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Hydrodynamic stability of compression of spherical laser 
targets 
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Hydrodynamic stability in compression of targets by laser radiation is investigated with account taken of 
convection, thermal conductivity, compressibility, and the spontaneous magnetic field. It is shown that the 
growth rate exhibits nonlinear saturation with decreasing perturbation wavelength. The conditions necessary 
for nearly symmetrical compression are determined, as is also the effect of the instability on the final state of 
the target. 

PACS numbers: 52.50.Jm 

T h e  hydrodynamic ins tabi l i ty  p roduced  in low-en- 
t r o p y  c o m p r e s s i o n  of s p h e r i c a l  targets b y  laser r a d i a -  
tion i s  the  main obs tac l e  to t h e  attainment of t h e  u l t r a -  
high matter d e n s i t i e s  p red ic t ed  by  one-dimensional  
sphe r i ca l ly  s y m m e t r i c a l   calculation^,'^^ I t  is known 
that  t h e  ins tabi l i ty  is in t h e  main of t h e  Rayle igh-Taylor  
type: which h a s  b e e n  thoroughly  inves t iga t ed  in  hydro -  
dynamics ,  p a r t i c u l a r l y  when appl ied  to i n c o m p r e s s i b l e  
fluid flow. A s  a r e s u l t  of ins tabi l i ty ,  t h e  growth of 
the  ampl i tude  of the  small p e r t u r b a t i o n s  due  to v a r i a -  
tions of t h e  in tens i ty  of t h e  laser radia t ion,  to d e v i a -  

tions of t h e  target-material dens i ty  f r o m  homogenei ty ,  
and  to d i s to r t ion  of t h e  t a r g e t  s h a p e ,  can l e a d  to tur- 
bul iza t ion of the  f low prior to the  end  of t h e  c o m p r e s s i o n  
process. New f a c t o r s  in the  s tudy  of ins tabi l i ty  of a 
compressing plasma s p h e r e  are t h e  electronic t h e r m a l  
conductivity (T,, T, - 1 keV), compress ib i l i t y ,  h igh  ra- 
d i a l  g r a d i e n t s  of t h e  temperature and of t h e  veloci ty ,  
and generation of magnetic f i e l d s  of cons ide rab le  
s t r e n g t h  (-1 MG) against the  background  of t h e  f a s t  
motion of t h e  plasma t o w a r d s  t h e  s y m m e t r y  center. 
T h e  s tudy of t h e  n a t u r e  and  of t h e  me thods  of s tabi l iz ing 
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the hydrodynamic instability of the compression, and 
the determination of the permissible spectrum of the 
initial perturbations and hence of the permissible var- 
iations of the intensity of the laser radiation and of the 
deviations from spherical symmetry of the target, con- 
stitute one of the central problems of laser-driven 
thermonuclear fusion. It is obvious that the solution of 
this problem has a direct bearing on the general prob- 
lem of limitation of spherical cumulation. 

The hydrodynamic instability of target compression 
by laser radiation has been the subject of many studies, 
using either an approximation linear in the 
o r  two-dimensional numerical experiments. ''I3 The 
latter a r e  the most effective tools for  the investigation 
of this problem, but call for a detailed physical inter- 
pretation and for a comparison with simple analytic 
solutions. 

The purpose of the present paper is to present a 
complete picture of the evolution of instability in a laser  
target during both the linear and nonlinear hydrody - 
namic stages of development of the perturbations, with 
consistent use of analytic solutions for the interpreta- 
tion of the numerical experiments with nonlinear hy - 
drodynamics. 

The results of such an approach can explain why the 
thermal conductivity plays an essential role, and con- 
vection a negligible one. The analysis presented below 
shows that when account is  taken of all the indicated 
effects the perturbations of the interface of the media 
increase during the linear stage in approximately the 
same manner a s  the Taylor modes on a spherical sur-  
face that moves with variable acceleration and whose 
area  decreases with time. We show that when the wave 
number k = 2n/A of the perturbation increases the 
growth rate saturates and that this saturation is of the 
same type a s  observed by Fermi. l4 The presence of 
saturation suggests that the perturbations of the high 
harmonics a re  not dangerous for the compression, pro- 
vided that their initial amplitude does not exceed a de- 
finite value. For the simplest target studied in 
present-day experiments (glass pellet filled with D, 
gas), we determine the initial-perturbation amplitude 
that does not lead to a substantial distortion of the 
spherical symmetry, and obtain quantitative data on 
the state of the compressed target core with allowance 
for the instability development; these data a re  used to 
interpret the physical experiments. 

1. INSTABILITY CRITERION. INSTABILITY ZONE 

We assume in the analysis of the stability of motion of 
laser plasma the criterion for the instability of adia- 
batic (constant specific entropy) flow of a heat-conduct - 
ing compressible fluid; this criterion was previously 
obtained15 in the linear approximation. The motion i s  
stable in the region where the following condition i s  
satisfied15 : 

here p ,  p, and S a r e  the pressure, density, and speci- 
fic entropy of the plasma. The criterion (1) was rigor- 

ously proved for all wave numbers of the perturbation 
a t  gradients constant in space, and a s  k -- m for arbi- 
t rary  distribution of the indicated quantities in space. 
If we rewrite (1) in the form 

then it is easily seen that at I V lnp / >> 1 V lnp I we ar-  
rive from (2) a t  the known stability criterion of a non- 
heat-conducting incompressible liquid, obtained by 
Rayleigh and Chandrasekhar4: 

Analysis of compression of targets of various types 
shows that regardless of the concrete structure of the 
target and of i t s  heating and compression regime, in- 
stability in the sense of (2) se ts  in at least during two 
stages of the motion16: in the Ucoronav in the reactive 
acceleration of the matter during the initial stage of the 
spherical convergence, and when the plasma is slowed 
down near the geometric center of the target. In con- 
t r as t  to the classical Rayleigh-Raylor p r ~ b l e m , ~ . ~  in 
this case we a re  not dealing with instability of the in- 
terface: the flow i s  unstable in a certain region de- 
fined by (1 1, the so-called instability zone. l6  In a laser 
plasma near the evaporation boundary, the condition 
/ v h p  1 >> 1 V lnp 1 is usually satisfied, so that we can 
use for the definition of this zone also the criterion (3) 
for an incompressible fluid, It follows from numerical 
calculationsg~10 that the width of this zone, which i s  
formed when the unloading wave interacts with the 
thermal wave, is much less than the characteristic di- 
mensions of the target, and amounts to -0.2-0.5 pm 
for glass targets (R, = 60-70 pm ). 

2. SATURATING AND STABILIZING MECHANISMS 

The maximum growth rate of the perturbation ampli- 
tude is reached for a Rayleigh-Taylor instability when 
the interface between two nonviscous and non-heat- 
conducting incompressible liquids (the density discon- 
tinuity) i s  situated in the field of a constant acceleration 
g ( ~ a y l o r  modes3) 

This growth rate increases without limit with increas- 
ing wave number k. However, when allowance is made 
for viscosity, the flow becomes stable at k ;% k,,4 In 
the presence of a density gradient (and in the more 
general case in the presence of an instability zone 
whose dimension L i s  generally speaking not equal to 
the characteristic scale of the density gradient h 
= / v lnp I-') the growth rate reaches a s  k -rn a max- 
imum value independent of the wave number 

2 g V  lnp,  b>L, 
y-Qx= { ,L-  1. ,>b. 

For the case of arbitrary flow of a compressible 
liquid15 we have in place of (5) a s  k - 

where S i s  the specific entropy. 

A significant smoothing effect in the target corona 
can be the heat-conduction equalization of the perturba- 
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tions. Temperature perturbations with wave number 
k > k ,  are  smoothed out by the heat conduction 

M , ,  and Z are  the mass and charge of the ion, p is the 
density, and r.,, is the heat-conduction coefficient, 

The nonlinear effects become significant at ak 2 1 (a 
and k a re  the amplitude and wave number of the per- 
turbation). The nonlinear interaction that causes the 
change from the exponential regime (a=  a. exp[(kg)lI2t]) 
to the power-law regime [a -g(t - was investigated 
by ~ e r m i , "  who used the model problem of the evolu- 
tion of a step perturbation of the interface between a 
heavy incompressible fluid placed on a light one in an 
acceleration field g. A characteristic feature of this 
regime i s  the difference between the limiting laws that 
govern the growth of the amplitudes of the peaks (a -t2) 
and the dips (B -t1I2), i.e., in essence the lowering of 
the peaks in the gravity force field. In the energy- 
based approach developed by Fermi this i s  the result 
of conversion of the potential energy of the perturbation 
into kinetic energy of the liquid. In spectrum terms 
this can be interpreted a s  energy transfer from the 
long-wave to the short-wave perturbations. 

In the presence of Rayleigh-Taylor instability, mag- 
netic fields of appreciable magnitude (1-10 MG) can be 
generated in the plasma by the thermoelectric cur- 
rents. l7 The ponderomotive forces produced when 
fields of such strengths a re  generated react in turn on 
the development of the perturbations, Both effects can 
be quantitatively calculated in nonlinear two-dimension- 
a l  numerical experiments (including those in terms of 
the field), l8 One other mechanism for the elimination 
of the instability near the evaporation wave front in the 
target corona can be the flow of plasma through the in- 
stability zone (convective stabilization). This effect 
was investigated both a n a l y t i ~ a l l y ~ ~ ' ~  and with the aid of 
numerical calculations. 5*7s9*10 The influence of the con- 
vection in the growth rate can be determined from the 
simple problem discussed below, 

3. CONVECTIVE STABILIZATION 

Consider the stability of a spherically symmetrical 
flow of an incompressible liquid with gradients of the 
density, velocity, and pressure. Let the initial flow 
be known and described by the functions v={v , ,  O,0), 
p,, v,, Po of Y and t. We represent the arbitrary per- 
turbations in the form of an expansion in spherical har- 
monics: 

We linearize in the usual manner the hydrodynamic 
equations, using the incompressibility condition (divv 
= 0). In addition, we change to a coordinate frame that 
moves the velocity zl,, s o  a s  to eliminate effects con- 
nected with drift, and assume that the velocity grad- 
ients are  small: 

In this approximation we can reduce the problem to  one 

equation for the coefficient of expansion of the pertur- 
bation of the radial velocity component u,(r) in spheri- 
cal harmonics: 

y, 1 d ar2u, u, d lnp, 
(9) 

assuming that the time dependence is exponential: 

u, ( r ,  t )  =un ( r )  ezp ('fd). 

We have put here for simplicity g= -p;laPo/a~. As 
n - m, we easily obtain from (9) 

The stabilizing role of the convection is thus connected, 
a s  expected, with the presence of the velocity gradient. 
It follows from (10) that even as n- - the convection 
does not lead to stable flow ( y  <O), in contradiction to 
Bodner's results. Comparison of the first  and second 
terms in (10) for conditions typical of a plasma target 
shows that convection cannot play an appreciable role. 

4. INSTABILITY OF SPHERICAL INTERFACE 
BETWEEN A COMPRESSIBLE AND AN 
INCOMPRESSIBLE MEDIUM 

Problems closely related to the instability of com- 
pression a laser  target a re  those of the stability of a 
cavitation bubble in an incompressible liquid. Such 
problem were solved both for a spherical interface be- 
tween two incompressible liquidslg and for the surface 
of a vacuum bubble in an infinite liquid. 

We consider the stability of the boundary of a spheri- 
cal gas bubble located in an infinite incompressible 
liquid. As will be shown below, this problem has all 
the main features of the instability on a contracting 
spherical interface between two media. The unper- 
turbed motion is the compression of the gas under the 
influence of spherically symmetrical pressure that de- 
creases at infinity in such a way that the total energy 
remains finite, 

The law governing the unperturbed motion of the in- 
terface can be obtained from the energy conservation 
condition, in analogy with the Rayleigh problem, 
Such a solution was obtained by ZababakhinZ2 under the 
assumption that the kinetic energy of the gas is much 
less than i t s  internal energy and the kinetic energy of 
surrounding liquid, and that the gas is compressed 
adiabatically: 

here E ,  i s  the total energy, R and R,,, are  respectively 
the running and minimal radii of the cavity, and p, is 
the density of the density of the liquid. 

The equations for the coefficients of the expansion of 
an arbitrarily small perturbation A,,(r,t) of the surface 
in spherical harmonics can be obtained by assuming 
that the perturbations in the gas become equalized in- 
stantaneously; the boundary condition for the perturbed 
velocity is its  continuity condition: 
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and the perturbation of the pressure p,, on the boundary 
is balanced by the difference between the bydrostatic 
pressures of the liquid and the gas in the field of the 
acceleration dv,/dt : 

Using these two conditions and the equation for the per- 
turbations in the liquid,'= we can obtain the sought equa- 
tion for the amplitude of the boundary perturbation8: 

Equation (14) can be easily integrated numerically for 
any law of motion, and the eomplete solution the prob- 
lem can be obtained. We confine ourselves to an analy- 
t ic solution that describes two characteristic stages of 
the development of the instability of the considered sur-  
face. For short-wave perturbations (n >> 1) we can ob- 
tain from (14) an analytic solution without specifying in 
detail the law of the motion: 

During the initial stage, when the gas pressure does 
not affect the motion of the liquid, the law of motion of 
the interface is the same a s  in the Rayleigh problem2': 
uo , -3 12 , and the solution (15) coincides with the 
solution for the boundary of a vacuum bubble in an in- 
compressible liquid, '' In this case A,, -R- ' /~ ,  and the 
interface oscillates at a frequency that depends on the 
number n of the spherical harmonic of the perturbation. 
As soon as the gas pressure begins to slow down the 
liquid (dv/df , 0; d In o/d In R > 0) the growth of the per - 
turbations becomes exponential. If we change in (15) 
to the variable t (R - t ) ,  then expression (15) becomes 

It is easily seen that the last equation i s  a generaliza- 
tion of the Taylor formula3 to include the case of a 
time -varying gas density p,,, and acceleration do/dt, 
when the instability develops on the contracting surface 
of radius R. 

Thus, the development of the perturbations of the 
boundary between a compressing a s  sphere and an in- 
compressible gas liquid goes through two stages, In 
accelerated motion, the boundary executes quasiper- 
iodic oscillations with variable phase and weakly in- 
creasing amplitude. The main increase of the ampli- 
tude takes place during the stage of the exponential 
growth, which sets in after the start  of the decelera- 
tion. 

5. GASDYNAMIC INSTABILITY IN COMPRESSION OF 
A GAS-FILLED GLASS SHELL(TW0-DIMENSIONAL 
NUMERICAL EXPERIMENT) 

A self-consistent treatment of a number of the effects 
indicated above is possible only by numerical simula- 
tion of the phenomenon. The physical model on which 

0 '  I c 1 # 7 7 
nsec 

FIG.  1. R-t diagram of motion of the characteristic boun- 
daries (I-inner boundary, 2-evaporation boundary) and typi- 
cal parameters of the investigated target (a) and of the laser 
pulse (b). 

the numerical experiment i s  based includes a system 
of two-dimensional equations of two-temperature 
single-fluid magnetohydrodynamics, and of the elec- 
tronic thermal conductivity in the axial-symmetry ap- 
proximation. 9110 Account i s  taken of the ion viscosity 
and of the Spitzer thermal conductivity; the energy of 
the laser radiation is released in the vicinity of the 
critical density. Generation of a magnetic field as a 
result of the thermoelectric currents due to the insta- 
bility i s  calculated in the linear approximation without 
allowance for the reaction of the field on the hydrody- 
namics, but with allowance for convection and for the 
finite conductivity. The procedure and the mathemati- 
cal program for the numerical solution of the problem 
indicated above were developed at the Institute of Ap- 
plied Mechanics of the USSR Academy of Scienceso'' 

A check of the procedure using a system of test 
problems has shown that the numerical solution dupli- 
cates qualitatively and quantitatively the dynamics of 
the evolution of the perturbations in known analytic 
solutions. 24 

Typical parameters of the investigated target and of 
the acting laser pulse, and a diagram of the motion of 
the shell-gas interface and of the evaporation boundary 
a re  shown in Fig. 1. We investigated the perturbations 
of the shape of the target surface R(0,L) and of the 
homogeneity of the laser flux q (0,L) : 

, L 
' J  , ',, 1,d 

I ,  nsec 

FIG. 2. Angle-averaged trajectory of Lagrangian particle 
near the evaporation boundary and relative amplitude of per- 
turbation on it. 
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1. Dynamics of instability development in the corona near 
the evaporation boundary 

A Lagrangian particle moving initially with the "cold" 
part  of the shell towards the center of the target i s  sub- 
sequently captured by the thermal wave, is heated, and 
is carried away into the corona. Instability develops 
when the particle is stopped and the sign of the velocity 
is reversed. Figure 2 shows the angle-averaged t ra-  
jectory of such a particle and the relative amplitude of 
the perturbation on it 

for the case when at the initial instant of time there 
a re  specified on the outer and inner shell boundaries 
perturbation of equal amplitude (lo-' of the initial shell 
thickness) and of the wavelength (A = 2 r ~ ~ / n ;  n = 10). 
The growth rate of the perturbations is maximal during 
the slowing-down time and is practically zero in the re-  
gion of the supersonic flow. The instability zone is 
narrow in this case, 0.2-0,3 bm, therefore the satur- 
ation of the growth rate with increasing wave number 
(k=n/R) i s  determined by the scale of the density gra- 
dient, so  that the growth rate becomes independent of 
n a t  n - 10-20. 

At low amplitudes (exponential growth) the growth 
rate i s  somewhat smaller than the increment of the 
Taylor modes, because of the convective stabilization 
and heat-conduction equalization. During the final 
stage of the compression the amplitude of the pertur- 
bation increases by more than 10' times, so  that the 
condition ak 2 1 is satisfied even for long waves (n = 10L 
This means that the nonlinear interaction connected 
with energy transfer into the short-wave part of the 
spectrum can also lead to effective stabilization. By 
the instant of maximum compression, the amplitude of 
the perturbation becomes comparable with the shell 

R / i l - f rm 

FIG. 3. Shape of perturbation near the evaporation boundary 
(n=40,  a=10-2 ,  t = l . 7 2 5 ) .  

thickness. This, however is no evidence that the 
shell is destroyed, since the perturbations a re  concen- 
trated near the evaporation boundary and have no time 
to penetrate inside. This is clearly demonstrated by 
the degree of bending of the Lagrangian lines in dif - 
ferent parts of the shell (Fig. 3). 

The smoothing effect of the heat conduction can also 
be easily seen by comparing the development of the 
perturbation of the laser flux (the inhomogeneity of the 
target heating) with the perturbation of the shape of the 
surface of the same wavelength and relative amplitude. 
As expected, the temperature inhomogeneities lead to  
smaller final amplitudes of the perturbation during the 
concluding phase of the compression (smaller by ap - 
proximately a factor of two in this case). This result 
agrees qualitatively with the data of Refs. 5, 11, and 
13. 

2. Transfer of perturbations from the corona to the inner 
shell boundary 

Since the speed of sound in the unevaporated part of 
the shell is low [(2-3) -10' cm/sec] compared with the 
characteristic velocities [(3-5) 10' cm/sec], the per- 
turbations a re  transported from the outer shell bounda- 
ry to the inner one mainly by the first  shock wave. 
This has been demonstrated both for the case of density 
perturbations" and for shell-shape perturbations. lo 

During the free-flight stage the shell-gas boundary 
begins to execute quasiperiodic oscillations with an 
amplitude that increases weakly with time,1° These 
results agree well with the analytic solutions obtained 
for the oscillations of the cavity of a vacuum20 o r  a 
gas-filled8 bubble in an incompressible liquid. The 
thermal conductivity and the compressibility lead only 
to small quantitative changes. 

3. Instability of glass-gas interface. Nonlinear saturation of 
growth rate 

Instability sets in on this interface when the contained 
gas begins to slow the shell down. The behavior of the 
perturbations of the shape, with different wavelengths 
and with different initial amplitudes, were investigated. 

0 i: I I S  7 
f, "SWC 

FIG. 4. Relative amplitude of perturbation on the inner shell 
boundary a s  a function of the time for different perturbation 
wavelengths: @-n=10,  a  = 5 -  lo'?; A-n=10,  a=10-2;  0- 
n = 6 ,  a = 1 O - ? ;  dashed-n = 40,  a = 10-2; dash and two dots- 
relative thickness 6 / R  of evaporated part of shell. 
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The relative amplitude of the perturbation 

i s  shown in Fig. 4 a s  a function of the time. As ex- 
pected, an appreciable growth of the amplitude begins 
at the instant of slowing down (t - 1.5 nsec). 

Let us compare these results with the development of 
Taylor modes under the assumption that the density 
differential across the considered boundary is large, 
and the size of the gradient i s  small (( I V ln p I )-' << A).  
Then, taking into account the time variation of the ra -  
dius and of the acceleration, we have8 

We refer the amplitude to i t s  value a t  the instant t = 1.5. 
The values of g(t) and ~ ( t )  for (18) were determined 
from the results of the two-dimensional calculation. A 
comparison of the time dependence of the growth of the 
amplitude for the Taylor modes (18) and that obtained 
from the two-dimensional calculation (Fig, 4) is shown 
in Fig. 5, It follows from Fig, 5 that for a long-wave 
perturbation (n = 10) the amplitude increases somewhat 
more slowly than for the Taylor modes, but the two 
dependences a re  close so long a s  ak < 1. In the nonli- 
near stage (ak 1) the two-dimensional calculation pre- 
dicts already a substantial decrease of the growth rate 
compared with (18). The amplitude of the short-wave 
perturbation (n = 40) increases more slowly than for the 
Taylor modes from the very outset, and the nonlinear 
stage sets in prior to the maximum acceleration, after 
which the growth of the amplitude slows down substan- 
tially. It is easily seen that this i s  the transition to 
nonlinearity which was investigated by Fermi. l4 In 
fact, the dependence of the relative amplitude on the 
time during the nonlinear stage (at ak > 1) i s  close to 
the dependence 

which corresponds to the asymptotic law for the fall-off 

- , .  

FIG.  6. Boundary between shell a t  gas a t  the instant of maxi- 
mum compression: a-n = 10 ,  a,= 1 0 - A R R o :  b -n=40 ,  a. 
= 1 0 - 2 A R o .  

of the humps in the field of a time-alternating acceler- 
ation. Also favoring this interpretation is an analysis 
of the shape of the shell boundary during the nonlinear 
stage. Even for the long-wave perturbation (n= 10) it 
i s  seen that the humps and dips develop asymmetrical- 
ly, thus attesting to the transition to the indicated 
asymptotic regime (see Fig, 6). 

It is seen even from Fig, 5 that the growth rates for 
the short-wave (n = 40) and long-wave (n = 10) pertur- 
bations a re  close, This circumstance can be more 
clearly revealed by plotting the dependence of (R,, 
- &,,,)/(Rm,, + R,,,) on the number of the harmonic for 
several instants of time near the maximum compres- 
sion (Fig. 7). 

Thus, at n -> 15 the finite amplitude does not depend on 
the number of the spherical harmonic (or the wave- 
length) of the perturbation, All that depends on the 
wavelength i s  the time of transition into the nonlinear 
regime [ I , ,  - (h/g)"". The practical conclusion of the 
foregoing results is that for targets with an aspect 
ratio R,/ A R,  s 20 the high-frequency perturbations 

FIG. 5. Comparison of the time dependence of the amplitude 
of the Taylor modes with the analogous dependence obtained 
from the two-dimensional calculation. Solid curves-calcula- 
tion by formula (18)  : 1 - n = 4 0 ,  2-n = 10;  dashed curves-two- 
dimensional calculation: 3-n = 10,  4-n = 4 0 ;  dash-dot-free 
fall of the hump a -8; the points on curves 3 and 4 corre- 
spond to satsifaction of the condition a k  = 1; the maximum 
acceleration occurs a t  the instant t = 1 . 8  nsec. 

FIG.  7. Plot of (It,,, - R ,,,, )/  (R ,,,, + R,,,) against the number 
of the spherical harmonic for different instants of time: 1- 
t = l . 9 1 2 5 ;  2 - t = 1 . 9 5 ;  3 - t z 1 . 9 6 8 .  
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present no special danger; i t  i s  merely necessary that 
the initial relative amplitude of the perturbation for 
all the wavelengths not exceed lo-' (the ratio of the in- 
itial amplitude to the thickness of the shell). 

4. Effect of instability on the characteristics of the gas in 
the maximum compression stage 

To determine the maximum permissible and initial- 
perturbation amplitude that still does not lead to a sub- 
stantial difference from the spherically symmetrical 
stage, we investigated perturbations with initial ampli- 
tudes amounting to loe, 3 . lo-' and 5 . lo-' of the initial 
thickness, and with n = 12. At an initial amplitude 
5 the rupture of the shell occurs prior to the max- 
imum compression. In the case a,= 3 . lo-' the final 
amplitude i s  comparable with the smallest average ra-  
dius of the compressed gas, and the entire mass of the 
shell is involved in the perturbation (all the Lagrangian 
lines a re  bent). The closest to spherical symmetry a re  
the results of shell compression with initial amplitude 
10". The amplitude of the perturbation of the inner 
boundary of the shell at the instant of the maximum 
compression is comparable with i t s  thickness, but this 
still does not mean rupture of the shell, only that the 
glass has penetrated into the gas and these two sub- 
stances can become intermixed a s  a result of the 
Kelvin-Helmholtz instability. 

At a given initial perturbation amplitude (lo"), the 
average density and average gas temperature over the 
nonspherical volume decrease with increasing number 
of the harmonic. The decrease of the neutron yield 
can in this case be larger than the value estimated 
from the average temperature since the neutron yield, 
especially at low temperatures (0.3-0.5 keV) depends 
substantially also on i ts  spatial distribution. 

CONCLUSION 

The reported results show that the influence of con- 
vection on the instability in the case of spherical com- 
pression is not great. More significant is the role of 
the heat-conduction equalization, which is incidentally 
physically obvious. The effect of compressibility is 
small. It is important that the modified Taylor formula 
(16) yields the correct description of the development 
of the perturbations during the linear stage in the case 
of sufficiently complicated motion of the compressing 
spherical target, i.e., at arbitrary R(t)  and ~ ( t )  depen- 
dences. The most important, in our opinion, i s  the 
effect of nonlinear saturation of the growth rate with 
decreasing wavelength of the perturbation, an effect 
having a clear physical interpretation stemming from 
Fermi's work. l4 The presence of saturation eliminates 
the danger faced by compression because of the short- 
wave perturbations that exist when pure Taylor modes 
( y  ' = g k )  develop. After the completion of the present 
study, we learned of the results of Bodner and  ori is,'^ 
who also observed nonlinear saturation, in qualitative 
agreement with our results. The cited paper" does 
not contain the here-presented analysis of the nonlinear 
stage. 

The described picture of the development of instabili- 

t ies  and the results of the numerical experiment attest, 
in our opinion, to the feasibility of stable compression 
of spherical shell targets with a sufficiently large as-  
pect ratio R ,/A R,. When assessing the feasibility of 
stable compression it must be remembered that a 
number of the factors discussed above (the symmetry 
of the irradiation and of the preparation of the target, 
the decrease of the density gradients, the equalization 
due to heat conduction and mixing, nonlinear saturation, 
change of the shell thickness during the compressions, 
oscillations of the shell surface, low sound velocity in 
the shell) contribute to the stability, and the problem 
is to find an acceleration regime, a target preparation 
scheme, o r  some other way of using these possibilities 
of decreasing the influence of hydrodynamic instability. 
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We establish the possibility of the existence of stationary solitary electromagnetic waves in nonequilibrium 
plasma-beam systems. We show that the propagation of wave packets in resonance with the plasma (the 
retarding medium) or the beam is not accompanied by a dispersive smearing of the plasma. We determine the 
conditions for the existence of solitons, find their characteristics, and give a physical interpretation of the 
solutions obtained. As a concrete example we consider a helicon soliton in a plasma penetrated by an ion 
beam. 

PACS numbers: 52.35.Hr, 52.40.Db, 52.40.Mj 

It is  well known that small  monochromatic electro- 
magnetic perturbations a r e  unstable in plasma-beam 
systems and grow exponentially with time.' The non- 
linear stage of the interaction of mono-energetic beams 
with a plasma (the retarding medium) is  accompanied 
with the appearance of oscillations in time of the field 
amplitude which a r e  caused by the trapping of the beam 
particles by the field of the wave and their periodic 
shift from decelerating to accelerating phases.*-* 

In the present paper we wish to call attention to the 
possibility of the existence of stationary non-linear 
waves in non-equilibrium media, which a r e  retarding 
systems which a r e  penetrated by charged particle 
beams. In comparison with the above cited papers2-' 
which assume the wave number fixed and the initial 
amplitude of the perturbation to be constant along the 
beam, we obtain a solution of a solitary-wave type for 
the field amplitude. Since the carr ier  frequency and 
wave number in this case satisfy resonance conditions, 
the wave energy in each point of space is replenished 
from the translational energy of the beam particles. At 
the same time, however, the energy of each beam par- 
ticle remains unchanged after passing through the re-  
gion where the field is a maximum due to the non-linear 
effect of getting out of phase with the wave which leads 
to a shift of the particle from a decelerating to an ac- 
celerating phase and an increase in its energy up to its 
initial value. This nature of the interaction between the 
beam particles and the field explains the possibility of 
the existence of resonance solitons in non-equilibrium 
plasma-beam systems. 

As an example of an actual model of a non-equilibri- 
um medium we consider an arbitrary dispersive re-  
tarding medium through which a charged particle beam 
propagates along a constant external magnetic field H,. 
Since practically the whole information about the condi- 
tions for the existence of non-linear waves of the kind 

( 5  = x - ut, u is  the group velocity) is contained in the 
linear dispersion equation and allowance for the non- 
linearity only enables one to determine the maximum 
amplitude and to find the shape of the wave pulse, we 
consider f irst  the problem in the linear approximation. 

The dispersion equation connecting the frequency w 
and the wave number k of an electromagnetic perturba- 
tion propagating along the magnetic field in a medium 
with refractive index n(w) has the formzv6 

cLki 
-- 

Ub? ( w ~ L . ~ )  
- n2(o) - - 

Id-  (1)- (Q)P~U"A(L),,) ' 

(2) 

where w i =  4 n e Z p , / ~ ,  w, = ~ H , / M C ,  while wb, u,, and M 
a r e  the density, initial velocity, and mass of the beam. 

We look for a solution of (2) in the form w =  w,+A w 
and k = k,+ Ak, assuming that w, and k ,  satisfy the res-  
onance conditions: 

The small corrections to the frequency and wave num- 
ber a r e  then connected by the relation 
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