
and, consequently, 

Af=Apz2(1-v2/vI). 

Thus, for v,> v,, ~f < O  the distribution function has a 
dip whereas for v, < v, it has a peak (A f > 0). 

In the latter situation where V, << v,, the width of the 
narrow peak in the distribution function can be ~ / k  
<< ~ l k .  

We shall now carry out the averaging in Eq. (12) over 
the distribution function (13). Under the conditions giv- 
en above and for 

the absorption coefficient is  

where n i s  the concentration of normal atoms and k i s  
the classical absorption coefficient. It follows from 
the above expression that the absorption coefficient de- 
creases strongly. This weakening in the absorption 
coefficient (in the absence of saturation when dE, <<By) 
is not surprising and it is associated with the presence 
of a dip in the distribution function. If A # 0, we can 
expect bleaching of the gas  and formation of a flux. In 
Ref. 4 we also demonstrated the special properties of 
absorption of radiation when allowance is  made for the 

radiation pressure. 

We shall conclude by noting that these effects allow 
us to extend the use of coherent resonant light in con- 
trol  of the translational degrees of freedom of a gas. 
The deep narrow dip in the distribution function, in- 
duced by resonant light, may prove very useful in high- 
resolution spectroscopy. 

'A. P. Kazantsev, Usp. Fiz. Nauk 124, 113 (1978) [Sov. Phys. 
Usp. 21, 58 (1978)l. 

21. V. Krasnov and N. Ya. Shaparev, Opt. Commun. 27, 239 
(1 9 78). 

31. V. Krasnov and N. Ya. Shaparev, Zh. Eksp. Teor. Fiz. 
77, 899 (1979) [SOV. Phys. J E T P  50, 453 (197911. 

'I. V. Krasnov and N. Ya. Shaparev, Pis'ma Zh. Tekh. Fiz. 
1, 875 (1975) [Sov. Tech. Phys. Lett. 1, 381 (1975)l. 

5 ~ .  Kh. Gel'mukhanov and A. M. Shalagin, ~ i s ' m a  Zh. Eksp. 
Teor. Fiz. 29, 773 (1979) [JETP Lett. 29, 711 (1979)l. 

6 ~ .  L. Kalyazin and V. N. Sazonov, Kvantovaya Elektron. 
(Moscow) 6, 1620 (1979) [Sov. J. Quantum Electron. 9, 
956 (1979)l. 

7 ~ .  Lochte-Holtgreven (ed.), Plasma Diagnostics, American 
Elsevier, New York, 1968 (Russian Transl., Mir, M., 1971). 

Translated by A. Tybulewicz 

Photoionization of a hydrogenlike atom in a homogeneous 
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The dependence of the ionization cross section of a hydrogenlike atom in a constant homogeneous electric 
field on the frequency and on the polarization of the light wave is considered in a quasiclassical 
approximation. For light polarized parallel to the homogeneous field, the calculated cross section oscillates 
smoothly as a function of the light frequency at a photon energy close to the ionization potential of the atom, 
whereas in the case of perpendicular polarization there is practically no structure. The oscillations are not 
connected with above-barrier reflection or below-barrier resonances, but are due to the singularities of the 
electron motion in the final state. The oscillations are qualitatively interpreted in terms of the classical 
trajectories of the electron following the excitation. The positions of the minima of the structure agree with 
recently obtained experimental data. 

PACS numbers: 32.80.Fb, 32.60. + i, 32.90. + a 

1. INTRODUCTION quency dependence of this process was observed in ex- 
periment only recently. ' s 7  Much interest in paid in 

The study of the stark effect on a hydrogenlikeatom 
general of late to the study of the stark effect on highly 

was one of the f i rs t  problems of quantum  mechanic^'^^ 
excited states,  in view of the use of this effect for the 

and has been the subject of many theoretical papers study of Rydberg atoms, a s  well a s  of in view of the 
even in recent years (see, e'g' 9 Refs. 3-5 and the bib- interesting fundamental features of this phenomenon 
liographies cited therein). Nonetheless, even certain (see, e .g . ,  Ref. 8). 
qualitative aspects of the problem remain unclear. 
Thus, no theoretical investigation of the photoionization It is  known that in the presence of a time-constant 
of an atom in a uniform electric field has been carried uniform electric fieldof intensity 8 the energy spec- 
out to this day, and the oscillatory structure of the fre- trum of the atom becomes continuous and extends over 
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the entire energy axis from -- to +a. The internal 
region of the atom is  surrounded by a three-dimension- 
a l  potential barr ier ,  whose minimum in the case of a 
Coulomb field of the atomic core corresponds to an 
energy E, = -2ZY'" (E= 0) corresponds to the ionization 
threshold in the absence of the field g; unless other- 
wise indicated, atomic units a r e  used throughout). In 
the vicinity of this energy value and below, the quan- 
tization of the motion in the internal region of the po- 
tential well leads to the appearance of the previously 
i n d i ~ a t e d l - ~  quasistationary states,  which go over a s  
I- 0 into the stationary states of the atom. In photo- 
ionization of the atom in a uniform electric field from 
sone deeply lying level with energy E,< E,, which is  
not strongly perturbed by the field, the quasistationary 
states should manifest themselves in the form of reson- 
ances. 

Cross-section singularities of another type were f irst  
noted in Ref. 7 a t  positive and negative finite electron 
energy in the vicinity of the value E = 0 above the clas-  
sical barr ier ,  i .e . ,  a t  E 2 E,. The structure takes the 
form of smooth oscillations that modulate the cross  sec-  
section, and the structure i s  present if the vector of 
the electric field of the light wave i s  parallel to the vec- 
tor of the uniform field intensity (U polarization) and 
vanishes in the case of perpendicular polarization (n 
polarization). The depth of modulation of the cross  sec- 
tion increases with increasing homogeneous field (this 
corresponds to a decrease of E,< 01, so  that these 
oscillations cannot be caused by above-barrier reflec- 
tions from the existing potential barr ier ,  which a r e  
characterized by a decrease of the relative amplitude 
with increasing distance from the top of the potential 
barr ier  E,. The existence of a structure above the 
ionization harr ier  must therefore be regarded a s  a prin- 
cipally new effect. 

To interpret the effect, the authors of Ref. 7 have 
carried out numerical calculations of certain classical 
trajectories of an electron moving in a superposition of 
a Coulomb and homogeneous field. Among the trajec- 
tories were such that corresponded prior to ionization 
to multiple oscillations of the electron along the field 
direction. On this basis, to describe the structure of 
the cross  section, a quantization condition was post- 
ulated for the effective one-dimensional potential; this 
condition describes well the positions of the cross-  
section maxima observed in the experiment. Such a 
one-dimensional model i s  quite crude, a s  is seen from 
the fact that different  author^'^^ formulate different ef- 
fective quantization conditions and do not touch a t  all 
upon the questions of the shapes and widths of the maxi- 
ma and the depth of the modulation of the cross  section. 

In the present paper we explain the effect by starting 
from the singularities ofthe motion of the electron in 
the final state, where the constant fieldmust be taken 
into account together with the atomic field. The in- 
fluence of the field on the initial state can be neglected, 
and the alternating field of the light wave i s  taken into 
account by perturbation theory in the dipole approxi- 
mation. The electron-trajectory singularities cor-  
responding to the confined character of the motion along 

one of the parabolic coordinates leads to the fact that an 
electron excited by a 8-polarized light wave spends 
some time near the atomic core before it goes off to in- 
finity. In the case of u polarization of the light wave, 
the excited electron leaves the atom perpendicular to 
the homogeneous field and the delay effect i s  much less. 
The noted singularities of the classical motion manifest 
themselves in a quantum analysis in the quantization of 
the motion along one of the parabolic coordinates and in 
the substantial dependence of the partial photoioniza- 
tion c ross  sections on the polarization of the light. The 
paper contains a quantitative theory of the effect for a 
hydrogenlike atom (Sec. 21, based on a quasiclassical 
approximation (Sec. 3) ,  a s  well a s  i ts  interpretation 
from the point of view of classical three-dimensional 
trajectories of the electron in the considered system 
(Sec . 4) and a comparison with experiment (Sec . 5). 

2. PHOTOIONIZATION CROSS SECTION IN THE 
PRESENCE OF A UNIFORM FIELD 

It i s  common knowledge1.9hat for a hydrogen atom 
placed in a homogeneous electric field directed along the 
z axis,  upon separation of the variables in the parabolic 
coordinates 5 = r + z ,  q = r - z ,  cp = a r ~ t ~ ( ~ / . r )  the eigen- 
function is  sought in the form 

where the functions ~ ~ ( 0 ,  xZ(q) satisfy the equations 

5 ,  q 2 0; m i s  magnetic quantum number, Z, and Z, a r e  
the separation constants, and Z, + 2, = 1. 

In accord with (2.2), motion along the coordinate 5 i s  
always finite, and this specifies a connection, in the 
form of a quantization condition, between 2, and E. 
Thus, in the quasiclassical approximation this con- 
dition takes the form 

where 6 '  and 5"are the turning points that limit the 
classical motion along 5, N is an integer, and 

It i s  c ~ s t o m a r y ~ . ~  in the quasiclassical approximation 
to use for simplicity the approximate equality 

where f i ,  differs from p, in the absence of the centri- 
fugal term nz2/45', 5, and 5, a r e  points that limit the 
region of classical motion with respect to 6 withmo- 
mentum pc. Taking this into account, the quasiclassi- 
cal quantization condition takes the form 
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where q, = N - ( I  m  I +1) takes on the values 0, 1, 2, . . . 
At any energy E p  thus, we can determine Z, and 

consequently Z, = 1 - 2,. The determination of the 
wave function t) i s  completed by integrating the equa- 
tion for x,, which always has a solution, since the ef-  
fective potential contained in it decreases without limit 
a s  q-"0. 

Thus, the wave function of the electron i s  character- 
ized by three quantum numbers: the integers gc and 
m,  and the continuous E ,  corresponding to the pre- 
sence of three known integrals of motion in the con- 
sidered problem. lo The eigenstates of the energy and 
of the projection of the angular momentum on the z 
axis a r e  degenerate in the quantum number nt. It will 
be shown below that it i s  precisely the discreteness of 
the n, spectrum, due to the finite character of the mo- 
tion along the coordinate 5, which leads to the existence 
of oscillations of the photoionization in the region of 
near-zero energies. 

The photoionization cross  section takes in the dipole 
approximation the form 

where c i s  the speed of light in vacuum, nt ,  m ,  and E 
a r e  the quantum numbers of the final states of the elec- 
tron lCincnrE, normalized to bn, ,,[brnrn,6(E - E '1; i s  the 
partial cross section 

Here e i s  the light-wave polarization vector and 9 i s  
the wave function of the initial state of the active elec- 
tron in the atom. 

The practically attainable intensities of the homogen- 
eous external electric field a r e  much lower than the 
intensities of the intra-atomic fields, i. e. , the estimate 

I E 1 >>g is valid, where E, = -a2/2 i s  the energy of the 
initial state of the electron. This allows us to neglect 
the potential of the homogeneous field in the localiza- 
tion region of the active electron of the atom in the in- 
itial state (r s l/a),  which in fact determines the par- 
tial cross section (2.7) in view of the rapid decrease 
of G when r; l/a. In the region rs l /a the exact wave 
function i ) , , ,  differs from the Coulomb function in 
the absence of a field only by a constant factor, a s  well 
a s  by the choice of the separation constants 2, and 2,; 
for this Coulomb function we have in parabolic coor- 
dinates 

where A, and A, a r e  normalization constants that de- 
pend on n,, m , E, ; F ( a ,  c,  z)  is  a confluent hypergeo- 
metric function, and k = ( 2 ~ ) ' ~ ' .  

Considering the initial s state, we put @ = a-'12a312c-a+, 
after which the integrals in (2.7) can be calculated an- 
alytically. Simplifying the results with the aid of the 
relation IE/E, I", << 1, we obtain, depending on the po- 

larization of the light wave, the following nonzero par- 
tial cross  sections. 

1) a polarization (ell%), only the final states with m 
= 0 a r e  populated: 

O,  F0E=C2k?[Z,(nF) - -Z,(nt)  JZA,'A,Z. (2.10) 

2) o polarization ( e l  @, in the final states m =  1. 

Recognizing that %(,, = ant-,, , we consider for the 
sake of argument onclE: 

o , . ~ ~ = C ~ ~ ~ A ~ ~ A , ' ;  (2.11) 

If the wave function of the initial state contains a pre- 
exponential factor in the form of a polynomial, then we 
must substitute in (2.10) and (2.11) another value of C, 
obtained from (2.12) bu suitable differentiation with 
respect to the parameter. To introduce into the cal- 
culations the Hartree-Fock wave functions, it i s  con- 
venient to use their approximate analytic representa- 
tion in t e rms  of a sum of Slater orbitals." 

Thus, in the approximation assumed for the wave 
functions of the final state the dependence of the partial 
cross  sections on the electric field i s  contained only in 
the product of the normalization constants A, and A, 
(and also in the factor Z,(qt) - Z,(q,) in (2.10)). The 
latter quantities a r e  calculated in the quasiclassical ap- 
proximation in Sec. 3 

3. QUASICLASSICAL APPROXIMATION 

Drukarev5 has noted that the quasiclassical condition 
of quantization of the motion with respect to coordinate 
(2.5) is  expressed in terms of the hypergeometric func- 
tion F ( a ,  b; z ) ,  so that the connection between 2, and 
E is obtained in a convenient parametric form. 

where the parameter t l ies in the interval O< t < l .  

At E :- 0 we consider two cases: 

if k3< 3n[nt + 8(11111 + I)]%, then 2, > 0 inthe param- 
e ter  t 1: 

if k3>3a[n,+ 8 1 m l  +I)]$,  then Z,<O and the param- 
eter t > 1: 

t k '  
Zl(nt)=---  

4(t+l)' 8 ' 

AS follows from (3.51, 2, i s  bounded: 2, 2 -E1I2/4g 
a t  E > 0. 

Proceeding now to the determination of the normaliza- 
tionfactors A, and A,, we note that the wave function 
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FIG. 1. Effective potential V(6)  in ~ q .  (2.2) for at I m l  2 .  Effective potential V ( 8 )  in Eq- (2.3) for X ~ { P I )  at Iml 
lo, ti-turning points; a-Z1> 0, b-Zi < 0 (to = O  in case a). = 1, qo-turning point. a-Zz> 0, b-Z2< 0 .  

(2.1) i s  already normalized to 6,,,. An analysis of the At Zl/k 2 1 the matching i s  car r ied  out in the region 

normalization condition in parabolic coordinates shows where the Coulomb potential predominates. Expres- 

that the functions ~ ' ( 5 )  and ~ ~ ( 5 )  should be normalized sion (3.13) i s  valid also in this case ,  and the expres- 

in the following manner: sion for  A, coincides with the principal t e rm of (3.12) 
a t  Z/k>> 1. 

We consider separately the cases  m = 0 and m = 1 
at  E > 0.  We begin with the simpler  case  m = 1. 

A plot of the effective potential V(5) in Eq. (2.2) 
where xl(O a t  m =  1 i s  shown in Fig. 1. To determine 
the quantity of A, in the expression (2.8), we join toge- 
ther  the quasiclagsical function 

which decreases exponentially a t  5 > 5,, with the asymp- 
totic form of the function (2.8). Depending on the rat io 
Z,/k, the motion along the coordinate 5 i s  quasiclassical 
in different regions of variation of 5. We use therefore 
the following asymptotic forms of the function (2.8): 

a )  a t  I Z, I /k 2 1 for 5 3 l/Z1 in the region where the 
Coulomb field predominates 

b)  a t  12, I/k << 1 in the region where the Coulomb po- 
tential is  much less  than the energy E 

At IZ, I/k << 1 we obtain a s  a result  of joining together 
in the last  region 

Thevalue of N, i s  obtained by normalizing the quasi- 
classical function (3.9) in accordance with (3.7) using 
the customary scheme7: 

(2k/n)"(t- l ) - '"F(' / , ,  'I,, 1; 4)-'" for Z,>O (3. 13) 
= { (2k/n)  (I- t ) -"F(l /a ,  ' / z ,  I ;  l + t )  -'* for Z,<O7 

where 

t=t 
( I+  16Z,eP/kb) " + I  
(1+i6Z,eP/k4)'h-1 ' 

A plot of the effective potential V(q) in Eq. (2.3) for 
xz(q) a t  m= 1 i s  shown in Fig, 2. To determine A, we 
join together the asymptotic form of the Coulomb func- 
tion (2.9) with the quasiclassical wave function, whose 
normalization to 26(E - E ') i s  determined by the asymp- 
totic form a s  q - 03, where the homogeneous electr ic  
field predominates. 

It i s  convenient in practice to compare the asymptotic 
form of the quasiclassical function with the asymptotic 
solution of the Airy equation, which describes the mo- 
tion of the part icle in a homogeneous field.' When nor- 
malized to 26(E - E '), the lat ter  asymptotic form be- 
comes 

where x =  (17 +k2/%')(%'/4)1'3 and 6 i s  a certainphase. 
Continuation of the solution from the region where the 
Coulomb potential predominates with the aid of a quasi- 
classical  function i s  effected in different ways, depend- 
ing on the location of the zeros  p, in the complex 77 
plane. The rea l  par t s  of the roots p, a t  I m I = 1 a r e  
opposite in sign to the energy E.  This means that in 
the simplest quasiclassical approximation there i s  no 
reflection from the ba r r i e r .  

When joining the values together we use the asymp- 
totic representations for  x;(q), s imilar  to (3.10) and 
(3.11) for  x:({). At IZ, I/k<< 1, the joining of $(q) with 
the quasiclassical function i s  effected in the region of 
the maximum of V(v), where p, = k/2, and a t  Z,/k -) 1 
the joining i s  effected in the region where the Coulomb 
potential predominates. Comparing next the quasiclas- 
s ical  function with (3.15) a s  77 - m, we a r r ive  a t  the 
following values : 

exp (nZJ2k) 
25k 

a t  Z,/k 2 1 

A,=Z,''-/2'/*k. (3.17) 

Since (3.17) i s  the principal t e r m  of (3.16) a t  Z,/k >> 1, 
i t  is  natural to use  (3.16) in the entire region Z,/k 
2 -1. 

Thus, expressions (3.12) and (3.16), which a r e  valid 
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in two limiting cases, can be regarded a s  interpolation 
formulas applicable respectively a t  al l  values Z,/k 2 -1 
and Z,/kz-1. We notethat O < E < < l ,  i .e . ,  k<<1 in 
the considered energy region. 

At Z,/k 5 -1, the band where the Coulomb potential 
predominates i s  ina  classically inaccessible region. 
Using in this region the asymptotic form 

we arrive at 

where 

Expressions (3.19) and (3.16) a r e  joined together in the 
intermediate region of values of the ratio Z,/k. 

It i s  possible to modify analogously the expressions 
for A, at Z,/k 2 -1, but this is not necessary for the 
calculation for the cross  section: the quantities A, and 
A, a r e  exponentially small respectively a t  Z,/k 2 -1 
and Z,/k S -1, andthe e r r o r  due to the use of (3.12) 
and (3.16) inthe entire region of variation of the ratios 
Z , / k  and Z,/k i s  negligible. 

Thus, for the partial cross  section we obtain in ac- 
cordance with formula (2.11) a t  Z,< 0 

At m = 0, Eqs. (2.2) and (2.3) contain centrifugal 
terms corresponding to attraction: 1/45, and 1/4q2. We 
assume that their presence is  fully accounted for by 
using the asymptotic expressions for the functions (2.8) 
and (2.9). By a procedure similar to that used above, 
we obtain the partial cross section on ,: , 

In (3.21)-(3.24) the quantities Z, and Z, a r e  deter- 
mined from n,, m, E ,  and in accordance with (2.3)- 
(2.6) withallowance for the relation Z, + Z,= 1. 

4. SINGULARITIES OF THE PHOTOIONIZATION 
CROSS SECTION 

Expressions (3.21)-(3.24) contain exponential factors 
that cut off the partial cross section outisde the inter- 
val -k s Z, s 1 + k o r  else, taking into account the 
smallness of k in the considered energy region O< E 
<< 1, outside the interval 0 -C Z, 1. There a r e  several 
values of n, for whichZ,(n,) a r e  contained in the indicat- 
ed interval; thus, a t  g- lo3 ~ / c m  their number if ap- 
proximately 25, and a t  $- 10 ~ / c m  their number i s  

about 100. The partial cross  sections with Z, not lying 
in this interval describe a low-probability transition in- 
to states in which the excited electron i s  quite far from 
the atomic nucleus. 

A plot of the partial cross  section against Z, at m= 0 
i s  a double-hump curve having maxima a s  small Z,> 0 
and at Z, 2 1 ,  the secondof which i s  much narrower 
and the c ross  section in which is  larger than in the 
first. At Z, = 0.5 the cross section has a minimum 
where it vanishes. On the contrary, the partial cross  
section at m = 1 has a maximum at Z, = 0.5 and van- 
ishes at Zl=O and a t  Z l = l .  

Formally the difference between these curves i s  con- 
nected with the presence in u,,~, of the factor 2, - 2,12/ 
cosh(nZ,/k) cosh(nZ,/k) in place of ~ , ~ , / s i n h ( n ~ , /  
k) sinh(nZ,/k) in %(,, and with the small quantity k 
(k - lo-' a .u.  ). The following explanation can be pro- 
posed for this difference. The quantum number nc cor- 
responds to the classical integral of motion (Ref. 10, 
p. 192) 

pit &P' B=z,-z,=- 5 - p,(zp,-pp,) - Y Z  - ;t , (4.1) 
P 

where p,  p ,  and z a r e  cylindrical coordinates with the 
z axis; p,  and p ,  a r e  the momenta corresponding to the 
corrdinates p and p .  Near the attracting center, where 
the influence of the uniform electric field can be neg- 
lected, /3 coincides with the z component of the Runge- 
Lenz vector [see (lo),  p. 531-the additional integral of 
motion for the orbit in the Coulomb field. 

The equality Z, = Z, = $ denoted according to (4.1) that 
the excited electron executes near the attracting center 
a motion which is in first-order approximation along a 
hyperbola whose axis i s  perpendicular to the z axis. 
The electron i s  brought into such a state mainly by a 
light wave polarized perpendicular to the z axis, i. e .  , 
perpendicular to the uniform electric field. A light wave 
polarized parallel to the uniform field causes the elec- 
tron to move predominantly along the z axis, i. e.  , 
with Z, # Z,, and cannot impart motion perpendicular 
to this axis, and it i s  this which generates the dip on 
the plot of on at  Z, = i. 

I OE 

In other terms,  the vanishing of on(, at Z, = Z, is 
due to the assumed approximation (2.8)-(2.9) for the 
wave function of the final state, according to which at 
Z, = Z, there is  symmetry with respect to reflectionin 
the z = 0 plane. In view of the fact that the initial state 
has the same symmetry, the dipole transition under the 
influence of the n polarized wave turns out to be for- 
bidden. For the exact wave functionof the final state 
this selection rule is  approximate. 

To explain the maximum of an,, at  2, = 1 it is neces- 
sary to resort  to the singularity of the trajectories of 
the classical motion in the considered field, a singular- 
ity corresponding to the factor (t - I ) -~ '~F(+,  $, 1 ;  -t) in 
both matri: elements. We make use here of the results 
of ~ e l e t s k i i ' ~ ~ ' ~  (see also his review14), who investigated 
flat trajectories, i. e . ,  with zero moment relative to 
the symmetry axis, of the motion of a satellite in a 
Newtonian gravitational field when the satellite is acted 
upon by a constant vector of jet acceleration. This 
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problem corresponds mathematically to that of classical  
motion in the field considered by us.  

After separating the variables in parabolic coordin- 
ates,  the parametric equations of the trajectory a r e  
written out explicitly in t e rms  of elliptic Jacobi func- 
t i o n ~ . ' ~  At positive energy, the ratio of the periods 
T, and T ,  of the Jacobi functions that determine the mo- 
tionalong the parabolic coordinates 5 and q i s  equal to: 

if Z2 > Oand E > ~ ( P Z , ) ' / ~  

T, (E + (EZ-482,) '")" F('/,,  '/*, 1; t / ( t + l ) )  . 
-= 
T, 2'"(E2+4&Z,)" F('/2, I ;  x+ l )  ' (4.3) 

if Z2 > 0 and E < 2(F?Z2)1'2 

where t and x a r e  given by relations (3.14) and (3.20), 
and 

It follows from (4.2)-(4.4) that a t  the inequality T , /  

T, << 1 i s  satisfied, corresponding to the "serpentine" 
trajectory on Fig. 3. The turning point 5, (see Fig. 1) 
corresponds on Fig. 3 to the parabola (in space-a para-  
boloid of revolution) that l imits  the permissible region 
of the classical motion. 

The inequality (4.5) i s  equivalent to a se t  of two r e -  
strictions: E << 2P1I2 and 12, I = I1 -2, I << 1 .  Thus, 
an  electron excited into a state with Z, = 1 and energy 
E<< 2gl r2 ,  will spend some time near the atomic core 
before i t  goes off to infinite. Its motion i s  then prac-  
tically along the z axis,  in agreement with the results  
of the numerical calculation of the trajectories in Ref. 
7. If the s t r ic t  equality Z, = 1 holds, then a s  t - -a 
(here t i s  the time) the trajectory approaches to oscil- 
lationsalong the z axis between the top of the boundary 
parabola and the attracting center. It i s  c lear  that for 
such oscillations to be excited the light wave should be 
polarized parallel to the homogeneous field. 

The electrons excited by a u-polarized light wave 
have a nonzero angular momentum relative to the z 
axis and a r e  emitted from the atom predominantly per-  
pendicular to the z axis,  so  that the loops of their t r a -  
jectories a r e  not a s  densely spaced and they go off much 

FIG. 3. Trajectory of motion of the electron after excitation 
when the light is polarized parallel to the uniform field. 

more  rapidly to infinity. 

The condition Z,(n,)= 1 has in t e rms  of the initial 
variables the form of the quantization condition1' 

a t  m= 0 this condition yields the function E(n0 that 
determines the energy a t  which the part ial  c ros s  sec-  
tion ant,, in the sum (2.6) reaches the maximum value. 
The maxima a r e  reflected in the total c r o s s  section, 
and when the light i s  polarized parallel to the uniform 
electr ic  field they cause oscillations in the region of 
low energies (E<< 2g1I2) in the dependence of the c ros s  
section on the energy. These oscillations were noted 
in an experimental investigation of the photoionization 
of rubidium atoms. 

Formula (4.6) can be made more precise by determin- 
ing more  accurately the value of 2:""' a t  the maximum 
of the c ros s  section, by differentiating expression 
(3.24) for  the corresponding part ial  c ros s  section and 
separating the principal t e rms  a t  E << 2F?1'2. [The maxi- 
m a  in the dependences of the part ial  c ros s  sections on 
Z, and on the energy coincide, inasmuch a s  2, a t  fixed 
n, i s  a monotonic function of the energy by virtue of 
(3.3)]. We determine the value of z:'"'~' a t  the mini- 
mum by considering in s imi lar  fashion the sum of two 
part ial  c ros s  sections, for  which Z, i s  closest to 2:'""': 

Thus, the equation ( m  = 0)  . - 

determines approximately the positions of the maxima 
(upper sign) and minima (lower sign) in the energy de- 
pendence of the c r o s s  section. 

At sufficiently large n,,  Eqs.  (4.6) and (4.8) lead to 
an approximately equidistant placement of the c ros s -  
section maxima. The distance AE between the maxima 
near  E = 0 i s  determined by the simple formula 

This result  was obtained in Ref. 9. 

5. COMPARISON WITH EXPERIMENT 

Inthe employed approximation, the dependence on the 
parameters  of the initial and final s ta tes  can be factored 

FIG. 4. Energy dependence of the relative photoionization 
cross section c ( r / ( 2 n ~ ) ~ ,  calculated for a uniform electric 
field intensity 6415 V/cm (I), 4335 V/cm (2), or 1016 V/cm 
(3) and for different polarization of the light wave (a-m =0, 
b--m = 1). 
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TABLE I. Position of the minima of the photo- 
ionization cross sections a s  functions of the 
energy at & =4335 ~ / c m  (in cm-'). 

~ ~ ~ ~ r i .  Calculation Calculation ~ ~ ~ ~ f i ~  Calculation Calculation 
men, 1 (2 .0  I ( t . 8 )  Imentv 1 (2.61 I (4.81 

out in the cross  sections (2.10) and (2.11). Therefore 
the relative cross section a/C2 does not depend on the 
initial s state of the atom and is a universal function of 
the final-state energy E and of the constant-field inten- 
sity %'. 

The photoionization cross section was calculated nu- 
merically by summing the partial cross sections in ac- 
cordance with (2.6). The summation was confined to 
the values of m that a r e  permissible for the given po- 
larization in the final state and to the values of n, at  
which a made a noticeable contribution to the cross  

nc mE section. The spectrum Z,(nt) was calculated in accor- 
dance with formulas (3.3)-(3.6), and expressions 
(3.21)-(3.24) were used to calculate cmtmE. 

Figure 4 shows the results of the calculation of the 
dependence of the cross section on the energy for the 
cases for which experimental data a r e  given in Ref. 
7. We note first that the modulation of the cross sec- 
tion is  smaller by two orders of magnitude a t  e 1 $ than 
at e I[ $. With increasing electric field intensity g the 
amplitude of the oscillations, their period, and the en- 
ergy region in which the oscillations a r e  appreciable all  
increase. 

Table I shows a comparison of the positions of the 
minima of the cross  section with the experimental data 
for 1= 4335 V/cm, shown in Fig. 3 of Ref. 7. Table 
I1 shows a comparison of the interval A between the 
minima of the cross  section in the vicinity of E = 0 a s  
a function of the intensity of the homogeneous field, 
with the experimental data shown in Fig. 4 of Ref. 7 

To determine the positions of the maxima of the cross  
section in first-order approximation we can use Eq. 
(4.6). Table III gives a comparison of the positions of 
the maxima of the experimental curve of Fig. 1 of Ref. 
7 with the values calculated from Eqs. (4.6) and (4.8) 
and with the maxima of the curves shown in Fig. 4. 
Account must be taken in the comparison of the finite 
energy resolutin in the experiment, which shifts the 

Table 11. Interval A between 
the cross-section minima 
closest to E = O  as  a function 
of the intensity of the uniform 
electric field. 

A. CM-' 

TABLE 111. Positions of the 
maxima of the photoionization 
cross section as  functions of 
the energy at 6 =4335 ~ / c m  
(in cm-I). 

Experi- Calculation Calculation Calculation 
t 7  / I261 1 ( 4 . 6 ,  1 ( * . I /  

I I I 

maxima and minima on the experimental curve. 

The depth of modulation of the calculated cross  sec- 
tion ranges from 9 to 14% when the field intensity 
changes from 1016 to 6416 ~ / c m ,  whereas in the ex- 
periment the change ranges from 9 to 25%. 

The oscillations of the type described in the present 
paper take place also at negative energies, but the 
resonances discussed in Sec. 1 a r e  then superimposed 
on them in this region. The negative-energy region 
in which the damping of the oscillations takes place can 
be estimated by starting from the following considera- 
tions. For  negative energies at 2, = 0 the center of 
attraction turns out to be in the classically inaccessible 
region with respect to the parabolic coordinate 7, owing 
to the presence of the uniform field. This leads to the 
appearance of ascreening factor of the order of 
em(-  Ik 13/3@ inthe corresponding partial cross  sec- 
tion, a factor corresponding to the uniform fieldin 
(2.3). The peak in the plot of uncos against 2, be- 
comes smoothed out at 2,s 1, and this leads to a damp 
ing of the considered oscillations a t  Ik 13/382 1, i. e . ,  
E S -(31)213/2. 

Thus, we can point out an energy interval in which the 
photoionization cross  section i s  subject to oscillations 
due to the mentioned singularity of the classical infinite 
motion in the considered field: 

For 1= 4335 V/cm we obtain therefore the inequality. 
-20 5 E 5 400 cm-', i. e. , at  negative energies the cross 
section oscillates only once (cf. Table 11). 

The theory developed above connects the oscillations 
of the cross  section with the singularities of the motion 
in a potential that admits of separation of the variables 
in parabolic coordinates. For a rea l  multielectron 
atom, the single-electron potential a t  short distances 
differs from the Coulomb potential and an accurate 
separation i s  impossible. A characteristic of the 
short-range part  of the potential can be the magnitude 
of the quantum defect, the empiricalvalue of which for 
the rubidium atom is quite large (3.13), although it i s  
close to an integer. Nonetheless, the theory describes 
well the experimental data for this atom. One can as- 
sume from general considerations that violation of the 
separability of the variables decreases primarily the 
depth of modulation of the cross  section, but this i s  in 
fact not observed. A complete analysis of this prob- 
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l em,  which i s  of in te res t  to the physics  of the S ta rk  ef- 
fect ,  can s e r v e  as the object of independent study. 
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Alignment of hydrogenlike atoms produced by electron 
capture in collisions of heavy charged particles with target 
atoms 
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We investigate the alignment of excited states of hydrogenlike atoms produced by electron capture in 
collisions of heavy charged particles with target atoms. The degree of alignment, as well as the degree of 
polarization of the photons emitted upon decay of the excited states, is calculated in the Oppenheimer- 
Brinkman-Kramers approximation for a number of concrete cases. The dependence of these quantities on the 
velocity of the incident particle is investigated for various charge ratios of the particle and of the target-atom 
nucleus. The effect of cascade population of the excited state on the polarization of the radiation is 
investigated. The calculation results are compared with the available experimental data. 

PACS numbers: 34.70. + e 

1. This  paper  i s  devoted to a theoret ical  study of the 
alignment of the excited s t a t e s  of a single-electron 
B"'-", which are produced as a resu l t  of capture of a n  
electron when nuclei B t Z  collide with t a rge t  a toms:  

B+z+A-.B+ ( z - t ~ + A  t (1 ) 

The ion B "-"* tu r n s  out to  be  in a n  aligned s t a t e  be-  
cause  of the differences between the probabilities of 
populating the sublevels with different values of thepro-  
jection Im I of the electron angular  momentum on the 
direction of the incident beam. The degree of align- 
ment of the excited s t a t e  de te rmines  the polarization 
and the anisotropy of the angular distribution of the r a -  
diation produced in the  success ive  t ransi t ions of the 
electrons to lower-lying states. ' 

The electron-capture c r o s s  sect ions in react ions (1) 
has recently been the subject of a t remendous number of 
theoret ical  as well as experimental  s tudies  (see,  e .g . ,  
Ref. 2 and the l i t e ra ture there in) ,  s ince  these react ions 
play a n  important role  in astrophysics ,  a tmosphere 
physics ,  and p lasma physics. Of part icular  in te res t ,  
in connection with the problem of impuri t ies  in thermo- 

nuclear  p lasma,  are investigations of the capture into 
excited s ta tes .  Since the c r o s s  sect ions for  capture 
into the excited s t a t e s  are determined in pract ice f rom 
the intensity of the radiation emit ted a t  a definite angle 
as a resu l t  of the decay of these s t a t e s ,  i t  i s  essent ial  
to know the angular  distribution of this  radiation. In 

addition, investigations of the excitation1 and ionization' 
of a t o m s  in collisions have shown that the study of the 
angular  distribution and of the polarization of the radia-  
tion can  yield additional information on the charge-ex- 
change p r o c e s s  itself,  and i s  therefore of independent 
theoret ical  interest .  

T h e r e  a r e  a t  p resen t  no published systematic  data on 
the alignment of the excited s t a t e s  produced in the elec-  
t ron-capture p rocess .  Measurements  of the degree of 

polarization of the L, emission of the hydrogen atom 
following capture of a n  electron by a proton in cer tain 
iner t  g a s e s  a r e  reported in Refs. 5 and 6. These data, 

however, a r e  not in agreement  and a r e  even contra-  
dictory.  Measurement  of the angular  distribution of 
the charac te r i s t i c  x radiation produced when a n  elec- 
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