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A dynamic model is proposed for the description of the behavior of superfluid flow in He3 -A.  The 
hydrodynamic equations are approximately reduced to three ordinary differential equations for variables 
averaged over large space and time scales: 1) the flow density; 2) the energy of distortion of the field 1 in the 
flow; (3) the density of the instantons that produce the phase slippage in the flow. The trajectories of this 
dynamic system are investigated. It is shown that in a certain range of the model parameters both uniform 
flow and flow in a dissipative regime with oscillating 1 are stable. ~iansition from one regime to the other can 
be effected only by an external perturbation of a special type, as is indeed observed in experiment. 

PACS numbers: 67.50.Fi 

INTRODUCTION 

It is known that a superfluid liquid can flow in two 
different ways. In one, the liquid moves without en- 
countering any resistance. The other is a dissipative 
regime; to maintain the liquid flow in this case i t  is 
necessary, a s  in ordinary liquid, to apply a chemical- 
potential gradient VP . The acceleration imparted to 
the liquid by the external energy source 

The main problem encountered in the investigation of 
the flow of a superfluid is identification of the flow 
regime that the system prefers to choose. Numerical 
methods of solving the rather complicated dynamic 
equations can a s  yet not answer this question. To ob- 
tain the answer i t  is necessary to investigate the be- 
havior of the trajectories of the dynamic system, 
a difficult task for an infinite-dimensional function 
space . 

. , 
In this paper i t  is proposed to simplify the problem 

is compensated by the internal phase slippage mecha- 
by reducing approximately the system of partial differ- 

nism (see Ref. 1). 
ential equations to a system of ordinary differential 

The phase slippage mechanisms a r e  different in dif- 
ferent substances and in different geometries. In su- 
perfluid He4 the phase slippage can be due to motion of 
singular v o r t i c e ~ . ~  In the A phase of superfluid He3 it 
can be produced by motion of nonsingular v ~ r t i c e s . ~  
~ x ~ e r i m e n t ~  shows, however, that in the A phase i t  
proceeds via space-time oscillations of the anisotropy 
factor 1 ?'= The distribution of the field 1 in the flow 
is a periodic structure in the two-dimensional (2, t )  
space (z is the coordinate along the flow and t is the 
time). One of the possible field in a cell is shown in 
Fig. 1. Each such cell constitutes an instanton-a 
topological particle in two dimensional space-time (cf. 
the analogous particles in field theory'). The field in 
this cell maps the cell in the sphere 1.1 = 1 with degree 
unity. If such a distribution of the field 1 were to be 
realized not in the mapped space (2, t) but in the real  
(x ,  y) space, then i t  would correspond to a vortex with- 
out a singularity. A lattice of vortices in (2,  t) space 
would correspond in ordinary (x ,  y) space to  a lattice of 
nonsingular vortices, which a r e  produced when ~e~ - A 

equations for some quantities that a r e  averaged over 
large space and time scales. These quantities a r e  the 
energy density, the superfluid flow density, and the 
instanton density. The topology of the trajectories in 
this dynamic system should indeed determine the be- 
havior of the liquid flow. This approach yields a rough 
description of the flow. The flow is characterized only 
by the temporal and spatial scales of the oscillations 
and by the size of the average flow. No account is tak- 
en here, naturally, of the fact that energy barr iers  of 
topological o r  hydrodynamic origin can exist between 
different states that a r e  close in energy and in the 
scales of the variation of 1. The presence of suffi- 
ciently strong mixing that makes i t  easy to overcome 
these barr iers  is assumed. 

This approach is equivalent to that used by vinen2-to 
investigate the vortical flow of HeII, where the varia- 
bles used were the superfluid velocity averaged over 
the vortices and the density of the vortices (the average 
vortex length per unit volume). 

rotates (see Ref. 8). The f i rs t  section deals with the instanton mechanism 

A similar instanton phase-slippage mechanism exists 
also in thin superconductors,s where the instanton is 
the counterpart of the Abrikosov vortex in two-dimen- 
sional space-time. The dissipative current regime in 
thin superconductors (or the resistive state) constitutes /!TI N b  
a lattice of such instantons. Numerical solutions for 
the dissipative current state with the instanton phase 20 

slippage Inechanism were obtained in the - A  Case FIG. 1. One of the possible distributions of the field 1 in a 
by Hook and  all," and for thin superconductors by cell  of the two-dimensional space-time periodic structure pro- 
~ v l e v  et d." duced in the course of liquid flow. 
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of phase slippage and with the derivation of the approxi- 
mate equations for the averaged quantities. In the 
second section a r e  investigated the trajectories of the 
obtained dynamic system. It is shown that in a certain 
range of model parameters the topology of the trajec- 
tories is such that both flow regimes a r e  stable. 
Therefore a transition between them occurs only if  the 
system is subjected to perturbations of a definite type, 
a s  is in fact observed in experiment.12 

1. DERIVATION OF THE PHENOMENOLOGICAL 
EQUATIONS 

We assume the normal component to be frozen-in, the 
liquid to be incompressible, and the texture to be one- 
dimensional, i. e., a l l  the variables depend on the sin- 
gle coordinate z along the flow. In this case the A- 
phase hydrodynamic equations take the form1' 

Here v, is the component of the velocity v, along z, and 
g is the z-component of the flow of the superfluid com- 
ponent. By virtue of the continuity equation, g is inde- 
pendent of the coordinates. 

The energy E is a function of 1 and of v,; 

~ E = ~ . v . ' - ~ o ( I v . )  '+2Cv, rot 1-2C,(Iv.) ( I  rot I )  
f K,(V1)'+K2(l  r 0 t l ) ~ + K ~ [ 1  Xrot I]', g = 6 ~ / 6 v . .  (3) 

The parameters K, C, C, p, and p, a r e  of the same 
order of magnitude accurate to K/m: 

K,-K2-K,-Chlm-C,h/m-p, ( f i lm)  ' - p ~ ( h / m ) ~ .  (4) 

Equation (1) describes the acceleration of us by the 
applied chemical-potential gradient and the deceleration 
of v ,  by the oscillations of the vector 1. 

The expression for n in (1) has a simple physical 
meaning. This is the density of the instanton charge. 
The instanton-charge quantum coincides with the cir- 
culation quantum of the superfluid velocity around a 
vortex without a singularity, and is equal to 21rK/rn. 
Integrating the equation for n over the region L1S occu- 
pied by one instanton (see Fig. I), we obtain in fact 
the instanton charge 

The density of the instanton charge is the counterpart 
of the vortex flux in the Vinen theory.2 It is the aver- 
aged value of this variable that will be used in the 
rough model. If to and zo a re  the time and space 
scales of the variation of the vector 1, then 

The variable n does not determine uniquely, however, 
the scales of the structure. It is therefore necessary 
to introduce one more variable, connected either with 
to or  with zo. This variable is the energy. 

We simplify the problem by putting the parameters 
po =Co = O  in the expression (3) for the energy. The 
energy of the A phase then becomes, just a s  for a ne- 

matic liquid crystal, 

€='/& (V1)2+'l,K2(l rot 1 )  Z+'I,K,[l  X rot ]IZ. 
With this choice of energy, the velocity 

is constant in space, and the energy of distortion of the 
field of the vector 1 is connected in the following man- 
ner with the spatial scale zo: 

E.-K/z;.  (8) 

The variables n, , and v,, averaged over scales that 
exceed the characteristic scales to and zo of the struc- 
ture, thus determine the size of the flow and the scales 
of the structure produced in this flow. Our task is to 
write down a system of ordinary differential equations 
for these large-scale variables. 

The equation for v, is obtained by averaging Eq. (I), 
i. e., by replacing a l l  the variables in this equation by 
their mean values. The quantity ap/az is either speci- 
fied, if the difference between the chemical potentials 
a t  the ends of the channel is maintained, or determined 
from this equation if the current is specified. In the 
latter case 

a p / a ~ = - n .  (9) 

The equation for c is obtained from (2) in the follow- 
ing manner: 

a a  a? a1 
-=-_=- 

dl fr 31 a~ 
d t  61 a t  ' (x)  +z'"" [ a ,  -'- a t ]  

The first  term in the right-hand side of this equation 
can be easily estimated by using (61, (81, and (4): 

As a result we have 

Here a1 > 0 is a numerical coefficient of the order of 
unity. This coefficient cannot be determined exactly; 
it must be regarded a s  a phenomenological parameter 
of the model. 

We call attention to form of the time derivative of the 
total energy: 

The second term in the right-hand side of (12) is the 
dissipation function 

and the f i rs t  term is the work of the external forces. 
Dissipation of the flow is due precisely to the instan- 
tons (there is no dissipation a t  n = 0); in exactly the 
same manner, dissipation in the Vinen model is due to 
the vortices. 

To find the equation for n, we consider the time der- 
ivative of the dissipative function: 
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The second term in the right-hand side of (14) is esti- 
mated with the aid of (7): 

16~/61-s. (15) 

The third term is of the order of 

In this estimate the coefficient iil need not necessarily 
coincide with a1 in (11). 

Finally, the f i rs t  term can be estimated by putting 
for simplicity c= $~(al/az)', and then 

Substituting (15), (16), and (17) in (14) we obtain the 
equation for n: 

Here Q > 0, 4 >O, a3 and Q a r e  phenomenological nu- 
merical parameters of the order of unity. 

We have thus obtained a closed system of equations 
(I!, ( l l) ,  and (18) for the large-scale variables v, t, 
and n. The system depends on five dimensionless pa- 
rameters, but effectively it depends only on four, since 
one of them can be set equal to unity by a gauge trans- 
formation. On the other hand i f  we consider flow with 
a specified current, then only three parameters remain. 
The equations with the current given a r e  written by 
changing to a system of units in which p, = Y = 1 : 

2. INVESTIGATION OF THE PHENOMENOLOGICAL 
EQUATIONS 

The trajectories of the dynamic system (191, (20) de- 
pend on the parameters al, cuz, and 0, of the model, 
and these depend in turn on the coefficients in the ex- 
pression (3) for the energy, and can consequently be 
functions of the temperature. The three-dimensional 
space of the parameters a, can be broken up into do- 
mains. The trajectories within each domain have a 
definite topology, which is the same for each point of 
this domain. When the temperature is changed, a 
transition from one parameter domain to another is 
possible, and this is accompanied by bifurcation, i. e., 
by a change of the topology of the trajectories. We 
clearly ascertain first  which stationary points of the 
equations exist and in which parameter domains they 
a r e  stable. 

At all  values of the parameters a, the equations have 
stationary points corresponding to stationary current 
states without dissipation, n = 0 and E = z0, where zo is 
arbitrary, i. e., there exists an entire line of such 
states. A state with co* 0 means flow with an inhomo- 
geneous field 1, for example a spiral structure (see 
Ref. 11). At a s <  0 an inhomogeneous current state 
with arbitrary zo is unstable. At a3 > 0 the inhomoge- 

neous states that a r e  stable a r e  those for which 
O<EO<CZ~U~~.  

Under the condition 

1+a1>az (21) 
the equations have a stationary point corresponding to 
a dissipative oscillatory flow regime: 

S= (i+aJ--az) u . ~ ,  n=su,. (22) 

The temporal and spatial scales of the oscillations in 
this regime a r e  

to-y/p.v.2, z0-hlmu.. (23) 

This flow regime is easily observed in experiment be- 
cause the vector 1 oscillates a t  a frequency of the or- 
der of t2.1 ''' These oscillations a r e  observed with the 
aid of ultrasound, the damping of which is sensitive to 
the orientation of the vector 1. The work expended by 
the external source to maintain this flow is 

R-yto-Z-p,2u.41r, (2 4) 

and the chemical-potential gradient, equal to the fric- 
tion force exerted by the normal component on the su- 
perfluid one via the instanton, is of the order of 

a p / a ~ - h / m t ~ ~ ~ - p . ~ . g / ~ .  (25) 

The cubic dependence of acc/az on v, is the same a s  in 
the Vinen theory.2 

The obtained dissipative structure is stable only un- 
der the condition 

a,+a,<2, (2 6) 

while under the condition 

4a, (l+as-az) > (2-a,-az)' (27) 

the stationary point is a stable focus, whereas for the 
inverse inequality i t  is a stable break. 

A uniform current state without dissipation (n= 0, E 
=o) is a complex saddle-node. To assess  the stability 
of this stationary point it is necessary to investigate 
Eqs. (19) and (20) in which the f i rs t  term of the right- 
hand side of (20) can be neglected compared with the 
fourth. Putting us= Y = p s = l  we have 

We set y =n/E and change over to the variables E and 
Y: 

a,- l~/ f=y( l -y) ,  (2 8) 
Y=Y ((a,-l)yZ+ (a,-a,) y-a,). (29) 

The trajectories of the dynamic system (28), (29) de- 
pend on the coefficients of the quadratic trinomial 

(aI- 1) ya+ (a2-a,) y-a3. (30) 

We consider directly the following range of parameters: 

a,>l, aJ>O. (31) 

In this case the stationary points of Eq. (29) a r e  y = O  
a s  well a s  y = yl and y = yz, which a r e  roots of the t r i -  
nomial (SO), with yl < 0 andy,>O. Of these three sta- 
tionary points, only y = O  is stable. Therefore a s  t-*, 
depending on the initial conditions, y tends either to 
*- o r  to zero. It follows from (28) that in this case E 
tends either to zero o r  to arbitrary z0, while n tends to 
zero independently of the initial conditions. Conse- 
quently, in the domain of the parameters (31) the homo- 
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FIG. 2. Behavior of the trajectories of the dynamic model in 
the case  when a homogeneous superfluid flow and a dissipative 
flow a r e  simultaneously stable. 

geneous current state is stable. 

In addition to the domain of the parameters (31) there 
a r e  also other stability regions of the homogeneous 
current state. We shall not consider them here. We 
call attention to the fact that the domain of parameters 
(31), in which the homogeneous current state is stable, 
and the domain of parameters (21) and (261, where the 
dissipative flow regime is stable, overlap. The b e  
havior in the overlap region, defined by the inequalities 
(211, (26), and (311, is shown in Fig. 2. We have chos- 
en here that part of the overlap region in which the con- 
dition (27) is also satisfied, i. e., the dissipative cur- 
rent state is a stable focus. 

It is seen that, depending on the initial conditions, 
the liquid flow becomes either uniformly superfluid o r  
dissipative. If the initial state of the flow is located in 
one of the shaded regions of Fig. 2, then the flow re- 
aches either the regime with n = O  and E = 0 ,  o r  the re- 
gime (22). On the other hand if the initial state lies 
outside the shaded regions, then the glow goes over into 
a nondissipative spiral structure (the segment 0 < 2 
< %c: on the abscissa axis). The diffusive motion of 
the system along this segment takes the flow out 
to one of the two regimes. If, however, the system is 
in one of these regimes, then a transition to the other 
regime is possible only via a special perturbation of the 
flow. It appears that i t  is this behavior of the flow 
which is observed in an experiment12 in which the trans- 
ition from a homogeneous current state into an oscil- 
latory regime is attained by using a definite scheme of 
turning the magnetic field on and off. 

There a r e  also other ranges of the parameters a, 
in which both regimes a r e  also stable. Therefore, to  
establish uniquely which topology of the trajectories 
corresponds to the real  situation, a more detailed 
comparison with the existing experiment is necessary, 
a s  well a s  a more detailed experimental investigation 
of the regimes of turning on the oscillatory state. 

Of particular interest is an experimental investiga- 
tion of the possible bifurcations that occur when the 
temperature o r  the external fields change, and the 
parameters a, change. We cite here only one example 
of what can happen when the parameters go outside 
the domain (21), (261, (31). We consider the case when 
only one of the conditions of (31) is violated, namely, 
let a, < 1, i. e., the homogeneous current state be- 

FIG. 3. Behavior of the trajectories in the case when the ho- 
mogeneous flow is unstable and the dissipative one is stable. 

comes unstable. Let the departure from the domain 
a,  > 1 occurs in the following ranges of parameters: 

a , + a , d ,  aJ>O, a,<l, 
4(1-ai)a3< (a,-a,): 

4ai(1+a3-a%)> (2-a,-a1)2. 

The behavior of the tr'ajectories in this case is shown 
in Fig. 3. If the initial state l ies in the unshaded re- 
gion, then the flow goes over immediately into the dis- 
sipative oscillatory regime. If, however, the flow is 
in the shaded region a t  the initial instant, then the flow 
goes over f i rs t  to the spiral  structure (the segment 
0 < E < a,) and then diffuses gradually to the ends of the 
segment and ultimately also goes over into the dissi- 
pative regime. This process should proceed much 
more slowly than the departure from the unshaded re- 
gion. Therefore the existence of such a topological 
trajectory structure may also be experimentally veri- 
fiable. 

In concljusion, the author thanks B. I. Ivlev, S. V. 
Iordanskii, N. B. Kopnin, and I. A .  Fomin for helpful 
discussions. 
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