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It is shown that unstable A particles, evaporated from a black hole and decaying in its gravitational field, can 
lead to an excess of baryons over antibaryons in the space outside. The effect is due to the violation of C and 
CP invariance in the decays of the A particle into a heavy baryon and a light antibaryon and in the charge- 
conjugate mode, and also to the difference between the probabilities of recapture of heavy and light particles 
by the black hole. For this mechanism there is no need for violation of the law of conservation of baryon 
charge. 
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1. INTRODUCTION 

The observational data that indicate almost complete 
absence of antimatter in the world around us have given 
rise to a considerable amount of research attempting 
to understand this appearance and to calculate an ex- 
tremely important cosmological constant, the ratio of 
the numbers of baryons and of residual photons in the 
Universe. According to present data the value of this 
ratio P =n,/n7 is 10-8-10-10. The uncertainty of this 
number is rather large and is due to poor knowledge of 
the amount of baryonic matter in the Universe, but it 
can be stated with assurance that the quantity P is ex- 
tremely small and that in the hot stage at temperature 
T z  1 BeV the Universe was charge-symmetric to very 
good accuracy. 

A discussion of various approaches to the problem of 
the baryon asymmetry of the Universe can be found in a 
recent review article.' In the present note we shall 
examine one possibility for the origin of an excess of 
baryons, involving perferential emission of baryons 
by black holes. The idea of this mechanism comes 
from a remark of Hawking about nonconservation of 
baryon charge in the evaporation of black holes. A 
specific process, but without detailed calculations, was 
formulated in a paper by Zel'dovich3 (see a lso  Ref. I) ,  
and is a s  follows. The primary black hole can emit 
certain hypothetical heavy mesons A.  I t  is  further as- 
sumed that a mesonA can decay via the channels 
A -  LR and A -  ZH, where L and H a r e  light and heavy 
baryons. Because of nonconservation of C P  parity the 
partial widths of these two channels must in general be 
different: 

The fate of the Land  H particles that ar ise  from the 
decay of A depends on their masses; the probability 
of recapture by the black hole is greater for the heavy 
particle than for the light one. Therefore the flux of 
heavy baryons H coming from the decay A - HE will be 
smaller a t  large distances from the black hole than that 
of particles t. Since according to Eq. (1.1) L is  pro- 
duced more frequently than L, a build-up of the baryon 
charge in our Universe can occur in this way, with the 
corresponding antibaryon charge being absorbed by 
black holes, in an amount proportional to the product 

A(W, - W,), where W,(,, is  the probability of penetra- 
tion of L(H) through the gravitational potential barrier.  

We point out that for this mechanism to be realized 
it is not necessary that there be any nonconservation 
of baryon charge in microscopic processes, This as-  
sertion has recently been disputed in a paper4 which 
formulated a theorem stating that if there is  micro- 
scopic conservation of baryon charge the total flux of 
baryons emitted by a black hole is  equal to the total 
flux of antibaryons, independently of C and C P  in- 
variance, This is indeed correct ,  if we consider only 
the processes of emission of particles by a black hole 
and their further propagation in the gravitational field, 
without taking into account reciprocal processes of de- 
cay and scattering. This is  closely related to the neu- 
trality of the system with respect to baryon charge in a 
state of thermal equilibrium1' (a discussion of this 
question and references to the literature can be found 
in Ref. I), and although the process of quantum evapo- 
ration of a black hole into external space is  essentially 
a nonequilibrium process, CPT invariance assures  that 
the fluxes of primary baryons andantibaryons a r e  equal 
if there is no interaction between the evaporated parti- 
cles. We shall trace out how the decay of a particle in 
the gravitational field of a black hole, with C and C P  
noninvariance, leads to an excess of baryons, say, and 
shall calculate the resultant flux of baryon charge into 
the exterior space. 

The plan of this paper is  a s  follows. In the second 
sectioil the quantum-mechanical equations of motion a r e  
derived for an unstable particle and its decay products 
in an external field, For  simplicity it is  assumed that 
a l l  of the particles a r e  spinless. In Sec. 3 these equa- 
tions a r e  generalized to the case of curved space 
(gravitational field). In-the next section we obtain 
general formulas for the flux into the external space 
of the decay products of an unstable particle evaporated 
from a black hole. Here it turns out that the mass of 
the initial particle can be considerably larger than the 
temperature of the black hole, but the flux of its decay 
products falls off not exponentially, but only according 
to a power law (in powers of m/T), if the mass of the 
decay products is small. In the last section approxi- 
mate solutions of the equations of motion a r e  found and 
numerical estimates a r e  obtained. 
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2. EQUATIONS OF MOTION OF AN UNSTABLE 
PARTICLE AND ITS DECAY PRODUCTS IN  AN 
EXTERNAL FIELD 

It is  well known that the relativistic wave equation for 
a scalar  unstable particle A moving in an external po- 
tential U is of the form 

It is further assumed that I?<< m. We a r e  interested, 
however, not only in the fate of the particle A, but a lso  
in that of the products of its decay A - LB. We shall 
now derive the wave equation for L and H. 

Let us consider the following model Lagrangian: 

where the cp, a r e  operator fields for A,  L, and H. The 
last term in the expression (2.2) describes, in par- 
ticular, the decay A - LR- The equations of motion for  
the operators cp, a r e  

where K, = +m: + U , ( x ) .  We define the one-particle 
wave function of the particle A and the two-particle 
function of the particles L and B a s  follows: 

where @ is the usual Fock vector of the state, (01 is the 
vacuum state, and T is the chronological ordering op- 
erator,  

Applying the operator KA to Ji,, we get a t  once 

The derivation of the equation for qL,(x, y )  is  a bit 
more complicated. By applying the operator KL to 
$LH(x, Y) we get 

KL$Ln(x, Y) = - f D n ( x - ~ )  IpA ( I )  

+(016(xt~-ya) l a t q L ( ~ ) ,  ~ H ' ( Y )  I IY)-f(OIN{~~(z)~~(x)~~'(~))IY), 
(2.5) 

where N is the symbol for  normal ordering and 

is the propagator of H. The last  term on the right side 
of Eq. (2.5) describes three-particle states AHR and s o  
on. We shall neglect them from now on. 

The one-time commutator [a,cp,(x), cp,$(y)] can be cal- 
culated in lowest order in f if we use the fact that 
cp,(y) satisfies Eq. (2.2~). Finally, applying the op- 
erator K,  to Eq. (2.5) and using the fact that K,D,(x- y )  
= - i t j4(x - y), we get 

The equations (2.4) and (2.6) form a closed system 
for the determination of the wave functions of the parti- 
cle A and of its decay products LH. If the A meson has 
other decay modes besides the channel LH, one must 
add to the right side of Eq. (2.4) the terms correspond- 

ing to these channels. 

It is interesting to check how Eq. (2.1) can be derived 
from Eqs. (2.4) and (2.6). We shall assume that the po- 
tential does not affect the decay probability, i.e., that 
the interaction of the particle with the external field is 
much smaller than the interaction between the particles 
L and H, and a fortiori smaller than the masses of the 
particles. The solution of Eq. (2.6) is of the form 

where G is the Green's function of the operator K. Ac- 
cording to the assumptions just made we can neglect 
the potential in the integrand of Eq. (2.7), i.e., replace 
GL and G ,  with f ree  Green's functions (0 +ma)-'. 

It can be seen that the quantity ICl,,(x, x )  that appears 
in the right side of Eq. (2.4) is formally infinite. In 
fact, I),, is of the form of a diverging wave, 

and for x- y the amplitude of the wave goes to infinity. 
It is obvious, however, that a t  distances of the order 
of the region of interaction this increase must be cut 
off. I t  is more convenient to  avoid this difficulty in the 
momentum representation. Going over to the Fourier 
transforms of the wave functions with the formulas 

dLk d6p d q  
$ A  ( x )  = - e-'&"$, ( k )  , $,, ( x ,  y )  = ---- e-'P'-'9'$L~(p, q )  

( a n )  ' ( 2 n )  

and substituting +,, from Eq. (2.7) in Eq. (2.4), we get 

(2.8) 
The integral in square brackets diverges a t  large mo- 
menta; this corresponds to the previously noted singu- 
larity at small  distances. The divergent rea l  part 
corresponds to a mass renormalization and obviously 
must not be considered important. 

Considering that the region of small distances, o r  
large momenta, is effectively cut off, we can neglect 
this infinity (or, in other words, neglect the integral 
over a large circle in, say, the p ,  plane), and keep 
only the contribution of the pole singularities. This 
means making the replacements 

With this change the integral in question takes the form 
of the two-particle phase volume of the particles L 
and 8, and we get 

(mA"k2-irnArA)$, ( k )  + j d'k ( k ' )  U A  ( k - k ' )  = 0 

Accordingly, the wave function of particle A is deter- 
mined by Eq, (2.1); then, regarding J?, as a source, we 
can find the wave function qL, of the decay products by 
means of Eq. (2.6). 

3. THE EQUATIONS OF MOTION I N  THE 
GRAVITATIONAL FIELD 

For  simplicity we consider the case of an uncharged, 
nonrotating black hole. In this case the metric is given 
by the well known Schwarzschild solution 
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d s z = I l d t z - q - ~ d r ~ - r ~ d ~ ~ -  r 2 sin . B ~ Q ' ,  (3.1) 
where q = (1 - r,/r), r, =2MG, M i s  the mass  of the 
black hole, and G ~ 0 . 6  10-38m;2 is the (Newtonian) 
gravitational constant. 

F o r  a f r ee  (U, =0) s ca l a r  particle the wave equation 
(2.1) takes the form 

~~- 'a ,~-~a:-2~r- la , -r ,r-~&-r-~i"+ ( m , - i r A / 2 ) 2 1 + A  ( r ,  t )  =O, (3.2) 

in the curvilinear coordinates of Eq. (3.1), Here i2 i s  
the usual angular-momentum operator. 

Let us consider the stationary case  

*A ( r ,  t )  =exp( iEat )  $A ( r ,  E ) .  

Making explicit a factor r-' in $(r, E) and separating 
the angular variables, we write 

where Y I ,  a r e  eigenfunctions of 9, normalized t!, 
unity. If we now introduce the new variable (cf. e.g.. 
Ref, 6 )  

Eq. (3.2) takes the Schr'cidinger form 

[ a , 2 + ~ , z - c , ( E , 1 )  IR;" = 0, 

where 

The potential 

goes to ze ro  a t  the gravitational radius r - r,(5 - - *) 
and to the value p i  - i p , y ,  fo r  5 - + m ( ~ - + ~ ) .  In this 
interval there i s  a potential bar r ie r ,  Corresponding t o  
the classical bound state in the gravitational field there 
i s  a hardly perceptible minimum at  large 5 (or r) .  

Similarly. going over to curvilinear coordinates in 
Eq. (2.6), expanding the function 

+LH(r ,  t ;  r', t') =esl)(iE,t+iE,t ')+, ,(r ,  r': EL,  E x )  

in t e rms  of the partial waves 

and making the change of variable (3.4). we get 

=(2i fr : ) -  r5 ( 1 -- :) 6 ( 5 - 5  ' ) R?"'̂  ( k .  e L + e H ) D ( l ,  1 .  ,; 1.i.; 1'. 1 ; ) .  
I A , # ~  

(3.7) 
where 

This quantity is proportional t o  a Clebsch-Gordan co- 
efficient. The potentials U, and U, a r e  defined in 
analogy with the potential U, [see Eq. (3.6)]. 

The solution of Eq. (3.7) in which we a r e  interested is 
of the form 

where r and 5(t) a r e  connected by the relation (3.4); 
RA i s t h e  solution of Eq. (3.4), whichfor 5 - + mis of the 
form 

R.,=const . e s p ( i $ [  (E,,+&H)'- (p.,f i y n / 2 ) Z ] " . ; .  

and the Green's functions GL,,(5, 6 )  of the operators 
(a2 +&,2 ,,, - UL , H )  correspond to  waves diverging from 
the point C, i.e., 

~(S~S)=~~-'[R+(S)~-(k)~(5-5)+R+(S)R-(S)B-l, (3.9) 

where 

I tL(S)  -exp (ik ( E ' - p 2 )  ") for 5++-, 
R ' - ( i )  -esp { - i i e )  for i+-m. 

and W is the Wronskian of the system of functions R' 
and R -. 
4. THE FLUX OF PARTICLES INTO THE 
EXTERNAL SPACE 

We define the flux vector in the curved space fo r  f ree  
part icles obeying the Klein-Gordan equation a s  

++ 
J * - ( q a , + )  (-g)"p.  

It  sat isf ies the conservation law 

In  the stationary case .  when gpU does not depend on the 
t ime and $- e i W t ,  the fluxes through concentric spheri- 
ca l  surfaces must be equal; in other words, the quantity 

" 
S ( r )  = S d O d q  I ,=r2  dB dtp sin b(1-r,/r) ($ 'd ,$ ) ,  

does not depend on Y .  From this. using the expansion 
(3.3). we can show that the quantity 

does not depend on f and represents  the flux of parti- 
cles with angular momentum I and angular-momentum 
component 1, through a spherical surface. Accordingly, 
in t e rms  of the variable 5 the flux i s  defined precisely 
a s  in nonrelativistic quantum mechanics. 

F o r  (--" the solution of Eq,  (3,5) must have the 
form 

Fey' ( E ,  E)= e l t r + a U ) e - " ~  (4-2) 

The coefficient cr determines the number of particles 
reflected f rom the potential ba r r i e r  and returning 
toward the horizon. The fraction of A particles that 
has  decayed is  given by 

(3h4;' /ly;i3 = l ~ ; z ( ~ l l z ,  (4.3) 

Knowing the wave function RLH, Eq, (3.8). one can 
determine the number of light particles L that have 
gone out from the black hole. Fo r  simplicity we a s -  
sume that m,> &,,, SO that H particles do not emerge 
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t o  infinity. The ratio of the number of L particles 
(with energy cL) that have been formed owing to the 
decay of A mesons (with energy c,< p,) and have gone 
away from the black hole, and the number that have 
suffered recapture is 

where R f  a r e  defined in Eq. (3.9) and r a n d  5 a r e  re- 
lated by Eq, (3.4). The symbol {R, - R;) means the ex- 
pression in the f i rs t  curly bracket with R i - R l .  

It is well to mention that here  the state of the A 
particle is described not by a wave function but by a 
density matrix p,, owing to  averaging over the states 
of the black hole. Since the black hole has a very large 
number of degrees of freedom, the p matrix must be 
diagonal in the conserved quantum numbers, and in 
particular 

Accordingly, the summation over 1, and L,, in Eq. 
(4,4) can be taken outside the sign for taking the square 
of the absolute value, and we can sum the probabilities, 
not the amplitudes, 

We can define the quantity N,(l,, I,,; 1,. l,,; l,, l,,), 
the flux of L for fixed values of the orbital angular mo- 
menta of the original particle and of its decay products: 

Owing to the law of flux conservation, Eq. (4.1), we 
have 

where BR,.@ - BL) is the partial width of the decay, 
and 6N, is  given by Eq, (4.3), while according to 
Hawking2 

[T =(4rrr,)-' i s  the temperature of the black hole]. Us- 
ing Eqs, (4.3)-(4.6). we can get the flux of L particles 
per  unit time with fixed 2, and c,. To get the total flux 
the quantity N, must be integrated over the energy spec- 
trum and the time: 

where T = 3 .  1O3N;$Wm2 is the lifetime7 of the black 
hole of mass M, N,, is  the average number of emitted 
modes, and mp = G - ' ~  -1019 GeV is the Planck mass. 
The current time t is  connected with the mass of the 
black hole by the relation 

dM/dt=-lo-' N,,,m,'M-Z. (4.8) 

The number N,,, of emitted modes depends on the tem- 
perature of the black hole; if the temperature is small  
(T -1 MeV),N,, =0(1), but with increasing temperature 
N,, can reach values of the order of 100. 

Equation (4.7) solves the problem in principle. With- 
out specific numerical calculations it can be seen that 
the total baryon charge emitted by a black hole into the 
exterior space is  different from zero if C and C P  in- 
variance a r e  violated. In fact, we can consider a case 
in which m, =m, >> m, and m, > T 2 m,. In this situa- 
tion A and H particles a r e  formed only near the horizon 
and do not emerge to infinity (more exactly, their flux 
a t  infinity is suppressed by a factor e-m/T). On the 
other hand, the flux of light baryons L a t  infinity is  
different from zero, since a considerable fraction of 
them has energies larger than m,, Since the inter- 
action of L and with the field of the black hole is 
charge-symmetric (if we neglect the breaking of C and 
C P  in gravitational interactions), the excess of L a s  
compared with f; which appears a s  the result of de- 
cays A- Lg and A - Z H  occurring near the horizon 
leads to a larger flux of L a t  infinity, We note that near 
the horizon all  particles a r e  effectively massless and 
stable, since in the Klein-Gordan equation r?z2 is  re-  
placed with m2(l - r,/r) in the Schwarzschild field. In 
the case considered here this leads to a power-law 
suppression (-E,/m, - T/m,) of the decays of the A 
meson, since for T<m, the A mesons a re  mainly 
localized near r =r,. 

Let us examine the applicability of the stationary 
approach. According to Eq. (4.8) the rate of evapora- 
tion I?', of the black hole is given by 

This quantity must be much smaller than the mean en- 
ergy of the particles evaporated from the black hole; 
i.e., Lo<< T, or 

i l f>>10- ' (8nNe, , )  'm,. (4.9) 

This is surely true in the case in which we a r e  in- 
terested, since a black hole effectively emits particles 
of mass 1 GeV, say, beginning with iZ1s 3. 10'7mp. s o  
that a large range of such values of M satisfies the 
condition (4.9), 

We note also that the flux of particles in the region 
r > r ,  is small  (in classical terms the time interval 
between emissions of individual particles of a given 
type is  -103v,), s o  that mutual scattering of particles 
emerging from below the horizon is extremely small  
and we can neglect reactions restoring baryon sym- 
metry, and also interferences of the L and H produced 
in the decay of an A meson with particles directly 
evaporated from the black hole. 

Although the formulas derived in this section provide 
an answer in principle, they require a rather cumber- 
some numerical integration of Eq. (3.5). In the next 
section an approximate method i s  described, which 
allows a solution in quadratures to  be obtained. 
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5. AN APPROXIMATE CALCULATION 

Fi r s t  of a l l  we note that the potential barr ier  U(5, I) 
in Eqs. (3.5) and (3.7) grows and widens rapidly with 
increasing 1. Owing to  this fraction of decaying A 
mesons decreases a s  I-', since, a s  1 increases, the 
wave function R A  becomes more and more localized 
in the region where the decay probability i s  suppressed 
by the small  factor (1 - t - , /Y ) .  For  this same reason 
the quantities Ni of Eq. (4.4) a lso  decrease with in- 
creasing 1. Accordingly, the order of magnitude of the 
emission of light baryons by the black hole i s  given by 
the contribution with 1, = 1, = 1, =O . (We recall that 
we a r e  considering the case m, =m, >> m ,  - T, in which 
practically noA o r  H particles escape to infinity. Al- 
though a s  the evaporation of a black hole progresses 
its temperature r i se s  and the condition m, > T ceases 
to hold, calculations show that the main flux of baryon 
charge for  m, >>m, is produced by the black hole when 
T<m,). 

The solutions of Eqs. (3.5) and (3.7) with the actual 
potential U(5, I) a r e  not known, but we can choose a po- 
tential V(5, l )  with a shape very close to that of U(5, l) 
for  which these equations can be solved explicitly. 
Potentials of this sort ,  with a hump and having various 
asymptotic behaviors a t  +m and -m,  were considered 
in a paper by Eckart (Ref. 8).": 

where q, =exp(( - a, )/dl. and the parameters B,, a,, d, 
a r e  chosen from the condition that the difference be- 
tween V(5,  I) and U(5, I) be minimized. In particular, 
for  l=O, we have B0=0.4. a, =0, and do  ~ 1 . 1 5 .  Like the 
U(<, 1) of Eq. (3.6), the approximate potential V(5,l) 
approaches p2 for 5-* and V(5, 1)- 0 a s  5-- m. 

The solution of the Schradinger equation with the po- 
tential V(5.1) can be expressed in terms of a hyper- 
geometric function. The wave function of the A meson. 
which is a diverging wave for 5 - +". is 

where q, B, and d have been defined above, following 
Eq. (5.1). The index 1 has been dropped everywhere 
here  for brevity. 

For  5-+m(q-+a) 

To find the behavior of R,(5) for 4 - -  m(q-0) it is 
convenient to make the following transformationg: 

For  5 - - m  

From these equations and Eqs. (4.2) and (4.3) we get 
for  the fraction of A mesons that have decayed (or gone 
out through the potential barr ier )  

We a r e  considering the case &, < pA; therefore the 
quantity 4, would be real, q, = - ( p i  - ei)Ihd, if the 
particle A were stable; then Imp  =0, and, a s  could be 
expected, we would get 6N =O. Actually p i  - p i  
-ipayA, where a s  usual it is assumed that Y,<< pA. 
Confining ourselves to the f i rs t  te rms of the expansion 
in powers of Y/P, we get 

where $ i s  the logarithmic derivative of the r function, 
and 

z , = ' / , + d ( p A Z - ~ A 2 )  ' + i e A d + ' / , i ( 4 B d Z -  l)'", 
~ ~ = ' / ~ + d ( p . + ~ - ~ ~ ~ )  " - i ~ ~ d + ' / ~ i ( 4 B d 2 - l )  I h .  

Because of Eq. (4.6) the effective values of c ,  a r e  
small  [there is a cut-off factor exp(- 4n&,)]. Besides 
this, we have assumed that pA>> 1. This allows us to 
simplify the expression (5.5)" Finally we get 

We recall that here  r, is  the total width of the A mes- 
on, m, i s  its mass, and E A  =EAt-, is the energy of the A 
meson in units v;'. 

We shall now calculate the ra t ioNi /Ni ,  Eq. (4.4), 
f o r  al l  li = O  and in the limit of large p A  and p H  and 
small  pL. Solving the problem in the approximate po- 
tential V(5,O) and replacing (~,/t-)(1 - t - , / ~ )  in the in- 
tegral  (4-4) with q(q +I)-' [this is a change of the same 
type a s  replacing ~ " 1  - v,/r) with p2rl(l +q)-' in the po- 
tential]. we get 

(5,7) 
here  

FH(z) i s  defined analogously with the replacements 
PA-PH and 9,- 9,. and 

F ,  (x) = F ( s ,  1-s, 1-211,. .z). 

in which we take x =l - z for  LV' and . Y = Z  for N-. The 
parameters p ,  q. s a r e  defined in Eq. (5.2). We calcu- 
late this integral for pASH>>l .  By using the integral 
representation of the hypergeometric function [cf. e.g., 
Ref. 10, page 115, 2.12 (5)j we easily find the leading 
term with respect to ( l /p):  

For  smal l  & the answer can be simplified: 

Using the relations (4.5)-(4.7) and (5.6), we get 

- -- 7r,-' I'(A - L H )  (-4 - L R )  
.= 8 . 1 0  'r,-'---- 

1,'.45n m ,  ln + 
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T o  obtain the total flux BL fo r  the entire lifetime of 
the black hole we must integrate Eq. (5.8) aver time. 
The result is 

Here Mo is  the initial mass  of the black hole; obviously 
i t  must be such that the initial temperature To is larger  
than the mass of the light baryon, To =rn2,/8rrMo>mL, 

To  estimate the average density of the baryon charge 
per  unit volume, we use the fact that the energy density 
in the hot Universe, filled with relativistic particles, 
a t  an  early stage is given by 

If primary black holes of mass ivl comprise a fraction 
H. of the total energy density, their density pe r  unit 
volume is  

Using Eqs. (5.9)-(5.11), we easily find that the density 
of baryon charge a t  the time when the black hole has 
evaporated: t = 7 = (104/3N,ff)M 3m;4 is 

After the evaporation of the black holes an  equilibrium 
plasma is formed, with its temperature T given by the 
relation 

where N is, roughly speaking, the number of different 
types of particles in the primary plasma; from now on 
we set  N =N,,, [see Eq. (4.8)]. 

We now get for  the inverse of the specific entropy per 
baryon the expression 

where A i s  the quantity given by Eq. ( l . ~ ) . ~ '  

If the unified models of the strong and electromag- 
netic interactions. according to which a t  ultrahigh en- 
ergies al l  interactions a r e  characterized by a single 
coupling constant a = loe2. a r e  correct ,  then we can 
expect that (I A/rnA)N-3/4 -dl'" -lo-'. The quantity A 

must be small, since no effects of C P  invariance break- 
ing appear in lowest-order perturbation theory, 

We assume A =lo-', although this quantity depends 
on the model and could be much smaller. Accordingly 
to get the observed value P = we must suppose 
that primeval black holes with M s 104*2mp make an 
appreciable contribution to the total energy density. 
Noting that the result (5.6) has been obtained on the 
assumption m,,,r, > 1, we see  that the mechanism 
described here can give an explanation of the baryon 
asymmetry of the Universe if there exist superheavy 
mesons and baryons with masses In, , ,2  10-4i2mp. If, 
however, we renounce the assumptions rn,,,r, > 1 and 
rnLr,<l, it i s  easy to see that the effect i s  st i l l  
smaller ,  and a s  before if it remains necessary for 
ultraheavy mesons to exist, and a lso  baryons with 
masses  nzL,,> 104i2mp. 

6. CONCLUSION 

Accordingly, charge symmetry breaking effects in 
decays of particles evaporated from black holes can in 
principle lead to a n  accumulation of baryons in the 
external world, even if baryon charge i s  microscopical- 
ly conserved. This mechanism can explain the observed 
value of the baryon asymmetry of the Universe, if the 
C and CP breaking i s  large enough and if ultraheavy 
baryons exist (m,2 1014 GeV). 

Unified theories of the strong and electromagnetic 
interactions lead in a natural way to nonconservation of 
baryon charge, and s o  there appears a beautiful pos- 
sibility fo r  explaining the baryon asymmetry of the Uni- 
verse a s  due to charge-asymmetric processes a t  a n  
early,  but thermodynamically nonequilibrium stage of 
the expansion of the world. At present, however, it is 
unclear whether one can obtain in this way the neces- 
s a r y  size of the effect. Experiments now being planned 
to test the stability of the proton will in part help to 
answer the question a s  to whether this  scheme is cor- 
rect. 

Possibly both of the mechanisms we have mentioned 
have operated, each making i ts  contribution to  the for-  
mation of our world a s  i t  now exists. 

I am deeply grateful to V. S. Popov, A, A. Starobin- 
skii, and M. V. Terent'ev, a.nd particularly to 
Ya. B. Zel'dovich for  a discussion of the questions dis- 
cussed here. This note was stimulated by my work to- 
gether with Ya. B. Zel'dovich on a review paper.' I 
a m  also  grateful to A, A. Starobinskii for pointing out 
a mistake in this paper. 

''1n T-noninvariant statistics, in  which there is no condition 
of detailed balances, the usual form of the equilibrium dis- 
tribution functions must still be correct because the S matrix 
is unitary; that this is so is guaranteed because the sums of 
the probabilities of direct and inverse processes are equal 
[the so-called condition of cyclical balances5 (see also Refs. 
1 and 4)]. 

"I am grateful to V. S. Popov, who pointed this paper out to 
me. 

3 ) ~ h e  values of r and A in a strong nonuniform gravitational 
field do not necessarily agree with the corresponding ex- 
pressions for a free particle. The factor (1 -r, /r)  owing to 
the time dilatation is automatically taken into account in 
Eq. (3.2). Besides this, r and A may be altered because of 
tide-forming force. I am grateful to M. B. Voloshin for this 
remark. 
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the gluon field 
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A simple estimate of the magnitude of the effective coupling constant between quarks and the gluon field is 
proposed, based on a consideration of the electric-charge dependence of the hadron mass differences for 
hadrons of identical composition. A comparison of the mass differences p +  - a +  and p ,  - a, yields 
g2/4a = 0.255?:0,8,. A consideration of the mass differences for the D mesons and 2 baryons leads to a 
mutually consistent valueg2/4a = 0.368':$, which is larger than the value obtained from thep - a system. 
The agreement between the results for the D and P may be considered as a confirmation of the assumption 
made in these estimates about the rank of the color group. 

PACS numbers: 12.40.Cc, 13.40.Dk 

In this note we estimate the effective coupling con- 
stant of the quark-gluon interaction in hadrons (more 
precisely, its ratio to the coupling constant of the elec-  
tromagnetic interaction) by considering the dependence 
of the mass  difference between hadrons of identical 
composition on their electr ic  charge. This method 
gives only a very rough estimate, but in our opinion i s  
of certain interest on account of i ts  simplicity. A com- 
parison of the results  obtained for mesons and baryons 
makes it possible to verify the conjectured rank of the 
color group ( r =  2 for  the SU; group). We s t a r t  from a 
linear mass  formula for  mesons and baryons proposed 
previously by Zel'dovich and the author,' generalizing it 
to take into account the electromagnetic effects. The 
mass  splitting between hadrons of identical composi- 
tion," according to Refs. 1 and 2, is  described by the 
spin-spin interaction Hoo of the quarks, which we inter- 
pret  a s  the interaction between the gluonic quasimag- 

take into account an  extra factor of $ stemming from 
the propert ies of the color group. The color charge 
for  the putative SU; color group of rank r= 2 is  a two- 
dimensional vector. The sca lar  product of the charge 
vectors of a quark and antiquark making up a meson 
equals -g2; in a baryon the charge vectors of different 
color quarks a r e  arranged under angles of 120 ' in the 
charge plane and their  sca lar  product equals -ig2. 

For  a baryon we have ( V B  i s  the effective volume of 
the baryon) 

The  factor $ in Eq. (2) corresponds to the color group 
SU;. In the more general  case  of the group S U P e  
would have the factor l/r= l / (n  - 1) (the rat io of the 
radii  of the inscribed and circumscribed spheres for  
the hypertriangle (simplex) in n - 1 dimensional space). 

netic moments g/2n1 of the quarks, where g is the ef- 
In our previous notations1*' (nr, is  the mass  of the 

fective quark-gluon coupling constant and m is  the 
nonstrange quark) quark mass.  

This interpretation is  confirmed by the fact that the 
empirical coefficients 5 introduced in Refs. 1 and 2, 
and describing the weakening of the interaction of the 
s and c quarks with an adequate degree of accuracy/ 
(10%) a r e  inversely proportional to the quark masses.  
Without taking account of the electromagnetic effects, 
we have for  the mesons 

Cg2/T',lm,~=b,,=p-n=6~3 MeV. 

Cg2j2JfBm,2=b,='j,(A-.Y) -19; 3 MeV. 

We find that v,/v, = 3/2, corresponding to the numbers 
of quarks in the baryon and meson. Such a ratio of ef- 
fective volumes is  quite plausible. 

We generalize Eqs. (1) and (2) by adding to the inter- 
action of the gluon moments the interaction of the Dirac 
magnetic moments, which a r e  proportional to the quark 
charges. For the mesons we make the substitution 

where 0,. u2 i s  the sca lar  product of the quark spins, V,  P ' - - a 2 + e , e , .  - . -  
is  the effective volume of the meson, vil- I+(O) 1 2 ,  and 

and for  the baryons we se t  
C i s  a constant. For  baryons we have a s imi lar  ex- 
pression of three te rms,  in which it i s  necessary to -g2j2+-g'/2+f8e,. 
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