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The temperature dependence of the magnetic susceptibility in a system in which charge- and spin-density 
waves coexist (excitonic ferromagnet) is investigated. The analysis is within the framework of the Landau two- 
parameter expansion of the free energy. The results of the present paper are therefore taken to be more 
general than the "excitonic" ferromagnetism model itself. It is shown that above the structural transition 
temperature T, the magnetic susceptibility x contains only a fluctuating component with a square-root 
singularity at T,. The susceptibility calculated in the mean-field approximation is equal to zero at T, and 
diverges in accordance with the Curie-Weiss law at Tc (the Curie temperature). The fluctuation contribution 
to x at Tc turns out again to be finite with a square-root singularity. A qualitative comparison is made of the 
calculation results with the results of magnetic measurements in ZrZn, and GaMo,S,. 

PACS numbers: 75.30.Cr, 75.50.Cc, 75.50.Dd 

1. INTRODUCTION is convenient to use a phenomenological approach. In 
this situation it is permissible to expand the free ener- 

We shall investigate the temperature dependence of gy in t e rms  of both order parameters A, and A,. The 
the magnetic susceptibility of a ferromagnet in which free-energy functional of an excitonic ferromagnet in 
the magnetic transition is connected with i t s  structural the absence of an external magnetic field is of the 
instability. We determine the collective-excitation form 
spectrum of such a ferromagnet. The entire analysis 
is within the framework of the Landau two-parameter B = dr(g . (VA. ) '  + a .A.2+i l zp .~ .4+p ,~ ,2A12+ g t ( ~ ~ , ) 2 + a L A ( L + ' l z ~ t A ~ } ,  

expansion of the free energy. The concrete micro- 
scopic model that leads to this functional is the previ- (1) 

where a,,, = a(T - T,,,); T ,  and T ,  a r e  the temperatures 
ously excitonic-ferromagnet scheme. of the structural and antiferromagnetic transitions with 

It is known that the singularities of the single-elec- their mutual influence neglected. 
tron spectrum can lead, when account is taken of the 
interactions between the electrons, to formation in the 
system of either a charge-density wave (CDW) and the 
ensuing structural distortions, or  a spin-density wave 
(SDW) (band antiferromagnetism). States other than 
those mentioned above a r e  also possible in 
The coexistence of CDS and SDW leads to ferromagnetic 
ordering of the band  electron^""^ (excitonic ferromag- 
net). A characteristic feature of the excitonic-ferro- 
magnet model is the presence of two phase transitions, 
'first a structural one (appearance of CDS):) and then, 
a t  lower temperature, a ferromagnetic one. Below the 
structural-transformation temperature there appears in - - 

the system a singlet order parameter A,, and at  the 
Curie point there appears a triplet order parameter 4. 
The coexistence of two order parameters A, and A, 
leads to ferromagnetic ordering, with the magnetic mo- 
ment proportional to A,&. 

The necessary presence of two parameters should 
cause the temperature dependence of the magnetic sus- 
ceptibility to be different from that in other models. 
The present paper is devoted to a clarification of this 
question. 

2. CALCULATION OF THE MAGNETIC 
SUSCEPTIBILITY 

It can be deduced from the microscopic theory that 
within the framework of the isotropic band scheme we 
have P,=P , = P I  and g,=g, =g (Ref. 6). These relations 
will henceforth be regarded a s  satisfied. As shown 
earlier,' in an external magnetic field H the expression 
for the f ree  energy acquires a term YA,4  H. It de- 
scribes the interaction of the magnetic moment in the 
system with the external field. We consider below the 
case when the structural-transition point lies above 
the Curie point (this is precisely the situation in the 
compound GaMo5S6, T,= 50 K, Tc = 19 K, which is 
apparently closest to the considered model). 

2. We proceed to calculate the susceptibility. We 
ascertain f i rs t  the behavior of x a t  T > T,. To find the 
fluctuating component of X we follow the method of the 
effective Hamiltonian in the region of Gaussian fluctu- 
ations? Above the temperature of the structural tran- 
sition, the f ree  energy is given by 

whereFo is the free energy in the mean-field approach. 

The susceptibility is defined within the framework of 
We investigate in this section the temperature depen- the self-consistent field framework a s  

dence of the magnetic susceptibility. At sufficiently 
high temperatures of the structural and the magnetic I a 2 ~ o  
transitions (this is the only case considered below) i t  xsc= - - - 9  V d H 2  
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where the order parameters A, and 4 in (5) satisfy the 
self-consistency equations 

The system (6) has a t  T > T,(T, > T,) only the trivial 
solution A, = A, = 0, so that accordingto (5) x,,= 0. Thus, 
the susceptibility a t  T > T, turns out to be zero in the 
mean-field approximation. 

w e  calculate now the fluctuation part of the suscepti- 
bility. Expanding the order parameters 77, and q, in 
Fourier series, we have 

The effective Hamiltonian (3) then takes the form 

Heff = z {(gkz+a.) Iq.r12 + (gk2+at) I ~ t r12 -yH(~ . rq t -~+qa-kq ,k )  1; (7) 
k 

He,, in (7) is diagonalized by the transformation 

where 

The fluctuation contribution to the free energy is de- 
fined by the relation 

where D is the Jacobian of the transition from the old 
variables qd and qtk to the new ones 17:k and and 

a,, , (k) -gk~+ll~(a.+at)~'l~(~-'+~'~)'". 

Carrying out a continual integration in (91, we get 

As a result we obtain the fluctuating susceptibility 
per unit volume 

We ultimately have 

It is seen from this expression that when T, is ap- 
proached from above the fluctuation susceptibility has 
a square-root growth, but remains finite a t  T,. The 
growth of xf, is due to the fact that the fluctuations of 
the singlet order parameters increase near the tem- 
perature of the structural transition. This fluctua- 
tion by itself does not lead to an increase of xfl, since 
the parameter A, is not conjugate to the field H. It is 
the connection between the fluctuations of A, and the 
fluctuations of A ,  (A, is conjugate to the field H), how- 
ever, which lead to the increase of xfr .  

It if of interest to estimate the restrictions on the 
coefficients of the free-energy functional in (1) that 

make the contribution from the unaccounted-for terms 
of fourth order in A, and 4 small. We obtain the esti- 
mate by perturbation theory. 

We have the following correction to the free energy: 

~ F = V  {J exp (- %) {$ c (q.k.q,.q.k,q., 
k,+k,+k,+k.=o 

It is convenient to use in the calculations the formula 

and put in the final formulas bi  = O .  We proceed analo- 
gously also with the other terms of (14). After some 
calculations we obtain the susceptibility correction ob- 
tained above in the Gaussian approximation: 

The requirement that 6 ~ , ,  be small compared with 
XI, (6xfl << xf1) yields 

i. e., the temperatures T, and T, must note be too 
close. We shall use hereafter the Landau expansion in 
A, and 4 also below the Curie point, so that we must 
stipulate (T, - T,)/T,<< 1. This calls for satisfaction of 
the following condition: 

fiz"T.l(I6n) 2g3a<1.  (1 8) 
We call attention to the fact that a t  P2 > 0 the correction 
6xf, is diamagnetic. The reason is that a t  P2 > 0 the 
Curie point, a t  which the parameter 4 ar ises  and with 
i t  the ferromagnetism, is shifted by the structural 
transition towards lower temperatures6 Tc > T,. 
Therefore the fluctuations of the triplet order param- 
eter a re  somewhat suppressed by their interaction with 
the fluctuations of A, (this interaction is described by 
the term p 2 ~ ; b 2 ) .  At P2 < 0 the Curie temperature Tc 
in the presence of CDW is higher than T,, i. e., the 
fluctuations of A, and A, enhance rather than suppress 
each other. At Bz < 0 the correction AXrl has therefore 
the same sign a s  Xf, . 

We proceed now to calculate the susceptibility in the 
temperature interval Tc < T < T,. We obtain first  the 
susceptibility in the mean-field approach. To this end 
we must calculate the following integral by the saddle- 
point method: 

exp(-F/T) = Sexp{-F(i l , ,  A,, H)/T}. (1 9) 

Calculating the integral (19) by the saddle-point method 
near the equilibrium values of A, and 4 in an external 
field, we get 

exp ( - 9 / T )  = esp ( -F , lT)  exp (-H,,/T) d{q.)d{q,), (2 0) 

where the contribution to the free energy is, within the 
mean-field framework, 
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with A, and A,  in (20) satisfying the following self- 
consistency equations that determine the saddle point 
from the order parameters A, and 4: 

Taking (20) and (21) into account, we obtain the mag- 
netic susceptibility in the self-consistent-field approxi- 
mation: 

Recognizing that ad2 = 1 a,\ /PI, we get 

and the Curie temperature is defined by the condition 

It is seen from (24) that xs, vanishes a t  T =  T,. This 
is easily understood if it is recognized that a t  Tc < T 
< T, the system feels the magnetic field to the extent 
that A, and 4 differ simultaneously from zero, and the 
triplet order parameter appears in the system only be- 
cause it is induced by the field against the background 
of A,. At A,=O the triplet order parameter therefore 
vanishes, and with it also the susceptibility Xsc. At 
the Curie point, xsc diverges in accord with the Curie- 
Weiss law. We note that the Curie-Weiss behavior of 
the susceptibility appears only below the structural- 
transition temperature. It is precisely this behavior 
that is observed experimentally8 in the compound 
GaMeS, . 

We obtain now the fluctuation correction to the sus- 
ceptibility Xs,. To this end we must calculate the inte- 
gral in (20), which contains the following effective Ham- 
iltonian: 

where A, and 4 in H,, satisfy Eqs. (22) that define the 
saddle point with respect to A, and A, in an external 
field. The quantities qs  and qt in (26) a r e  the devia- 
tions from the mean values of the order parameters A, 
and 4. After calculating the integral in (20) we obtain 
the fluctuation contribution to the free energy, and by 
differentiating twice we then obtain 

We note that when the fluctuation increment to the 
free energy is differentiated with respect to H the de- 
pendence of A, and 4 on the field need not be taken 
into account, inasmuch a s  in the Gaussian approxima- 
tion this would be an exaggeration of the accuracy of 
the calculation of the fluctuation corrections. We ulti- 
mately have 

B g - B .  )"I-'. (28) T ~ '  [ ( z ( T , - T ) ) ' &  + ( T - T ~ ) %  (- 
X f l  = iGn (g'a) 'I' P I  

At the structural transition point, the total susceptibi- 
lity is a continuous function of the temperature. How- 
ever, a s  follows from (13), (24), (25), and (38), a t  T 
= T, the susceptibility has a break. At the Curie tem- 

perature, xfZ is also finite, therefore near Tc the sus- 
ceptibility obtained in the mean-field approximation al- 
ways exceeds Xfr .  Near the structural transition, 
owing to the vanishing of xsc, this is no longer the case. 

We determine now the criteria for the smallness of 
the corrections to the susceptibility Xsc near T,. The 
condition 

xfl >>xfl (29) 
yields, with allowance for (24) and (38), 

In the region where the Landau expansion is valid, we 
have the inequality derived by Levanyuk and ~ i n z b u r ~ ' :  

T.B,"lgSa<l. (31) 

Thus, a s  follows from (30), the fluctuation correc- 
tions to the susceptibility a r e  small if the temperature 
is not too close to T,. We call attention also to one 
circumstance. In the scheme were the order param- 
eter is the magnetization M and the expansion of the 
free energy takes the f o r m F =  &M'- MH (at T > T,), 
it is easy to verify that the fluctuation component of the 
susceptibility is zero in the Gaussian approximation. 
The self-consistent part is not equal to zero and X,, -I/ 
(T - Tc). 

4. We proceed now to calculate the susceptibility at  
T < T, . After calculating the integral in (19) by the 
saddle-point method we obtain 

esp ( - F I T )  =exp ( - S O I T )  5 exp ( - I f , f r l T ) d { q . ) d { q , ) ,  (32) 

where 

The saddle point with respect to A, and 4 is deter- 
mined by the self-consistency conditions 

We assume here that H II A,. In this case i t  is more 
convenient to determine the susceptibility from the 
relation 

~ s c = B M l d H ,  (35) 

where M = yA, 4. In weak fields we have 

Differentiating the self-consistency equations (34) with 
respect to H, we obtain d ~ , / d H  and d 4 / d H .  Substi- 
tuting the result in (36) we have 

The equilibrium values of the order parameter in the 
absence of a field and a t  T < Tc a r e  given by 

Aaoa= I a. 1 /B1-$~Ato'lB~. 

At:= ( 1  a' 1 P I -  la. 1 B~)/(BI"-BI~).  

with A , ~ ~  -(Tc - T), near the Curie point, while A:, has 
a t  T = T, a finite nonzero value. 

Separating the divergent part of X s,, we have 
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i. e., Xsc diverges in accord with the Curie-Weiss law. 
We note that xsc > 0 a t  Pi > P2 @I is always positive). 
It is precisely this condition which is necessary for  the 
expansion of the free energy in (1) to be valid. At P1 
=Pz i t  is necessary to  retain in (1) the terms of next 
order in A, and A,. From a comparison (24) and (40) 
i t  follows that the "rule of two" for the susceptibility, 
which holds within the framework of the functional 9 
= CYM' +&PM4 - MH, is valid here, too. 

We stipulate one circumstance. Strictly speaking, 
below T, we can in principle express the free energy 
in terms of the magnetization M = Y A s 4  but in this form 
the expression for the free energy is more complicated 
and less convenient for the calculations. In addition, 
the coefficients of such a functional (if T, and Tc a r e  
close) a r e  irregular functions of the temperature. 
Above T ,  on the other hand, the free-energy functional 
can in principle not be expressed in terms of the mag- 
netization parameter. Therefore the expression for the 
free energy would take a different form above and below 
T,. On the other hand, the free-energy functional in 
the form (1) is valid in the entire temperature interval 
of interest to us. In essence i t  is precisely this fact 
which is kept in mind when it is stated that the magnet- 
ization is not a true order parameter. 

To determine the fluctuation correction to the sus- 
ceptibility i t  is necessary to calculate the integral in 
(32) with the following effective Hamiltonian: 

As already mentioned, the dependence of the equili- 
brium values on A, and 4 on the field need not be taken 
into account in H,,. Taking into account the self-con- 
sistency equations a t  H = 0 

H,, takes the form 

(431 
where 2&,,, = ~ P ~ A : , , ~ .  AS a result we obtain the fluc- 
tuation correction to the susceptibility 

we have introduced here the notation 

a,={a.+at~[(a.+af)2-4~22A.o%toZl'~)'h, 
A= (&,+~t)"4Bt'Aro~Am' - 

We note that the condition PI > P2 again ensures that is 
real. The second term of (44) vanishes a t  T =  Tc; a t  
the Curie point we have 

the fluctuation component is thus finite and continuous 
a t  the Curie point. The continuity follows from (28) 
and (45) .2' 

FIG. 1. Temperature dependence of the magnetic susceptibil- 
ity. 

of the magnetic susceptibility X is shown in Fig. 1. 
The total susceptibility is shown by the solid line. The 
dash-dot line shows the susceptibility in the self-con- 
sistent field approximation, and the dashed line shows 
the fluctuation component. 

We note here that a t  the structural-transition point 
the susceptibility has a break. 

3. COLLECTIVE-EXCITATION SPECTRUM 

1. We consider now the collective excitations in an 
excitonic ferromagnet. In fact, i t  is the fluctuations 
of these mode which contribute to the fluctuation sus- 
ceptibility. We calculate first  the collective-excitation 
spectrum below the Curie point. At T < Tc the magnetic 
moment can oscillate with constant amplitude. Such a 
motion is described by the Bloch equations1° 

a ~ / a t = [ ~ x ~ ] .  (46) 

We determine the value of D by a known method.'' This 
calls for finding the change of the free energy following 
a small change of the order parameters: 

6 S = -  J H,GA.dr- j H ~ A ,  dr. (47) 

At large wavelengths and low temperatures, the energy 
dissipation in collective motions with conservation of 
the magnetic moment is small and can be neglected. 

The energy dissipation a s  the magnetization varies 
with time is given by 

where S is the entropy of the system. Recognizing that 
M= yASAt and using (46)- (48) we get 

The condition aS/a2 = 0 that there be no dissipation 
leads to the relations 

- 
a ~ , / a t - 0 ,  Q=const H?. (50) 

To determine the effective field H2 we calculate the 
variation of the free energy (1) with respect to At and, 
omitting terms parallel to A, in Hz (since they drop out 
of the equation (46) on account of the vector product 
with A,), we get 

H2=2gVZA,+yAaH. (51) 

Taking (46) and (49)-(51) into account we have 

The qualitative form of the temperature dependence 
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If account is taken of only exchange interactions that 
a r e  independent of the direction of the na gnetic mo- 
ment, the equation of motion (52) for a uniformly mag- 
netized body should reduce to the equation of motion of 
a freely precessing moment1': 

a M  lel -= - [ H x M ] .  
a t  mc 

F rom a comparison of relations (52) (at V ~ A ,  = 0) and 
(53) we obtain the constant coefficient in (53): 

here A, is the equilibrium value of the singlet order 
parameter. The final equation of motion (at .H = 0) 
takes the form 

aAt 21elg --- [ VaArx A t ] .  
a t  mcyb., 

We seek the solution of (55) in the form A, 
+ meihn-~t)  (with ( m I << 4' and 40 I 1  2). We obtain 

21elgAlo iwm. = - k2m,, 
mcy6.0 

21elgAmkkm, iom, =- - 
mcy A,o 

The condition for the existence of a solution of (56) de- 
termines the magnon spectrum: we have 

The magnon spectrum turns out to be quadratic in the 
momentum, just a s  in an ordinary ferromagnet:' The 
magnetization rotates in this case in the (x,  y )  plane. 
We note that the temperature dependence of the frequen- 
cy is given by 

[since A, -(T,- T)"~, ko -(Tc - T)"], whereas in an 
ordinary ferromagnet w - (Tc - T)"~. At the given col- 
lective motion, no changes take place in the singlet 
order parameter, i. e., there is no change in the elec- 
tron density and hence in the lattice deformation. 

2. We determine now the spectrum of the collective 
modes that lead to changes of the electron density and 
of the magnetic m ~ m e n t . ~ '  When calculating the spec- 
trum of the collective motion i t  is necessary to solve 
the equations for the order parameter, with the free- 
energy functional serving a s  the potential energy, In the 
case of small deviations of the order parameter from 
the equilibrium values it suffices to use the expansion 
of the free energy a t  the extremum point, accurate to 
the quadratic terms. 

Taking (1) into account, we have the equations of 
motion for the moduli of the order parameters (more 
accurately, for deviations from the equilibrium values 
a t  T < Tc): 

Here V is the volume of the system, ~ , ( k )  and M, a r e  
certain effective masses, and Ad and a r e  the equi- 
librium values of the order parameters from (38) and 
(39). 

We make one remark concerning the masses M,(k) 
and M,. The mass M is in fact the mass of the triplet 
exciton. The situation with the mass M,(k) is more 
complicated. Since the dispersion curve of the spec- 
trum of the excitations of the singlet exciton crosses 
the optical-phonon branch, entanglement of the spec- 
trum of the excitations of the singlet exciton and of the 
phonon of the unstable mode take place. As  a result 
static distortions (u) of the lattice arise1' in proportion 
to A, ((u) -?,,,,A, (u) is the static deformation of the 
lattice, and g,,,, is the electron-phonon interaction con- 
stant). The term crossings cause also the effective 
mass M,Q to become dependent on k. If, for example, 
the decay of the phonon mode occurs a t  k =  0, then 
M,(k) a t  small k becomes approximately equal to the 
mass of the singlet exciton, and a t  large k (on the or- 
der of the reciprocal-lattice vector) M,(k) almost coin- 
cides with the ion mass. Since we a r e  interested in 
small k, we put henceforth M,(k) M, (M, is the mass 
of the singlet exciton)?' 

From the system (58) we obtain the spectrum of the 
collective-mode excitations: 

here 1 / ~ +  = l/M, + l/M,. The condition 01 > & discus- 
sed above ensures that the frequencies of the collective 
excitations a r e  real. 

At temperatures Tc < T < T, we have 

w, (k) =2V1' (--- 

Finally, a t  T > T and T > Tc we get 

a(T-T.) gka 
(k) =v'I, (T + -)"' 

s 21M. ' 

.,(k) =v'!2(a(:Ti) 
2Mc 

To obtain the excitation spectrum in the temperature 
intervals T > Ts,c and Tc < T < T, we must solve equa- 
tions similar to (58), where the potential energy is re- 
placed by the expansion of the free energy in the cor- 
responding temperature regions. 

Thus, there a r e  two more longitudinal collective- 
excitation modes. One of them, w,(k) (at T > Tc) has 
the meaning of the excitation energy of the singlet ex- 
citon, i. e. , of the oscillation of the electron density. 
Connected with the oscillations of the electron density 
a r e  the oscillations of the phonon subsystem, since 
(u) -gih~s-w,.  The frequency w(k) pertains (at T > Tc) 
to the excitation spectrum of the triplet exciton, i. e. ,  
to the oscillations of the electron spin (this is not ac- 
companied by lattice deformation). Below the Curie 
point, the changes of the electron subsystems (and the 
associated lattice vibrations) and the oscillations of 
the magnetization turn out to be related. The connec- 
tion between the phonon and magnetic subsystems do not 
have a relativistic small quantity in this model. We 
note also that the triplet order parameter A, is a vec- 
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FIG. 2. Temperature dependences of the collective excitation 
frequencies: a) p2 > 0, b) P2 < 0. 

tor spin quantity, so  that three oscillations modes a r e  
possible with different orientations of the spin of the 
triplet exciton. 

Figure 2 shows the temperature dependences of the 
frequencies of the collective modes at k=O for the 
cases P2 > 0 and P2 < 0. Curves 1 and 2 at T > Tc per- 
tain to the excitation spectrum of the singlet and triplet 
excitons, respectively. A t  T < Tc,  as already men- 
tioned there are two coupled electron-magnon (phonon- 
magnon) modes. The excitation spectrum, as seen 
from Fig. 2, becomes acoustic only at the point of the 
structural transition, and for the triplet exciton at the 
Curie point. A t  the temperatures of the structural and 

ferromagnetic transitions the temperature dependences 
of the collective modes have breaks. The dashed lines 

show the plots of the frequencies for the independent 
excitation modes of the singlet and triplet excitons. 

4. DISCUSSION OF THE RESULTS 

We now compare qualitatively our results  with the 
experimental data. The closest to the considered mod- 
el  are the compounds Z ~ Z Q  and GaM%S8. Dublon and 

Weger'3 discuss in their paper the experimental data 
obtained for ZrZl* in the paramagnetic region. They 

conclude from the measurements of the sound velocity, 
of the electric resistance,14 and NMR15 that CDW (i. e., 
structural transitions) a r e  produced in ZrZm at -50 K. 
A t  Tc =28 K (Ref. 15), ZrZm becomes a ferromagnet 
with band type ferromagnetism and with a small  spon- 
taneous moment, -0.2 Bohr magneton per cell. It ap- 

pears that this compound is an example of an  excitonic 
ferromagnet. 

It follows from the measurement of the spectra of the 
NMFt at the 91Zr nuclei (Ref. 15) that a strong broaden- 
ing of the NMR lines takes place at -50 K. On the other 

hand the NMR frequency shift (the change of the effec- 
tive field at the nucleus) occurs below 50 K. Accord- 

ing to the excitonic ferromagnetism model, the NMR 
line broadening at T > T, can be explained in the follow- 
ing manner. The growth of the fluctuations of the mag- 

netic moment at the nucleus is proportional to (M2)'" 

- xd. The singularity of the fluctuation susceptibility 
at T - T, should lead to a strong broadening of the NMR 
line. In this model, a nonzero average magnetic mo- 
ment at the nucleus (it is this moment which deter- 
mines the MMR frequency shift) occurs only below T, 
and is proportional to M, - x H, therefore a change 
of the NMR frequency should take place only below T, 
in qualitative agreement with the experimental data. 

Measurements of the magnetic susceptibility of 
GaMo5S8, performed by Alekseevskii's group,8 show 
that the magnetic susceptibility has a kink at the struc- 
tural  transition point T, and a Curie-Weiss behavior 
appears only below T,. These data are also in quali- 
tative agreement with the results  obtained for the re-  
ported model. 

')TO be specific, we consider the case when the temperature 
at which the CDW occur is higher than that of the onset of the 
SDW, although the converse can also take place. 

d~ctual ly ,  the expressions obtained for x,, in the Gaussian 
approximation are, of course, not valid in a narrow region 
near T, and T,. It appears, however, that the qualitative 
shapes of the curves remains the same also in this region, 
therefore the plots of xf ,  are shown in Fig. 1 to be continuous 
in T, and Tc. 

$within the framework of the microscopic scheme, the spec- 
trum of the collective excitations in an excitonic ferromag- 
net was considered by Fetisov and ~hmelinin." 

01n Ref. 11 no account was taken of the coupling of the phonon 
and exciton subsystems. 

'B. A. Volkov and Yu. V. Kopaev, Pis'mz Zh. Eksp. Teor. Fiz. 
19, 168 (1974) [JETP Lett. 19, 104 (1974)l. 

2 ~ .  I. Halperin and T. M. Rice, Sol. St. Phys. 21, 115 (1968). 
3 ~ .  A. Volkov and Yu. V. Kopaev, Pis'ma Zh. Eksp. Teor. Fiz. 

27, 10 (1978) [JETP Lett. 27, 7 (1978)l. 
'B. A. Volkov, Yu. V. Kopaev, and A. I. Rusinov, Zh. Eksp. 

Teor. Fiz. 68, 1899 (1975) [Sov. Phys. JETP 41, 952 (1975)l. 
'B. A. Volkov, A. I. Rusinov, and R. Kh. Timerov, Zh. Eksp. 

Teor. Fiz. 70, 1130 (1976) [Sov. Phys. JETP 43, 589 (1976)l. 
6 ~ .  A. Volkov, Trudy FIAN 104, 3 (1978). 
?L. D. Landau and E. M. Lifshitz, Statisticheskaya Fizika 

(Statistical Physics), Part 1, Nauka, 1976, Ch. XIV [Perga- 
monl . 

'N. E. ~ leksee~ski? ,  N. M. ~obrovol'ski~. V. I. Tsebro, and 
V. F. Shamrai, Pis'ma Zh. Eksp. Teor. Fiz. 24, 417 (1976) 
[JETP Lett. 24, 382 (1976)l. 

'A. P. Levanyuk, Zh. Eksp. Teor. Fiz. 36, 810 (1959) [Sov. 
Phys. JETP 9, 571 (1959)l. V. L. Ginzburg, Fiz. Tverd. 
Tela (Leningrad) 2, 2031 ($960) [Sov. Phys. Solid State 2, 
1824 (1960)). i 

'OE. M. Lifshitz and L. I. Pita$vskii, Statisticheskaya fizika 
(Statistical Physics), Part 2, Nauka, 1978, Chap. VII. 

"E. P. Fetisov and A. B. Khmelinin, Zh. Eksp. Teor. Fiz. 74, 
1405 (1978) [Sov. Phys. JETP 47, 736 (1978)l. 

I2yu. V. Kopaev, Trudy FIAN 86, 3 (1975). 
Dublon and M. J .  Weger, J. Phys. F: Met. Phys. 6, 4249 

(1976). 
14sh. Ogawa, J. Phys. Soc. Jpn. 40, 1007 (1976). 
1 5 ~ .  Kontani, T. Hioki, and V. Masuda, J. Phys. Soc. Jpn. 39, 

665 (1975). 

Translated by J. G. Adashko 

155 Sov. Phys. JETP 52(1), July 1980 Vol kov et a/. 155 


