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We consider the refraction of sound incident from a liquid on a rough surface of an isotropic solid. At 
incidence angles corresponding to excitation of Rayleigh surface waves, the transmission coeficient has a 
sharp maximum due to scattering of the Rayleigh waves into volume waves by the surfaces of the 
roughnesses. The shape of the maximum is investigated as a function of the sound impedances of the medii 
and of the roughness parameters. 

PACS numbers: 43.35.Pt, 43.20.Fn, 68.45. - v, 68.25. + j 

1. INTRODUCTION a ry  and no volume waves can propagate in the solid, 
the coefficient of reflection from an ideal surface be- 

Observation of ultrasound reflected by the surface of comes equal to unity. This statement is valid in par- 
a solid is a convenient method of investigating the sur- 

ticular also for an incidence angle corresponding to ex- 
face itself.' Our preceding paper: a s  well as  Rollin's 

citation of surface Rayleigh waves. This angle is  deter- 
experiment,' dealt with the influence of surface rough- mined from the condition that tangential component of the 
ness on a sound wave reflected at an angle equal to the wave vector be continuous : 
incidence angle. It turns out that the plot of the reflec- 
ted  coefficient against the incidence angle has a sharp k= ( o l e )  sin ~ = o / c ~ ,  (2) 
minimum due to excitation of Rayleigh surface waves. 

and the spectrum of the Rayleigh waves, i.e., their 
The depth and width of the minimum a r e  quite sensitive 

velocity c, is  obtained from the condition 
t o  the state of the solid surface. 

A ( k )  =O. 
In this paper we investigate the influence of the (3 

roughnesses on a transmitted wave. We shall see that However, a Rayleigh wave can be scattered on a 
under certain conditions a wave incident from a liquid rough surface into a volume longitudinal o r  transverse 
on the surface of a solid can pass through (with a coef- wave with conservation of the frequency, but with a 
ficient of the order of unity), because of the surface change of the tangential component of the wave vector. 
roughnesses. The mechanism of the anomalous passage This change of k is determined by the characteristic 
consists in the following. period d-' of the roughness, usually called the correla- 

It i s  known that the passage of a sound wave through 
a flat liquid-solid interface is possible only in the sub- 
critical region of the incidence angles. The transmis- 
sion coefficients of the longitudinal ( D l )  and transverse 
(D,) waves a re  given in this case by the expressions: 

(1) 
where 

A ( k )  =(k ,2-k2)2+4kzk ,kL,  y ( k )  =pk,/ ip,k, ,  

k , , ,=(02/ea , , , -kz) '" ,  k,= (02/c2-k2) '" ,  

w is the sound frequency, k i s  the wave-vector compo- 
nent parallel to the surface; c,, c,, and c a r e  the 
velocities of the transverse sound and of the longitudinal 

tion radius o r  the scale dimension. Scattering of a 
Rayleigh wave into a volume wave becomes possible if 
the characteristic momentum transfer d-' exceeds the 
"gap" w/c, - w/c,. The scattering probability, and 
consequently also the transmission coefficient, of 
sound incident at a Rayleigh angle (2) is determined by 
the size of the roughness. If the mean square of the 
roughness is designated a', then the magnitude of the 
relative roughness should be taken to be ak. It is re -  
markable, a s  will be shown below, that the transmission 
coefficient reaches a value of the order of unity a t  
relatively small roughnesses (ak)' -y if d-' - k. The 
reason is that in the case of a flat surface the virtual 
Rayleigh pole [see ( I ) ]  is located at a close distance y ,  
and even a small roughness is  sufficient to make this 
pole real. 

sound in the solid and in the liquid: p and pso, a re  the We note that Zinov'era4 has reported observation of 
densities of the liquid and solid. maximum absorption of sound incident at a Rayleigh 

angle. The appearance of a maximum is attributed in 
In the subcritical region, the transmission coeffic- 

Ref. 4 to the absorption mechanism proposed by ients ('1 are to the extent that the ratio Y-PC/P#, Andreev,l which takes the electron viscosity into ac- 
of the sound impedances of the liquid and solid is small. 
Calculation, by Adamenko and ~ u k s , '  of the allowance count. 

for the roughness, under the assumption that only longi- 
tudinal waves can propagate in the solid, does not 

2. ENERGY DENSITY IN THE TRANSMITTED 

change this estimate. 
WAVE 

We a r e  interested in the normal component of the flux 
In the transcritical region, when k, and kt a r e  imagin- density of the sound energy 
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where u, a r e  the displacement components, u,, is the 
s t ra in  tensor,  and the dots denote the derivative with 
respect  to time. 

We choose the coordinate axes in the following man- 
ner:  x is directed along the normal to the surface and 
s is a two-dimensional vector in the plane of the sur -  
face. Since the frequency i s  preserved in scattering by 
roughnesses, we can confine ourselves to a monochro- 
matic wave, which we expand in a Fourier  integral with 
respect  to s. The dependence of the displacement on x 
is determined by the elasticity-theory equations, whose 
solution we write in the form 

u, (zk) =el (yk) A, (k) exp (ik,z) . (5) 

For the case  of a solid, the summation in (5) is over two 
transverse (A,,, A,*) and one longitudinal ( A , )  polariza- 
tions, while for  the liquid in (5) there a r e  two t e rms  the 
reflected (A,) and incident (A,,) waves; k, was defined in 
the sequel to Eq. (I) ,  and the polarization vectors 
e(yk) a r e  given in a preceding paper.2 

The transmission and reflection amplitudes a r e  ob- 
tained from the boundary conditions that must be sat is-  
fied on the rough liquid-solid interface. We write the 
equation of this boundary in the form 

As noted in the Introduction, the most interesting case  
is  when the roughness is small  compared with the sound 
wavelength. Since the boundary conditions contain the 
surface-normal vector, defined by the derivaties of 
[(s) with respect  to s ,  we assume them also to be small ,  
with an aim a t  using the small-perturbation method. 

Expanding the boundary conditions in powers of [ and 
confining ourselves to f irst-order t e rms  we write them 
in the form (see Ref. 2) 

The subscript i, which takes on four values, numbers 
the equations (6), the f i r s t  being the continuity condition 
of the normal components of the displacement, and the 
three remaining the continuity condition of the surface 
forces: [(k) is the Fourier  component of the random 
function [(s); the matrices H and V were given earlier.' 

Substituting the displacements (5) and (4) and averag- 
ing over the coordinate s in the large interval S, the 
value of which does not enter in the final result ,  we ob- 
tain the energy flux density in the solid 

where T is a matrix bilinear in the polarization vectors, 
and the exponential factor limits the integration of the 
vectors of the transmitted waves to the subcritical r e -  
gion, in which g,,, a r e  rea l  (the contribution of the 
transcritical region attenuates a t  large differences from 
the surfaces). We note that (7) contains t e rms  that a r e  
not diagonal in the two transverse polarizations. 

FIG. 1. 

3. AVERAGING OVER THE ROUGHNESSES 

To determine the transmission coefficient, we connect 
the amplitudes of the transmitted waves with the ampli- 
tudes of the incident wave, using the boundary conditions 
(6), which a r e  integral equations. We solve them by 
iteration with respect  to [. 

We a r e  interested in the case  when a wave vector of 
the incident wave l ies  in the vicinity of the Rayleigh 
pole, and the transmitted vector lies in the subcritical 
region. Such transitions occur a t  any r a t e  in f i r s t  order 
in ((k-q). The transmission coefficient, however, does 
not have a f irst-order t e rm,  since we assume that su r -  
face to be plane in the mean, and this reduces to the 
condition ( t )  = 0. 

The principal second-order te rm is shown in Fig. la .  
The dashed line shows the Fourier  component of the cor-  
re la tor  w(s - s f )  =(5(s)[(s1)). The solid lines correspond 
to the matrices H;:, the vert ices to V,,, and the stubbed 
ends correspond to the factors H,,&. On the solid 
line terminating in Ad, a11 the quantities a r e  complex 
conjugate. Summation is carried out over the matrix 
indices and integration over the internal momentum. 

The diagram shown in Fig. l a  makes a substantial 
contribution if the wave vector k of the incident wave 
sat isf ies the condition (2) for excitation of the Rayleigh 
wave; In this case the inverse matrix H-'(k) has a de- 
nominator proportional to the denominator of expres- 
sion (1), and i s  smal l  because ~ ( k )  = O  and the corres-  
ponding value is 

The roughness influence due to Vi0 in the right-hand 
side of (6), and also to the emission from (6) of second- 
order  t e rms  in [, is smal l  compared with the diagram 
of Fig. l a ,  since they do not contain the small  denomina- 
t o r  of the matrix H-'(k). 

As is  customary in problems of this kind, the t e rms  
of higher order  in 5 contain additional factors H-'. 
This makes i t  necessary, in particular to replace the 
f r ee  Green's function H-' by the complete functions 
(with allowance for the roughnesses): 

The influence of the roughness is most substantial 
near the Rayleigh pole and the matrix%-' can be rep- 
resented in the form 

where the minors h do not depend on 5 ,  

(2n) ' A (q) + iyo4c,-* 
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and the function f i s  given in the preceding paper.2 

For a flat monochromatic incidence wave with wave 
vector k, = k,, k, =k Fig. l a  corresponds to the following 
transmission coefficient: 

where 

and in the normalization used by us the energy flux in the 
incident wave is Q: =pw2kl b, 12/2. 

Using the explicit forms of the employed matrices, 
we obtain 

where the summation i s  over the longitudinal and trans- 
verse polarizations, and the integration over the cor- 
responding subcritical regions, 

We note that kt and k, a r e  imaginary in the vicinity of 
the Rayleigh angle of interest to us, q, and q, a r e  real  
in the term for the longitudinal scattered wave while 
q, is real  and q, can be either real  o r  imaginary in the 
term for the transverse wave. 

In addition to replacement of the free Green's func- 
tion by the total functions, it is necessary to sum all  
the diagrams of the ladder type, analogous to that 
shown in Fig. lb. This summation is effected by the 
equation 

y, t (k)  - H i o  ( k )  Hjo' ( k )  

+ J$~ w(k - -q )  v..(kq) ~ , , . ( k q ) % ~ ~ - ' ( q ) % ; i ~  (q )  Ymn(q ) .  (1 1) 

The total transmission coefficient is determined by 
formula (9) in which Hi& must be replaced by the 
matrix Y,,(k), followed by integration with respect to k. 

4. DISCUSSION OF RESULT 

The transmission coefficient (10) has a sharp maxi- 
mum if the incident wave propagates at an angle cor- 
responding to the condition of excitation of Rayleigh 
waves ~ ( k )  =O. The depth of the maximum is deter- 
mined by the relation between the roughness and the 
ratio y of the acoustic impedances. The roughness is  
taken into account in (10) both in the denominator via 
7 ,  and in the numerator. Let us estimate the magnitude 
of the numerator. 

Figure 2 shows the plane of the vectors q of the re-  

FIG. 2. 

fracted waves. The circles of radius w/c, and w/c, 
show the regions corresponding to propagation of volume 
waves in the solid. Rayleigh waves correspond to the 
dashed circle. The circle of radius d'l shows the region 
where the Fourier component of the roughness correla- 
tor w(s - s t )  differs from zero. The value of w(s - s f )  
a t  s =sf will be denoted a2 ,  where a has the meaning of 
the average height of the roughness. 

Let the wave vector of the incident wave correspond 
to a maximum of the transmission coefficient. Then the 
center of the circle of radius d-I lies on the Rayleigh 
circle. If d-' is smaller than the gap w/c, - w/c, 
separating the surface and the volume oscillations, then 
the transmission coefficient vanishes-the roughness is 
too gently sloping for the Rayleigh wave to be able to be 
scattered into the subcritical region. 

If the overlap 0 =d-' - (w/c, - w/c,) of the circles with 
radii  d" and w/c, is small, then the excited Rayleigh 
waves is  scattered into a transverse volume wave pro- 
pagating mainly in the same direction a s  the initial 
Rayleigh wave. Estimating the integral with respect to 
q, we obtain 

With further increase of P there appear also longi- 
tudinal volume waves, and for a maximally diffuse su r -  
face, when d-' 2 w/c,, we obtain 

In the region where the estimate (13) we have p -7 

(see formula (20) of Ref. 2). Therefore the transmis- 
sion coefficient (10) a s  a function of the propagation di- 
rection of the incident wave has a sharp maximum with 
height of the order of 

and with angle width 

It is seen therefore that the maximum value of the 
transmission coefficient turns out to be of the order of 
unity at relatively small  roughnesses when 7 - y. Since 
the width of this maximum is proportional to y, the con- 
tribution of the Rayleigh maximum to the transmission 
coefficient integrated over the incidence angle, for the 
case of isotropic incident radiation, turns out to be of 
the same order y ~ 2 / <  a s  the contribution of the sub- 
critical region; the factor c2/c? is the measure of the 
solid angle that determines the subcritical region. 

Thus, this integral estimate coincides with that ob- 
tained by ~halatnikov' for the Rayleigh contribution to 
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the resistance. According to measurements by 
Z i n ~ v ' e v a , ~  50% of the subcritical absorption goes t o  
the Rayleigh maximum. 

At a smal l  overlap, when the estimate (12) i s  valid, 
the transmission coefficient (10) calculated in second 
o rde r  in 5 may turn out t o  be la rger  than unity, a s  i s  
seen from the limiting expressions for  7 (see (18) and 
(19) of Ref. 2). In  this case  we must consider Eq. (11) 
for  Y. The integral t e rm in this equation is of the 
o rde r  of Cr/(y +7). We then obtain for  the order  of mag- 
nitude of the transmission coefficient expression ( lo) ,  
in which p i s  replaced by the smal ler  of p and y + 7. 

We take the opportunity to thank A. A. Abrikosov and 
A. F. Andreev for  a discussion of the work. 
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The influence of hexagonal anisotropy on the occurrence of noncollinear magnetic structures, induced by an 
external magnetic field, is investigated in the intermetallic compound DyCo,,, near the compensation 
temperature (124 K). Experimental data on the magnetization and magnetostriction, obtained in strong pulsed 
magnetic fields up to 280 kOe, are compared with the theoretical results of A. K. Zvezdin and A. F. Popkov, 
[Fiz. Met. Metalloved. 49, No. 8 (1980)l. I t  is shown that at low temperatures, the hexagonal anisotropy 
strongly influences the form of the field dependences of the magnetization and magnetostriction, leading to 
the appearance of wavelike singularities in the noncollinear phase and also to the occurrence of phase 
transitions of the first kind. Experimental and theoretical magnetic phase diagrams are constructed for fields 
applied along the easy and hard directions in the basal plane. The causes of qualitative differences between 
theory and experiment, such as the presence of appreciable hysteresis in the experimental field dependence of 
the magnetostriction, are discussed. The molecular field exerted on the Dy sublattice by the Co sublattice is 
determined experimentally to be H,  = (950*50)kOe. 

PACS numbers: 75.30.Gw, 75.80. + q, 75.50.C~ 

Noncollinear magnetic structures induced by an ex- 
te rna l  field in ferrimagnets have been well studied, 
theoretically and experimentally, principally on crys-  
t a l s  that have cubic o r  uniaxial magnetocrystalline ani- 
sotropy.' It has been shown that the anisotropy may 
strongly influence the phase state of a ferrimagnet 
placed in an  external field, and that this leads in a 
number of cases  to qualitative differences from the 
isotropic model, such a s  the occurrence of phase transi-  
tions of the f i r s t  kind, the appearance of new lines on 
the magnetic phase diagrams, etc. Singularities due to 
the occurrence of noncollinear magnetic s t ruc tures  and 
to  the presence of crystalline anisotropy express them- 
selves in the field and temperature dependences of the 
magnetization, the magnetostriction, and other magnetic 
characteristics of the ferrimagnet. 

s t ruc tures  that originate in a n  external field. In this 
paper, magnetic phase diagrams a r e  constructed for an 
external field directed along the easy and hard axes in 
the basal plane, together with the temperature depen- 
dences of the angles between the magnetic moments of 
the sublattices and the crystallographic axes for  various 
values of the external field. 

Suitable objects for  experimental investigation of field 
induced noncollinear magnetic structures in hexagonal 
ferr imagnets a r e  the intermetallic compounds DyCo, 
and TbCo,, which possess anisotropy of the "easy plane" 
type a t  temperatures below room temperature. The 
presence in these compounds of rare-earth atoms with 
nonvanishing orbital moments leads to appreciable ani- 
sotropy in the basal plane at low temperatures, includ- 
ing the magnetic compensation temperatures (120-150 K). 
This leads us to expect in them a strong influence of the 

At present, for  ferrimagnets that possess hexagonal hexagonal anisotropy on the occurrence of field-induced 
anisotropy in a plane of easy magnetization, there is noncollinear magnetic structures. 
only the theoretical analysis given in the paper of 
Zvezdin and Popkov2 for  the noncollinear magnetic The compound DyCo,.,, which is the subject of study in 
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