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We consider the influence of the transport current on the behavior of a thin-wall hollow superconducting 
cylinder in an external magnetic field. Expressions are derived for the critical current and field, at which 
destruction of the states of a cylinder with a specified number of flux quanta inside the cavity is destroyed. It 
is shown that the field dependence of I, is oscillatory, and under certain conditions hysteresis is possible. 
Expressions are obtained for the oscillation of the critical temperature of the sample in an extemal field as a 
function of the transport current. 

PACS numbers: 74.40. + k 

1. The destruction of the superconductivity of cylin- a finite value of the order parameter JI)." In the case of 
drical samples by transport current and by an external a transition close to second-order (which occurs a t  
magnetic field has been repeatedly discussed in numer- small  values $<< 1 and a t  p < I) ,  the results  obtained 
ous theoretical and experimental papers. Attention to here agree with those previously obtained in Ref. 13. 
this question has been again attracted recently in con- 
nection with studies aimed at determining the structure 
produced when superconductivity is destroyed by cur- 
rent (we can mention recent  discussion^'*^ of various 
intermediate-state models, investigations of the para- 
magnetic effect in hollow cylindrical s a r n p l e ~ , ~ . ~  and 
studies of the two-dimensional "mixed" state in type-I 
 superconductor^,^ a s  well as  observation of resistive 
effects6 and investigations of other singularities in the 
behavior of such a system). The cited studies were 
made mainly on bulky samples. In our earl ier  paper7 
we considered in detail the penetration of an external 
magnetic field into the cavity of a thin-wall cylinder 
(with wall thickness d<< A,/$, where X, is  the London 
penetration depth and 9 is the order parameter). It was 
shown that the character of the penetration of the in- 
dividual flux quanta into the interior of the cavity de- 
pends essentially on the screening factor p z %,d/62,(~) 
(r, is  the cylinder radius). At p > 1 the flux quanta pene- 
t r a t e  jumpwise and exhibit a hysteresis behavior, while 
a t  p <  1 the field penetrates smoothly and there is no 
hysteresis. We discussed in Ref. 7 also some peculiar- 
ities of the obse rved '~~  oscillatory dependence of the 
sample critical temperature on the external field.10v11 

We study in this paper the influence of the transport 
current flowing along the cylinder on the penetration of 
an external longitudinal magnetic field into the cavity of 
a thinwall cylindrical sample. Just a s  in Ref. 7, the 
analysis is based on a thermodynamic approach within 
the framework of the Ginzburg-Landau theory.'' It is 
shown that turning on the transport current I leads to a 
decrease and to a subsequent vanishing of the region of 
existence of states with a fixed number of flux quanta 
"frozen-in" inside the cavity. With increasing I ,  the 
hysteresis that could exist in the absence of current 
also vanishes. It is  shown that the critical current I, 
that destroys the sample superconductivity has an os- 
cillatory dependence on the external field, owing to the 
successive penetration of the flux quanta into the cavity. 
The destruction of the superconductivity is always effec- 
ted via a first-order phase transition (i.e., jumpwise a t  

In Sec. 2 of the article we derive the thermodynamic 
potential that describes the behavior of a hollow current- 
carrying cylinder in the presence of an external field. 
(Usually14 in the presence of a current the description is 
based directly on the Ginsburg-Landau equations corres- 
ponding to the minimum of the free energy of the system. 
This procedure is briefly described in the Appendix.) 
In Sec. 3 is considered the case of a thin (d << 6,(~) /$)  
cylinder, and a complete thermodynamic investigation is 
made of the behavior of the system, with allowance for 
the already mentioned screening factor p, which is 
frequently disregarded but which plays an important 
role. In the general case the problem reduces to a 
solution of a system of algebraic equations of high 
degree, calling for numerical calculations. The results  
of the numerical calculations a r e  illustrated by figures. 
In Sec. 4 a r e  given analytic solutions of the problem in 
a number of limiting cases. The results a re  also dis- 
cussed and compared with those of other studies of this 
topic. 

2. Before we proceed to an investigation of the be- 
havior of a cylinder carrying a current I and located in 
an external longitudinal magnetic field Hog =Ho, we must 
establish the form of the functional whose minimum cor- 
responds to the equilibrium state of the system. To this 
end, we write down the change of the system energy: 

cAt 
A ~ = A Q  -- 

4n 4n (1) 

where A Q  is the increment of the heat in the sample, 
and the last two terms yield the flux of the Poynting vec- 
tor through the cylinder surface (a, is the outer surface 
of the cylinder and o, is  the surface of the inner cavity). 
We use the relation div E xH =H curl E - E curl H and 
transform the surface integrals in (1) into volume inte- 
grals with the aid of the Gauss theorem. This yields 
(cf. Refs. 14 and 15) 
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(V, is the volume of the cavity, V= V, + Vl is the total 
volume of the cylinder, including that of the cavity, and 
H,,=H, is the field inside the cavity). We use here  
Maxwell's equations 

4n 4n 
B-H+4nm, rot H = - j,, rot = - j  ,,,, 

C C ' 
with Jo =I/s, is the density of the transport  current  
uniformly distributed over the section of the cylinder 
S,, and j,,, is the density of the screening currents  due 
to the Meissner effect and leading to redistribution of 
the currents  inside the superconductors (cf. Ref. 16). 

We use next the definition E = -c-'8A/8t - Acp (A, cp 
a r e  the potentials of the electromagnetic field) and the 
inequality A Q  GTAS, where T is the temperature and 
S i s  the change of the entropy of the system, and r e -  
write (2) in the form (we assume T =const, H ,  =const 
and jo = const) 

Thus, a t  T =const, H ,  = const, j, = const the minimal 
functional for  the superconducting cylinder is 

where F ,  = E - TS is the f ree  energy of the system, and 
C, is a certain constant (dependent on the total current  
I) ,  which is the result  of the presence in (3) of a te rm 
with a scalar  potential. (The need for taking this  te rm 
into account follows from gauge-invariance considera- 
tions.) 

The expression for  the f r ee  energy of the supercon- 
ductor takes the usual f ~ r m ' ~ . ~ ~ :  

2e 
F.=F.. UIVY + - A Y I ' ]  du, (5) 

he 

where F ,  is the f r ee  energy of the metal in the normal 
state in the absence of a field, Q i s  the wave function 
(order parameter)  of the superconductor, and a < 0 and 
p>  0 a r e  coefficients that depend on the temperature. 
It must be borne in mind that in the general case the 
vector potential A in (4) and (5) has two nonzero com- 
ponents A ={A&), A,(?'), A~ =O}. Where 0 ,  z ,  and Y a r e  
cylinderical coordinates. The component A&) is due 
to the presence of the external magnetic field H ~ ( ~ = ~ ~  
= H o ,  while the component A,(r) i s  due to  the transport  
current I that flows along the cylinder and whose field 
in the surface is  He = H I  = %I/CY, (Y, i s  the outer 
radius of the cylinder). Consequently, the magnetic 
field B =cur l  A also has  two nonzero components, B, 
and Be. At I =  0 and Be = O  Eq. (4) goes over into the ex- 
pression for the thermodynamic potential of a hollow 
cylinder in an  external magnetic field H,, an expression 
used by us earl ier7:  

I t  is easily seen that if the changes in the system take 
place under the condition that A is  constant, then the 
Poynting-vector flux in (1) is zero  (inasmuch a s  E = O  

in this case). If HI and Ho a r e  constant on the boundary, 
the Poynting vector is already different from zero (in- 
asmuch a s  in this case  A + const and E + 0). Therefore 
the functionals (4) and (6) differ from the f ree  energy by 
a n  amount equal to the electromagnetic energy that has 
penetrated into the sample through its boundaries. We 
note that by varying the f ree  energy with respect  to A a t  
constant * we obtain in the usual manner12 the Maxwell 
equation 

4n rot B=rot rot A = - j, 
C 

and variation of (5) with respect  to ** at  constant A 
yields the equation 

It is easy to show that variation of the integral t e rms  in 
(4) and (6) with respect  to A (at constant HI and H,) 
yields a zero contribution. Therefore regardless of 
which of the functionals, (4), (5), o r  (6) is taken a s  the 
basis ,  in al l  cases  the minimization condition leads to 
the equations (7) and (8) of the Ginzburg-Landau theory. 
The difference between these functionals becomes sig- 
nificant, however, when the energies of the correspond- 
ing s ta tes  a r e  compared. 

I t  will be convenient to change to relative variables 
(cf. Ref. 12), putting 

with 

where [(T) is the temperature dependent coherence 
length of the superconductor, and u is  a parameter of 
the Ginzburg-Landau theory. In t e r m s  of the relative 
variables, the expression for the difference between the 
thermodynamic potentials of the superconducting and 
normal states takes the form (cf. Ref. 7) 

where 9 ,  is defined in (4), 9,  = F ,  - V H E / ~ ~  +EI,  E, is  
the  energy connected with the transport  of the current in 
the conductor, c, is a constant (c,=, =O), M is the mag- 
netic moment of the hollow cylinder in the field H,, H, 
is the magnetic field inside the cylinder cavity, and A, 
is the potential produced by the transport current. The 
t e rms  due to the transport  currents  a r e  explicitly sep- 
arated in (9) (in the second and third lines). At I = 0 and 
Bo = O  Eq. (9) goes over into the expression used by us in 
Ref. 7. 

Expression (9) obtained above for  the thermodynamic 
potential is valid a t  arbi trary dimensions of the system. 
To obtain a n  explicit expression for  f in t e rms  of the 
cylinder parameters it is necessary to substitute in (9) 
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the explicit expressions for M, H, and A, obtained by 
solving Eqs. (7) for a hollow cylinder with appropriate 
boundary conditions. The solution of such an electro- 
dynamic problem at constant @, expressed in terms of 
Bessel functions of imaginary argument, is given, for 
example, in Ref. 17. We a re  interested here in the case 
of a thin-wall cylinder with d << 6, where d =r, -r, is 
the thickness of the cylinder wall, and 6 =ti,/$. Expand- 
ing the Bessel functions in t e rms  of the small  parameter 
d/6<< 1 and retaining t e rms  of order d3 inclusive, we 
obtain after rather cumbersome calculations the follow- 
ing expression in place of (9): 

where 

a ~ ' & ~  (TI 
3 r,' r,' l + d / r ,  ' '=- r,'dZ ' 

The quantity p in (10) (the so-called screening factor) 
plays an important role in cylindrical systems (see Refs. 
17 and 71, n is an integer that shows how many flux 
quanta a re  "frozen" inside the cylinder, the term 
-A(@/%$ - n)' describes the oscillatory character of the 
penetration of the external field inside the cavity, the 
parabolic term -Ca2 describes the destruction of the 
superconductivity of the cylinder with increasing % (see 
Ref. 7 for details). Expression (lo) differs from that 
given in Ref. 7 in the last two terms, which a r e  due to 
the presence of the transport current in the system. 
This is our principal equation, on which the arguments 
that follow a r e  based. 

Figure 1 shows several plots off (@) in accord with 

FIG. 1. Dependence of the thermodynamic potential f on f l  in a state with n = 0 at 
the following values of 4, and 

The points of minimumf, which correspond to the values \Ir = Go, are marked by 
circles. The cylinder parameters in all the figures are: 
to =2.lO-' cm,d= 1,4.10-5 cm,r, =7.104 cm,x=0,2(T=2.104 K). 

Eq. (10) for different 4 =a/@$ and @, =+,/ao. In view of 
the presence of the indeterminate constant c, in (lo), 
the curves of Fig. 1 belonging to different 4, a r e  shifted 
relative to one another in such a way that the minima of 
the functions f ( p )  corresponding to larger values of a, 
lie respectively higher along the coordinate axis. (This 
corresponds to the fact that turning on the current 
makes the state of the system energywise less  favored.) 
Attention is called to the fact that a s  $- 0 the curves 
f ( p )  - -a. Let us explain the cause of this behavior. 

This behavior is due to the presence in (10) of the 
term - - D / P ,  which is due in turn to the term -jd, in 
(9). In fact, if we eliminate A, from (9) with the aid of 
Eq. (7), A, = -4nc-'6;jz/p, and substitute j,- jo (the 
transport current in a thin-wall cylinder is uniformly 
distributed over the thickness), then we obtain the term 
- - D / P  in (10). It is easily seen from (7) that the 
divergence of the type - -D/V a s  JI- 0 is due to the fact 
that we assume in (7) that the entire current j =j, is 
superconducting. On the other hand, the condition I 
=const a s  4- 0 leads to the unphysical requirement 
js- jo and A, - - in (7). In fact, one should write in 
(7) j = j, +j,, where js- 0 a s  9- 0 and the entire current 
becomes normal, j =j, =jo. Then A - const and the 
divergence in (7) is eliminated (as $- 0, obviously, 
f-  0, corresponding to the normal state). For a cor- 
rec t  allowance for the normal component of the current, 
however, it is necessary to have a theory that describes 
the process of the mutual transformation of the super- 
conducting and normal currents,  i.e., that takes into 
account the nonequilibrium processes in the supercon- 
ductor. It was not the purpose of the present study to 
develop such a formalism. We shall therefore not use 
below expression (10) for the thermodynamic potential 
f i n  the immediate vicinity of the point $ =0,  where this 
expression becomes unsuitable. It is clear that at the 
points of minimum f (at $#O) the system is entirely in 
the superconducting state (j, =0), and the description of 
the system near the minimum points with the aid of the 
equilibrium expression (19) for f is then correct. 

We a r e  thus interested in the behavior of the system 
near the minima of the potentials f (10). We write down 
first  the extremum condition for the potential af/a&=O, 
which takes according to (10) the form2) 

where we put @ =+/a$, 4, =@,/ao. Relation (11) deter- 
mines the value of 112, corresponding to the minimum of 
the potential f ,  a s  a function of the external fieid Ho 
( a  = nr:H,) and the field of the current H, (a, = nr";H,). 

It is clear from Fig. 1 that the minimum of the poten- 
t ial  f vanishes with increasing @ (or 4,) a t  the point 

which corresponds at the condition a2f /a f = 0. This 
point3) determines the boundary of the region outside of 
which the potential f has no minimum, i.e., the super- 
conducting state (at any rate,  that corresponding to the 
solution $=const) turns out to be impossible. We pre- 
sent here the formula obtained from the condition 
a2f /ap = O  upon substitution of formula (11): 
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FIG. 2. The modulus of the order parameter, corresponding to the minimum off ,  vs. 
$ and plotted in accord with (1 1) at T= 2X lo4 K. The boundaries of the $2 (n) 
surfaces correspond to the values of lw . 

Simultaneous solution of (11) and (12) yields the values 
of go and $,, corresponding to the boundary of the pure 
superconducting state. The system ( l l ) ,  (12) cal ls  for  
solution of algebraic equations of high degree, some- 
thing impossible to perform analytically in the  general  
case. Figures 2-4 show the functions &($, @*) obtained 
numerically from (11) a t  the minimum of the potential f ,  
a s  well a s  the plots of the cri t ical  current  I,($) corres-  
ponding t o  the end points of the pure superconducting 
state. 

An interesting feature of the curves op Figs. 2-4 i s  
the oscillatory dependence of the cri t ical  cur rent  on the 
external magnetic field, due to the penetration of the 
individual flux quanta inside the cylinder cavity. Another 
feature of these curves i s  the ambiguity of the function 
I , ( @ )  (the curves of Fig. 4 overlap a t  p > I) ,  thus pointing 
to  a possible hysteresis  of the cri t ical  current. These 
features a r e  apparently fully observable in experiment. 
To our knowledge the corresponding experiments with 
very  thin hollow cylinders have not yet been performed, 

Figure 5 shows the dependence of the field H, inside 
the  cavity a s  a function of the external field Ho and of 
the transport  current  I. 

4. If the left-hand side of (11) is  regarded a s  a small  
quantity, then it i s  easy to obtain analytic expressions 
for the solutions of the system (1 I), (12): 

Formulas (13) a r e  valid a t  @ -n << 1 and describe the 
behavior of the curves 4t0 and Q,, (see Figs. 3 and 4) 
near the points + =n. In addition, these formulas a r e  
valid for a rb i t ra ry  values of (c$ - n), but a t  p go >> 1. 

FIG. 3. Thesameas in Fig. 2, but at T = 0.8 X K. The thin vertical lines are the 
ordinates of the end points of the surfaces #,. The dashed curves show the depen- 
dence of the critical current on 4. 

FIG. 4. Dependence of the critical current on 4 at T = 2x K. The overlap of 
curves with different n means the possibility of hysteresis. 

We note that formulas (13) admit of a transition to the 
limiting case of a flat film in a magnetic field parallel 
t o  i ts  surface. To  this  end it is  necessary to put @ =$I/ 

=n in (13) (cf. Ref. 7; this corresponds to equality of 
the  magnetic fields on the two s ides  of the film), and 
neglect the small  t e rms  d/r,<< 1 (rl-a) .  Formulas (13) 
then go over into those obtained by GinzburgL4 for the 
case  of a plane film. 

Solutions of (11) and (12) can also be obtained in some 
limiting cases. Thus, by obtaining from (11) the condi- 
tion dj/d$ = O  (this corresponds to  the maximum-current 
criterion, cf. Ref. 12), we obtain the equation 

We note that this equation is  exactly equivalent to the 
condition a2f/aq? = O ,  i.e., the maximum current is 
reached at  the inflection point of the function f (4). As- 
suming that p#,>> 1 (here g, =: - %c@~), we readily 
obtain from (11) and (14) the formula 

This formula, a t  a given temperature,  establishes the 

FIG. 5. Dependence of the internal field @J = a ,/Go* on the 
external field 9 =@/a0* in states with different values of @ J I  
=@,/ao (see the numbers on the curves). a) T = 5 ~ 1 0 - ~  K, b) 
T = 2  X I O - ~  K. In Fig. b, the curves corresponding to different 
@ J I  a r e  shifted relative to one another along the abscissa axis 
(all should start out from the origin, as in Fig. a.). 
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connection, at the critical point (af /a# =0,  a2f /ap =0) 
between n (the number of frozen-in quanta), 4 (the ex- 
ternal field), and @J,, (the field of the current). When 
plotted in the coordinates (@, @,,), so long i s  the para- 
bolic term C$? is small, we have a family of ellipses 
(cf. the curves on Figs. 3 and 4). It can then be shown 
(see also Fig. 2) that the value of do depends little on 
the current or the field. At 4, =0,  Eq. (15) goes over 
into Eq. (17) of Ref. 7. 

The critical point at which superconductivity is des- 
troyed can be reached not only by increasing the current 
I (or the field H,) ,  but also by changing the temperature 
of the sample. It is  easy to  obtain from (15) the depen- 
dence of the effective transition temperature T* (cf. 
Ref. 7) on the magnetic field and on the current: 

where 

It is assumed here that d/rl<< 1 and the formula ('(2') = 
0.55[:(1- T/T,)-l, which is valid for pure superconduc- 
tors," is  used. At 6, = O  Eq. (16) goes over into Eq. (23) 
of Ref.7. Equation (16) describes the influence of the 
transport current on the effect of the oscillation of the 
critical transition temperature in a magnetic field (see 
Refs. 7-11 for details). 

We obtain analogously from (1 1) and (14) an  equation 
valid at the critical point (Of /a$ =0,  a2f /a$! =0) in 
another limiting case ( p  < 1, j.~p$,i< 1): 

At 4, = O  this formula goes over into expression (15) of 
Ref. 7. We note that if we neglect the parabolic term 
(+)c#, then (17) coincides with the result obtained in 
Ref. 13. 

As seen from an analysis of (11) and (14), a s  well a s  
from Fig. 3, the condition I):,<< 1 is realized only a t  
@,<< 1 (it can be shown that a t  the critical point 4,- J,",,, 
so  that (17) is  valid only a t  small  4,<< 1). At finite 
values of p, the superconductivity is destroyed via a 
first-order phase transtion (at finite values of go, see 
Fig. 2), and in place of (17) we must use Eq. (15). On 
the other hand in the case of small currents, @,<< 1, it 
is easy to obtain from (17) an expression for the effec- 
tive transition temperature (in pure superconductors): 

If we assume, in accord with the  experiment^,^'^ a 
measuring current I - 10 pA (j, - 109A/cm2), then 
@J, - lo-', i.e., the last (current) term in (18) is smaller 
by two orders of magnitude than the first  (field) term, 
$ - n - 1). Thus, under the conditions of the exper i- 
m e n t ~ , ~ ' ~  the influence of the measuring current is 
small. It is of interest, however, to perform the cor- 
responding experiments under conditions of a strong 
measuring current (+,- 1, in which case the current 
density is j,- lo4 - lo6 A/cm2) and to carry  out a com- 
parison with formula (16) for samples with j . ~  >7 1. Ac- 
cording to this formula, the effect of the oscillations 

of T*(@) should be observed also a t  high current den- 
sities. 

In fact, in the absence of a magnetic field (if p >> 1 
and r1- 0 0 )  formula (15) coincides with the expression 
for the critical current of a thin film.14 It is clear that 
a cylindrical sample (just a s  a thin film) can be super- 
conducting not only at low but also a t  high current den- 
si ty,  provided that the temperature of the sample is not 
too close to T,. Therefore the sample-resistance os- 
cillations produced when the magnetic field is turned on 
(similar to those observed in Refs. 8 and 9 at small 
currents near T,) should in principle be observed also 
a t  large currents (far from T,). We note incidentally 
that with increasing distance from T, the screening fac- 
tor p increases, and this leads to a decrease of the os- 
cillations. It is therefore necessary in the experiment 
to seek a certain optimal region in which these oscilla- 
tions can be noticeable. 

It is also of definite interest to use the formulas 
derived above to study the destruction, by current, of 
states with definite numbers n of flux quanta frozen in 
the cylinder in the absence of an external field. To this 
end it is necessary to put 4 = O  in (15)-(18). Equations 
(15) and (17) then yield expressions for the critical cur- 
rent in the state n at T =const, while (16) and (18) give 
values of T* at given values of n and of the current 4,. 

In conclusion, a few words concerning the regions on 
Figs. 2 and 3 where there a r e  no pure superconducting 
solutions with J, # 0. According to the thermodynamic 
theory developed above, a normal state should be real-  
ized in these regions. This theory, however, operates 
with an order parameter J,, which is assumed to be in- 
dependent of the coordinates. Therefore the absence of 
solutions 9 =const still does not mean that no inhomo- 
geneous resistive states can be realized and can be en- 
ergy wise more profitable than the pure normal state. 
For example, in the case of a bulky cylinder a state that 
is inhomogeneous over the thickness o r  a mixed state 
can be produced.'-4 One cannot exclude the possible 
realization of an inhomogeneous (along the cylinder) re- 
sistive state also in a thin-wall cylinder, as a result of 
the appearance of helical currents similar to those that 
a r e  apparently responsible18 for the paramagnetic effect 
in thick-wall hollow cylinders. It is desirable in this 
connection to perform special experiments with thin- 
wall cylinders. 

APPENDIX 

To obtain relation (11) we can s tar t  directly from the 
Ginzburg-Landau equations (7) and (8). In fact, multi- 
plying (8) by q* and adding t o  the complex conjugate of 
the product, we obtain after integrating over the volume 

Putting @ =f0(r)ei"%nd assuming f, to be a constant 
independent of the coordinates, we express A, in the 
las t  term of (Al) interms of j0 by means of (7). Using 
next the Gauss integral theorem and expressing the 
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terms with je  in terms of the magnetic field B (with the 
aid of the equation curl B=4rrc-'j), we obtain after 
simple transformations in place of (Al) 

I 1 1 
(afoz+ Pfo4)du +-HoM +- HoV - - HI2V, 

2 8n 8n 

1 hcn 2eZ 
- - - J B , z ~ ~  +-(H,-H,)+~ - A , z ~ : ~ v = o .  

8'n ,.. 8e mcZ (A2) 
v. 

(Obviously, relations (Al)  and (A2) a r e  equivalent to 
the extremum condition on the functional 6 F  = O  (or 6 @ ,  
=O), from which Eqs. (7) and (8) follows. 

It is necessary next to use the expressions for the 
field H, and the moment M of the hollow cylinder in 
terms of Bessel functions (these expressions a re  given 
in  Ref. 71, a s  well as  the expressions for A&) and 
A&) (cf. Ref. 17): 

hcn 
Ae(r)=-f 6 a l l  ce) + b ~ ,  (E) 

2e6f Ko(~,)Io(Et)- Io(Ei)Ko(kz) 

Here & and I ,  a r e  Bessel functions of imaginary argu- 
ment, 5 = r / 6 ,  5,=r,/6, 5,=r2/6,  6=6,/$; # i s  the 
modulus of the order parameter (in relative units, see  
the text). Expanding the Bessel  functions in the small  
parameter d/6 << 1 (d= r2 - r,) and retaining terms of 
order (d/6)3 we arr ive  after cumbersome calculations 
again at relation (11). 

"Actually the destruction of superconductivity by a current takes place in some 
finite region of the value of I near I,,and is due to the appearance of the resistive 
state, i.e., to the gradual restoration of the normal resistance. This process can not 
be described within the simple Ginzberg-Landau thermodynamic theory. 

"Relation (1 1) can be obtained also directly from (7) and (8) by using the explicit 
solutions1' for the potentials A (r) and A,(r). The corresponding calculation is 
given in the Appendix. 

"It can be shown that at this point f j > 0, i.e., we have an inflection point. Since it is 
clear that the inflection point must be located at f> 0, where 
f-@,(Ho, I) - Qn(H0. I) [see (9)], it follows that this point is obviously in the 
region of metastability of the superconducting state. It can be verified that it is 
necessary in this case to put c, > 0 in (9). 
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The general properties of the surface stress tensor, describing elastic properties of crystal surfaces, are 
determined. The boundary conditions are obtained for the bulk stress tensor on the surface of a crystal of 
arbitrary shape. The elastic interaction between point and line defects on crystal surfaces is considered. 

PACS numbers: 68.25. + j, 61.70.Yq 

It i s  well known that the thermodynamic properties of face s t r e s s  tensor. We shall determine the general 
a liquid surface a r e  governed entirely by one quantity properties of this tensor and find the boundary condi- 
which is  the work done in reversible changes of the sur- tions replacing in our case the familiar Laplace formu- 
face area. As pointed out long ago by ~ i b b s , '  in the la for the capillary pressure. 
case of a solid we have to distinguish the work done in 
forming the surface and in deforming it. Thus, in de- In the second section we shall consider the elastic in- 
scribing the properties of crystal surfaces we have to teraction of surface defects over distances which a r e  
introduce not only the surface energy but also the sur- large with the atomic separations. As in the case of 
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