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An equation is obtained for the low-frequency fluctuations of the occupation numbers of the quantum states 
of the electrons of a semiconductor placed in crossed electric and magnetic fields. The correlators of the 
current-fluctuation sources are calculated. It is shown that magnetic quantization of the electron motion can 
lead to a change in the sign of the contribution of the carrier-energy fluctuations to the overall noise. 

PACS numbers: 71.45.Grn. 72.20.M~ 

Fluctuations in crossed electric and magnetic fields 
were investigated in Ref. 1, where a theory was devel- 
oped for the high-frequency case and the low-frequency 
fluctuations ( U S  v,,,, where vCo, is  the characteristic 
frequency of the electron-phonon collisions) were not 
considered a t  all. Yet it is precisely the low -frequency 
fluctuations that have maximum intensity, s o  that their 
characteristics a r e  easier to measure. 

Linear equations for the fluctuations of the occupation 
numbers of the electron quantum states a r e  obtained 
after averaging the corresponding equations of motion 
over a set  of close levels Av. The A v interval must be 
large enough to contain a large number of particles, 
and at the same time small enough to prevent accuracy 
loss due to the scatter of the quantum numbers within 
AV when quantum-transition processes a r e  described. 
The idea of averaging of the equations of motion over 
physically infinitesimal volumes is not new. In particu- 
lar, in Klimontovich's monograph2 the Liouville equa- 
tion for a multiparticle distribution function i s  averaged 
over the spatial coordinates. 

No final calculation of the fluctuations can be made 
without a known distribution function of the carr iers  
over the states. We therefore obtain below an explicit 
expression for the distribution function, in the form of 
a one-dimensional integral. In the quantum limit 
(kwc,>>p~/2m = G,, where wo is  the cyclotron frequen- 
cy, rn is  the electron mass, is  the thermal momen- 
tum in the direction of the magnetic field H, and Hllz), 
a s  well a s  in classically strong fields (&, >> Ww,, >> AV,,,) 
this function coincides with the known expressions in the 
form of a Maxwellian distribution with an effective 
electron temperature. 

EQUATIONS FOR THE OCCUPATION-NUMBER 
FLUCTUATIONS 

It is convenient to continue the analysis in a repre- 
sentation in which the Hamiltonian of the electrons in 
crossed fields is  diagonal. If we choose the vector po- 
tential of the magnetic field in the form A = i - ~ ~ ,  O,0}, 
then the wave function of the electron a t  Elly is  

l e l  

where a, a r e  the eigenfunctions of: the harmonic oscil- 
lator, y, i s  the coordinator of the center of the oscilla- 
tions, and Z is  the magnetic length. 

The electron energy corresponding to the wave func- 
tion (1) is expressed in terms of n,p, and p, a s  follows: 

The choice of the Landau representation for the de- 
scription of the kinetics of electrons in a quantizing 
magnetic field is  the most convenient and natural. The 
primary reason is that in the course of the collision 
act (whose duration is R/E) the magnetic alters notice- 
ably the electron momentum (the period of the Larmor 
rotation is l/wo), provided only that R / E ~  WE:, i.e., 
R w o k  E. Therefore inclusion of the magnetic field in 
the single-particle spectrum greatly simplifies the de- 
scription of the electron-phonon scattering in the lan- 
guage of quantum transitions. 

The Hamiltonian of the system has in the second- 
quantization representation the form 

a:, a,, b;, b, a r e  the electron and phonon creation and an- 
nihilation operators (electrons in state v and phonons 
in state q), w, i s  the phonon energy, and 6E is the 
self -consistent field. 

The number of electrons in the state V, which equals 
a&, varies with time because of the interaction with the 
phonons and with the self-consistent field 6E: 

1 
+6E- ( (n+ l ) '" f ,+ ,  .-n"f, .-,) I +  -x V ,  (b,+ b-q+) ( f v v ~ ~ ~ v ~ - f v ~ v ~ ~ v ) ,  

r f i  ". 
(4) 

where f ,,,= aia,., 6E, = 6E, +i6Ey, the index v i 1 denotes 
the set  of quantum numbers n 1, p, p,, 

and Q, i s  a two-dimensional vector in a plane perpen- 
dicular to H. 

The operator products of the type b, f ,,, which enter 
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in the right-hand side of (4), must be expressed in 
terms of the phonon and electron occupation numbers. 
To this end we write down again the equation of motion 

where A;".= c ,  - E,, - W, and q, is  the third term in the 
right-hand side of (3). 

The solution of Eq. (5) can be written in the form 

( t - t . ) )  b,,fvv*l..ll + j d t f  erp 

$(t) is the right-hand side of (5). 
(6) 

In the calculation of the spatially homogeneous fluc- 
tuations of the currents it will be necessary to know the 
occupation-number fluctuations summed over the quan- 
tum number p, (electrons with different Larmor-rota- 
tion centers make equal contributions to the total cur- 
rent of the sample). We therefore sum Eqs. (4) and (6) 
over p, after f irst  multiplying the latter of I:,.. 

The second term in the right-hand side of (6) is  then 
greatly simplified if we discard the "strongly nondiag- 
onal" terms in $(t) (for details see  Ref. 3) and linear- 
ize with respect to the fluctuations of the electron and 
phonon occupation numbers. It should be noted here 
that these fluctuations a re  not small, since their mean 
square is  not small compared with the square of the 
mean values. Indeed, neglecting the weak electron- 
phonon interaction, we obtain 

and in the general case f ,(I - f ,) is  not small compared 
with f z. 

Nonetheless, the linearization can be justified. To 
this end we average (4) over the set of states p, within 
a small interval ~ p , ,  and average Eq. (6) over p, and - 
q ( ~ p .  <<fix, AQ,,, << &,EA~, -  AP,, ql is  the characteristic 
wave vector of the phonons that interact effectively with - 
the electrons; 9,- 1'' in quantizing magnetic fields). If 
small volumes with dimensions much smaller than the 
mean free path contain large numbers of particles 
whose states a r e  within the averaging interval A v ,  then 
the contribution made to $( t )  by the quadratic terms 
compared with the contribution of the linear ones. The 
corresponding estimates can be easily obtained by cal- 
culating their mean values and neglecting the electron- 
phonon interaction. 

Linearization is thus possible if the averaging inter- 
vals ~ p ,  and Aq, a s  well a s  the mean f ree  paths of the 
electrons and phonons a r e  large enough (as indicated 
above). 

The rest  of the derivation of the equation for 6fa 

(a!= {n,~,}, Lx, L,, L, a r e  the crystal dimensions, the 
subscrpt hp, denotes averaging over the set of the close 

levels p,) i s  standard (see, e.g., Refs. 3 and 4) and, 
without dwelling on it, we write down the result forth- 
with: 

afa a& ioSf.+eSE,- = -Ga1{8fa, 6N)-6E-f=+Kat(o ,  a) ; 
apz aE 

(7) 

c&{6fa, b ~ }  i s  the collision integral (8) linearized with 
respect to 6f and 6N. 

Equation (9) is valid for any orientation of E in the x y  
plane, whereas (1) and (2) were derived for a special 
coordinate system in which Elly.  The equation for 6f, 
a t  6E,,,= 0 and EI1H was used by RozhkovS to  investigate 
the current fluctuations along H. As expected, the 
fluctuating electric field 6E, ,  influences 6fa only in the 
course of the collisions, so  that between the collisions 
the electron drift perpendicular to H and to the total 
field E +  6El without change in their state. 

In Eq. (7), KJw, a)-the extraneous flux-is the 
source of the fluctuations. It stems from allowance 
for the initial conditions when the collisions of the elec- 
tron with the phonon a re  described [the first  term in the 
right-hand side of (6)]. The correlation function of the 
source can be easily obtained in view of the simple time 
dependence of the quantities contained in K,,. For 
quasiclassical fluctuations, in the Born approximation 
in the interaction constant (it i s  precisely in this case 
that the collision integral GL has the simple form indi- 
cated above) the correlator of the extraneous current is  

where the Fourier transformation i s  defined a s  

-- 
We disregard hereafter the fluctuations of the phonon 

distribution function, i.e., we assume that 6N= 0 in (7). 
We note that the influence of the phonon fluctuations on 
the electrons without a magnetic field was considered 
earlier in Ref. 6. A generalization of the theory pre- 
sented their to include the case of quantizing magnetic 
fields entails no particular difficulty. 

Equation (7) in conjunction with the correlator (10) 
will be used later in the calculation of the current fluc- 
tuations in the sample. 

CURRENT FLUCTUATIONS 

The expression for the spatially homogeneous compo- 
nent of the current density in a crystal i s  of the form 
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where the subscript i numbers the electrons. In the 
second-quantization representation we get from (11) 

2'"eh eEl i-= (,j+)+=--x ( (n+i)'' 'fv,v+, +-fv+) , 
k m l  2'!.A w,, 

It follows from (12) that the current fluctuations 
(6j = j - (j)) can be determined if the functions 6fu and 
6fu,l,u a re  known: 

The latter, a s  will be seen below, can be expressed in 
terms of 6fu and extraneous current analogous to K,,. 
This is  easily done after writing down the equation for 

f"*l, " 

It is convenient to determine not f,,,,, but directly the 
sum 

which enters in j-. We multiply for this purpose (13) by 
(n + and sum both sides of the equation over all  V .  

The result is  

+ &C V.Z:~~- (bg+b-q+)fv.- .  q = = q l i i p , .  (14) 
quv' 

The products of three operators of the type b,f,,., 
contained in (14), were already determined in the de- 
rivation of Eq. (7) [see (6)]. It remains only to substi- 
tute the equations obtained there in (14), and substitute 
(14) in (12). As a result we obtain for the low-frequency 
case ( w << w,,) 

where n,, is  the average electron concentration; the 
average current ( j , )  is 

6(j_)/6fu is the variational derivative of the second 
term in the right-hand side of (16) with respect to the 
small change of the occupation number fa; j zXt  is the 
extraneous current, expressed in terms of the electron 
and phonon operators a s  

Since all the operators a re  specified a t  one and the 

same instant of time (t,), we can easily calculate the 
correlator of the extraneous current. Its value in the 
quasiclassical case is  

(in isotropic scattering the correlators (6j'_xt6j'_x1 and 
(6 j~ '6 j~ '9  a re  equal to zero). 

It follows from the foregoing that the current fluctua- 
tions can be easily calculated if the fluctuations of the 
occupation numbers and the self-consistent field 6E a re  
known. 

The quantities 6fDl and 6E a r e  determined from Eq. 
(7) and from the equations for the current flow through 
the electric circuit in which the investigated semicon- 
ductor is  connected. In addition, in concrete calcula- 
tions it is necessary to know the electron distribution 
function fa. An analytic expression for this function is 
known only in the cae of quasi-elastic scattering by 
acoustic phonons, when the electrons populate only the 
lowest Landau level. We obtain here an expression for 
f, without confining ourselves to the quantum limit. 

ELECTRON DISTRIBUTION FUNCTION 

In the nondegenerate case the equation for f, takes the 
form 

Expanding (19) in the small parameters (the phonon en- 
ergy and the electric field), we obtain the following 
equation for fa =.f,",: 

where T is the lattice temperature. 

We note that the expansion (20) is valid only for ener- 
gy values such that 

1 em-hc~, , ( tz+ ' / : )  I 
We assume next that the number of electrons in the vi- 
cinities of the points E,= fZOcy(n + ;?2) is small and that 
they make no substantial contribution to the kinetic phe- 
nomena ( for  more details see Ref. 7). If we neglect in 
(20) the terms with small parameters 6 ,  and 6,, then 
the kinetic equation is satisfied by any function of the 
energy, i.e., 

fpz"=fz; e = ~ 1 ~ ~ / 2 t n + / ~ ~ 1 ~ ~ t 1 i - ' / ~ ) .  

This part of the collision integral does not take into 
account the change of the electron energy in the colli- 
sions with the phonons. 

The explicit form of ;, can be easily determined once 
the large terms that describe the elastic collisions a re  
eliminated from (20). This is done by averaging v ,  
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over all the values of n and p, at the given energy 6.') 

To this end we multiply (20) by rng,'/ (p,l(g, is  the 
state density, equal to 2mx, ,  (p  ,, I-') and sum over all 
values of n and directions of p,. In the equation ob- 
tained in this manner all the terms a r e  of second order 
in E and w,. It follows in addition from (20) that the 
differences f ;, - f tn, a r e  proportional to 6'6, or  6;. 
Therefore, without loss of accuracy, we can put f ,",= f, 
in the obtained equation, which then takes the form 

or  in abbreviated form ;, f, = 0. 

With the aid of the operator c we can express also 
the correlator (10) averaged over all values of n and p, 
for given E and E'. We note for this purpose that in the 
nondegenerate case Eq. (10) is  expressed in terms of 
Fa in the following manner: 

1' 
( K ( t ,  a ) K ( t ' .  a ' ) ) ,  =-(\-,+?,.)6,.ff,. 

LTL, 
(22) 

Averaging yields 

C g ; ?  8 & ( K  ( I ,  a )  K ( t r ,  a')),  -- :K ( t ,  E) K ( t r ,  d)). 

PnPn' 

2:r - - f,  
= T- E l 2  (v. + vE,) - 6 (E - e'). 

6 ,  
(23) 

Equation (21) with the boundary conditions j,, af,/ac 
= 0 at c = a can be easily solved, since it reduces after 
a singe integration with respect to c to a linear differ- 
ential equation of first  order with variable coefficients. 
The latter depend on the explicit form of V,. If 1 V ,  1 '  
= V,q,  then (24) 

where g' = (eE1)2/4ms2 and s is the speed of sound. 

In this case the distribution function is 

the constant preceding the exponential is  determined by 
the total number of electrons in the sample. At the 
zero Landau level (c < $ Ew,,) f, takes the form 

and coincides with the function obtained by Zlobin and 
~yryanov.' In the quantum limit (E - $Roc, << Rw,,), a s  
well a s  in the case of classically strong fields (E>> Ew ,J, 
f, is Mamellian with an effective temperature T, equal 
to T(1+ 2E '/Ew in the f i rs t  case and T(1+ 4E '/3RwV) 
in the second. 

EFFECT CARRIER ENERGY DISTRIBUTION FLUC- 
TUATIONS ON THE CURRENT FLUCTUATIONS 

The contribution of the fluctuations of the occupation 
numbers to 6fx,, is  described by the second term in the 
right-hand side of (15), and a nonzero contribution is 
made only by that part of the function 6fu which is even 
in p,, i.e., 

We obtain an equation for 6f by adding (7) to the equa- 
tion for 6f$, 

In the derivation of (25) we used the fact that $,fa = 0, 
a s  well a s  the identity 

a;, .. afa - aE fa+ va-= 
dE  

We define the arbitrary constant c  such a s  to satisfy 
the sum rule for the functions on which the operator c, 
acts: 

It follows from this condition that c =  6n,,/n,,. 

Equation (25) is  easily solved in the case of low fre-  
quencies by iteration with respect to the small pa- 
rameter w~- , ' .  This method was extensively used in 
Ref. 9 to solve similar problems. The smallness of 
wvil is  ensured if w r C  is small (7, is  the characteristic 
energy relaxation time and i s  determined by the colli- 
sion integral c,), since 7, is  much longer than the elas- 
tic-relaxation time v;:,. 

In the zeroth approximation we get 

and the uniqueness of the operation G-,' is ensured by the 
sum rule cited above (for details see Ref. 10). We sep- 
arate in the solution (26) the part that depends only on 
energy. To this end, a s  before, we average (25) over 
the different states a t  the specified energy c. This 
leaves on the obtained equation only the inelastic part 
of the collision integral, and in this part we can re -  
place 6fC, by 6f,. The rapidly relaxing part, equal to 
6f C, - 6fc, is  small when v;',, - 0. In fact, the difference 
6fC, - 62, is  of the order of 

Consequently 

a f  a1 6fic;z:6f - - 6 ~  + 26n,+~,-1K(e)  
' -  dE  dn, 

The last  term of (27) is  the solution of the equation 
v,$,=K(c), and the sought function $, satisfies the con- 
ditions $, = 0 at  E = 0 and 24, = 0. 

0 

Substituting (27) in (15) we obtain 

w ~ ~ * ~ - ~ . - ' K  ( e )  

It is  easily seen that 6jE differs from zero only when 
E + 0. In the isotropic case 6j4 i s  proportional to E, 
and the vector 6jf is  directed along the dissipative 
component of the current. This term is the contribu- 
tion made to 6j by the fluctuations of the energy distri- 
bution of the particles, i.e., the convective noise, 
which was f i rs t  investigated in the absence of a mag- 
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netic field in Ref. 11. We now compare, in order of 
magnitude, the correlators (6j:Xt(t')6j_Bxt(t)) and 
(6j:(t)6jE(tf)). To this end we replace in (18) 

w&. by vcO, and 5. = ne, L ~ Z ~ Z ' ,  and in (29) 
a !PI a 

I and v̂;' - 7,. Then 
I 

I We see that the ratio of the convective current to the 
I 

noise due to 6jex' i s  of the order of 

i.e., it is  large enough only in the nonequilibrium case, 
when electron heating takes place. 

Assume that Elly. Then 6 j f =  0, and 6jf #0. It i s  im- 
portant to note that the mixed correlators (6j;bj F ~ )  
differ from zero and contribute, alongside with 
((6j :')') and ((6jfI2) substantially to the total correla- 
tion function. We present here a general expression for 
the correlator of the summary source (6jt = 6jext + 6j ") 
a t  an arbitrary degree of inelasticity of the electron- 
phonon collisions 

The second term in the square brackets of (30) is  the 
contribution of the fluctuations of the symmetrical part 
of the distribution function. We obtain its relative value 
in quasielastic scattering of the type described above: 

where z = l n ( 4 n ~ , /  1 e I EL) - 1 - $ C, C, and C is the 
Euler constant. 

When integrating with respect to p, in (30) we have 
neglected the phonon energy, but in the probabilities 
w",~: we took exact account of the change of the electron 
energy on account of its displacement along the electric 
field in the collision act, since 6 j t  differs from zero 
only a t  Ey + 0. 

It follows from (32) that in the classical case the 
fluctuations of the electron energy make a positive con- 
tribution to the total noise, whereas in the quantum re- 
gion this contribution is determined by the value of the 
parameter Te/ l e   EL. The convective term is signifi- 
cant only a t  ( Te - T)/T, - 1 (when 1 e I EZ 2 w,) and it can 
therefore be assumed in the estimate that the param- 

eter Te/ 1 e I E Z  does not exceed 

and that in real  situation z is  equal to several times 
one. The allowance for the energy fluctuations then 
decreases the total noise. 

Thus, the quantization of the electron motion in the 
magnetic field changes the relative positive of the low- 
frequency (w < 7:) and high-frequency (vco, > w> .;I) 
plateaus. The physical cause of the reversal of the 
sign of the convective increment i s  obvious: in the 
classical region the total current is  proportional to 
T:/', as against - T;~'' in the quantum region. There- 
fore the convective increment to the noise current, 
which i s  of the order of (ajy/ aT,)6Te(6Te is the fluctua- 
tion of the electron temperature) has different signs in 
these two cases. 

Experimental observation of convective noise in 
monopolar semiconductors is made difficult by the ap- 
pearance of Hall fields and currents. To simplify the 
interpretation of the experiments one can use long 
samples in the direction of the current-carry ing con- 
tacts (in the x direction). Then in regions far enough 
from the contacts the electric field Ey, which is equal 
to 

is  much stronger than the applied field Ex. Assume 
that the total number of the carr iers  does not fluctuate 
(6n,, = O), and the impedance of the external circuit to 
the alternating fluctuation current is infinitely large, 
i.e., 6jx= 6jy= 0. We then obtain that the fluctuations 
6E, a r e  equal to 

i.e., under the same experimental setup the convective 
noise contributes to the fluctuations of the field along 
the flowing direct current. On the other hand if 6jy 
= 0,6E,= 0 (the sample is short circuited with respect 
to the ac  component in the x direction), then 

In this case the convective noise is present in the field 
fluctuations 6E, and in the current fluctuations 6jx. 
Comparing the expressions for BE, in (33) and in (34), 
we see  that their correlators in the second case a r e  
( w ~ ~ / ~ ~ ~ ~ ) ~  times larger than in the first. The reason 
is that the electron flux that produces the current 6jx 
is acted upon by a Lorentz force in the y direction. 
But since the current 6jy does not flow, a fluctuating 
field 6Ey is produced in the sample and balances the 
Lorentz force. 

If the sample is in a waveguide having a wave resis-  
tance equal to the weak-signal resistance of the sample, 
then the total current will equal half the short-circuit 
current, i.e., Bj, will equal hafl the value given by Eq. 
(34) (see Ref. 12). 

We note in conclusion that the expressions obtained 
above for the correlators of the extraneous currents 
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can  be used to de te rmine  the  Hermit ian components of 
t h e  diffusion tensor with the  a id  of the relat ion 

')For the sake of convenience we shall write p, in place of p, 
in the transformations that follow. 
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Domain structure of uniaxial ferrimagnets with a 
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Results are presented of theoretical and experimental investigations of the domain structure of uniaxial 
ferrimagnets of finite dimensions during second-order phase transitions in the vicinity of the magnetic 
compensation point. The theoretical analysis is carried out for the magnetic-field range from zero to the "flip" 
field of the magnetization vectors of the sublattices. Domains in fields above 100 kOe were observed on the 
"Solenoid" installation at the P.N. Lebedev Physical Institute of the Academy of Sciences, USSR. 

PACS numbers: 75.50.Gg, 75.60.Ch 

INTRODUCTION t ions. It should b e  noted that allowance f o r  the non- 

Investigation of orientational second-order  phase t ran-  
sitions induced in uniaxial magnetic mate r ia l s  by a 
magnetic field H perpendicular to  the ax i s  of easy mag- 
netization (AEM) i s  of g rea t  in te res t  both f o r  physics 
and for  applications. In theoret ical  papers' . '  devoted 
to the analysis  of the nucleation of a domain s t ruc ture  
in the vicinity of such t rans i t ions  in  plates  of uniaxial 
ferromagnets  (with ~ I I A E M ,  where n i s  the normal  to 
the plate sur face) ,  i t  was  shown that because the s tat ic  
susceptibility of the c rys ta l  increases  on approach to 
the phase-transition point (line), the effect of the de- 
magnetizing field on the distribution of magnetization 
within the plate i s  considerably enhanced. Neverthe- 
l e s s ,  in the vicinity of l ines  of second-order  phase 

uniformity hoth along the length and along the thickness  
of the plate  i s  in  principle important  both for  determin-  
ation of the type ofphase  t ransi t ion and for calculation 
of the t empera ture  and field dependences of the p a r a m -  
e t e r s  that  charac te r ize  the nonuniform state .  In o ther  
theoret ical  papers  in th i s  direct ion,  the au thors  have 
determined the l imi t s  of stability of the  uniform mag- 
netic ~ t a t e ~ - ~  and have a l so ,  on the  b a s i s  of model re- 
presentat ions of the nature of the nucleating domain 
s t ruc ture ,  s i m i l a r  to  those of Ref. 7, calculated cer- 
tain p a r a m e t e r s  of the s t ruc ture .  Obviously, accord-  
ing to the considerat ions indicated above, the  last-men- 
tioned r e s u l t s  are c o r r e c t  only a t  a sufficient distance 
f rom the t ransi t ion point. 

t ransi t ion the presence  of a s m a l l  p a r a m e t e r t h e  a m -  In the presen t  paper ,  we c a r r y  out a theoret ical  and 
plitude of the magnetization within a domain) makes it  experimental  investigation of the domain s t r u c t u r e  of 
possible  to  find a l l t h e  p a r a m e t e r s  of the domain s t r u c -  uniaxial fe r r imagne ts  with a compensation point. In 
t u r e  direct ly  f r o m  the equations of s t a t e  and the equa- such  magnets ,  as was  f i r s t  shown in Ref. 8 ( see  a l so  
tions of magnetostat ics ,  with allowance f o r  the boundary Ref. 9), for a n  infinite medium a noncollinear s t a t e  
conditions on the magnetization and on the magnetic or iginates  a t  a rb i t ra r i ly  s m a l l  f ie lds;  this  shows up 
field, without resor t ing  to any model-type assump- especially clear ly in the vicinity of the magnetic com-  
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