 
(5) subject to  the substrate potential and integral val- 
ues of p gives 

16nzp' 
lM(r) lZ=- 

3 
[M?(r) +M? ( 4  -M,(r)Mz(r) I. 

iM (r) u (r) = (2niM,u+2niM2v) p. 

Inverse dual transformation of this expression gives 

where ?[V(R)] i s  defined by Eq. (5), 
!sr(M(r) lz=l  M(r) ~z="/~n2p2[M,(~~)z+M2(r)2-M,(r) ~ , ( r )  1, 

lg(R) l'=61(R)'+62(R)'+6,(R)&(~), 

i d R )  6(R) =%niG(~)%,  (R) +2ni+(R)&(~).  

In order to compare the expressions for the partition 
functions given by Eqs. (A.l) and (A.2), we shall carry 
out the following operations on Eq. (A.2): 

1) the substitution 
G(R) +&(R)+M(R),  M(R, R') +M(R, R/)+M(R)-M(R/) 

is used to go over from integration with respect to 
and $ between 0 and p to integration between -00 and 
+*; 

2) the integration and summation variables a r e  re- 
placed a s  follows: 
Q(R)--$(R), N,(R, R')--.V2(Ri R ) ,  6,(R) +-6,(R): 

3) the inverse substitution brings us back to integra- 
tion with respect to $ and between 0 and p. 

The partition function of Eq. (A.2) now becomes 

~ = ( I I ~ ~ w R ) ~ + ( R ) )  R O O  z Z ~ X P { V ~ [ G ( R )  
(%R, R')l l&Wl 

- 6 (R') - @ (R, R')] + 2 (In YO) 16i2 (R) + Ln2 (R) - 51 (R) &Z(R)I 
R 

+ 2 (]nu,,,) [ 2 1  (r)2 + 2% (r)% + 21 (1) fi2 (r)] 
I 

where Vl[u(r)] differs from V[u(r)] only by the coeffi- 
cients Fl, and <, and XI which replace F, 7, and & 

The expressions (A. 1) and (A.3) a r e  easily compared 
and we then have a situation fully analogous to that con- 
sidered in Ref. 3 for the model with a scalar field 0(r) 
and an anisotropy h, cos[pe(r)]. In our case the sub- 
strate potential is  anisotropic. We then have 

4nzp' 1 4nZpZ P-7 4nZpZ 1 
Z[&X.v; Y ~ . Y M I - z [ - -  -- 3 ' 3 p g '  3 p+X . Y.. ,.I - 
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