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The approximation of molecular-field theory is used to investigate the temperature dependence of the 
transition field and of the boundaries of the region of metastable states in an easy-axis antiferromagnet for a 
phase transition in which the magnetic moments of the sublattices turn over (a "spin-flop" transition). It is 
shown that at high temperatures a spin-flop transition always occurs as a first-order phase transition. 

PACS numbers: 75.30.K~ 

For orientational phase transitions induced by an ex- tures different from zero, the theoretical investiga- 
ternal magnetic field and of the type in which the mag- tions have been limited either to the low-temperature 
netic moments of the sublattices turn over ["spin-flop" range (T << TN, where TN is the N6el temperatureI3 o r  
(SF) transitions], in easy-axis antiferromagnets, a to temperatures close to the triple-point temperature 
characteristic property is the presence of various ~t .4 
types of phase transitions and of critical points. This 
fact makes an antiferromagnet a convenient object for 
study of critical phenomena and of phase transitions. 
Furthermore, a magnetic field is an easily controlled 
means of acting on the object of investigation, and this 
considerably simplifies the experimental technique; 
on the other hand, the external magnetic field enters 
in a simple manner in the equation of state, and this 
substantially facilitates theoretical investigations. All 
of this explains the large number of experimental and 
theoretical papers devoted to the study of the SF transi- 
tion in an antiferrornagnet.'-"" 

In the present paper, the approximation of molecu- 
lar-field theory is used to study the temperature varia- 
tion of the SF transition field H,, and of the boundaries 
of the region of metastable states, in the case in which 
the magnetic field is directed along the easy axis. In 
Ref. 2 i t  was shown that at T = 0, depending on the 
character of the anisotropy, the SF transition occurs 
either a s  two phase transitions of the second kind o r  
a s  a phase transition of the f i rs t  kind. Calculations 
made in the present paper show that a t  finite tempera- 
tures, the transition field and the instability fields of 
the individual phases depend little on the anisotropy and 

A detailed theoretical investigation of the nature of a r e  primarily determined by the values of the exchange 
phase transitions in easy-axis antiferromagnets a t  T constants. At high temperatures, the transition from 
= O  was carried out in Refs. 2 and 6. For  tempera- the antiferromagnetic (AF) state to the SF phase always 
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is in this ~ t a t e ) . ~  '' 

FIG. 1. 

We shall now write the relations that determine the 
boundaries between individual phases. 

occurs a s  a first-order phase transition. 

1. As is well known, the free-energy density of a 
two-sublattice antiferromagnet in an external magnetic 
field H, directed along the easy axis, can be written, 
in the approximation of molecular-field theory, 

F=hotor cos (81-Oz) +'I26 ( u ~ ' + o ~ ~ )  -Bi~toa cos 81 cos €12 

-'/tB(olt cos20,+012 cos28, ) -h(a ,  cos O,+oa oos Or) - T [ S ( a I ) + S ( 0 2 )  1. (1) 

Here the following notation has been introduced: ul 
=Ml(T)/M0 and uz =M2(T)/Mo a r e  the relative magneti- 
zations of the sublattices; 61 and e2 a r e  the angles be- 
tween the magnetization vectors MI, Mz of the sublat- 
tices and the easy axis (Fig. 1); h =HMO; X and 6 a r e  
the exchange constants corresponding to the intersub- 
lattice and to the intrasublattice interactions; B and P1 
intrasublattice and intersublattice anisotropy constants; 
T is the temperature; and S is the sublattice entropy 
[d~(u,)/du, =-B:'(U,), where gl(ol)  is the inverse Bril- 
louin function and s is the spin of the magnetic moment 
of the sublattice]. 

For systems with spin s 2 1, i t  is necessary to intro- 
duce into the expression for the f ree  energy the energy 
of single-ion anisotropy. But in the low-temperature 
range (a,,o,- 1) and at temperatures close to the triple- 
point temperature 01, a2 <<I), allowance for single-ion 
anisotropy reduces to a suitable transformation of the 
constant P in (1). Then P will have different values in 
the low- and high-temperature ranges.5 

The possible configurations of the system a r e  deter- 
mined by solution of the system of equations a ~ / a x ,  = 0 ; 
the region of stability of the solutions of this system 
is determined from the condition of nonnegativity of 
the principal minors of the matrix A,, formed from the 
second derivatives of the f ree  energy with respect to 
the parameters xi of the system (XI = 01, xz =oz, x3 =el, 
X, = e2). 

Investigation of the solutions of the system aF/ax, = O  
shows2" that, depending on the value of the external 
field and of the temperature, the following phases cor- 
respond to a stable state of the antiferromagnet. 

1) The AF phase: el =0, tJ2 =n; ul and q are  deter- 
mined by the system of equations 

2) The SF phase: el =- e2 = e,ul= 0 2  =u; u and 8 a r e  
determined by the equations 

3) The paramagnetic (PM) phase: el = 82, UI = uz . 
4) The intermediate phase (IP) (in a certain field and 

temperature range, an antiferromagnet in which P < 0 

Doing this is simplest for the boundary between the 
SF phase and the PM phase. For  this purpose, i t  is 
sufficient to  substitute 8 = 0 in the system of equations 
(3)O: 

h S ~ . p ~  ( T )  = ( Z ~ - B - B I ) U ( T ) .  (4) 
By use of the system of equations (21, the free energy 

of the system in the AF state near the line of transition 
to the PM state can be written 

where at, is the relative magnetization of the sublattices 
on the AF-PM phase-transition line, and where q =  (Aul 
+ AQ) is the order parameter. 

On equating the coefficient of d to zero and using the 
equations for o,(T), we get the system of equations that 
determines h,,-,,(T) and o,,(~): 

(h-6+P-$1) +T(dzSldoz).t,=O, 

h n r ; . ~ ~  (T)= ( A + G - ~ - P , ) , , ~ - T  ( d ~ l d ~ ) ~ ~ ~ .  (6) 

For  d2s/du2, the following equation can be derived: 

The system of transcendental equations (6) takes a sim- 
ple form when s = i: 

The Nee1 temperature TN = ( X - 6 - P - PI) can be obtain- 
ed from the system (2) for ul, a2 -0. 

Simultaneous solution of the system of equations (3), 
(4), and (8) determines the parameters of the triple 
point (Tt, ht, 0,). 

In particular, for s =+ we get from equations (31, (4), 
and (8) 

o l = ( l - T t I T N )  '", (9) 
h,=(2k-P-$,)  (1-Tt /T, )"' ,  (10) 

and Tt is determined from the equation (A- 6)0, = T, 
xarctho, with use of (9). 

It is convenient here to introduce the dimensionless 
parameter E = (P - &)/(A- 6), which determines the 
relation between the exchange and the anisotropy prop- 
erties of the antiferromagnet. By use of equations (2) 
and (41, one can write, in terms of TN and of the tem- 
perature T3 obtained by extrapolation of the SF-PM 
phase-transition line to h = 0, 

Usually the value of E is of the order of magnitude lo-'. 
For  example, for CuClz .2H20, c=7.19 for MnF2, 
~=2.49.10- ' ;  for GdAlO,, c = 1.16 . l o - '  (according to 
data of Refs. 5, 7, and 10). By carrying out in equa- 
tions (3) and (6) an expansion with respect to the small 
parameter E, one can obtain the following expressions 
for the triple-point parameters:" 
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It should be noted that whereas the transition field to 
the SF phase a t  T=O, h t  =[ (P - P1)(2X- P - &)I1', is 
determined by the value of the intersublattice exchange 
X, the triple-point field h, depends substantially on the 
intrasublattice exchange constant 6. The ratio of the 
fields h, and hb is determined by the relation between 
the values of X and of 6: 

Analysis of the relation (15) enables us  to draw an in- 
teresting conclusion: with increase of the spin number 
of the magnetic moment of the sublattice, there is an 
increase of the effect of intrasublattice exchange on the 
temperature variation of the transition field h,(T). 
Thus, for example, for an antiferromagnet with spin 
s =f the inequality kt < hh is satisfied for -6 > 2X (the 
minus sign means that 6 < 0; that is, in this case there 
is ferromagnetic ordering within the sublattices); for a 
system with spin s =$, this inequality is already valid 
when - 6 > X. Allowance for single-ion anisotropy I in 
this case reduces to introduction in (15) of a factor [(P 
- P1 +lt)/(@ - P1 + E ~ ) ] ~ ' ~ ,  where 2, and lo a r e  the values 
of the single-ion anisotropy constant a t  T = T, and a t  
T = 0 respectively; 2 ,  < l o .  The considerations advanced 
here can be used to explain the anomalous temperature 
variation of the transition field h,(T) in GdA10, (s =+I: 
whereas for most antiferromagnets h,(T) increases 
with increase of temperature, in GdA10, the opposite 
behavior is observed5 (see Fig. 2). 

2. We turn to the determination of the instability 
boundaries of the AF and SF phases. 

The instability boundary of the AF phase, hll(T), is 
determined by simultaneous solution of the system of 
equations (2) and of the equation I A ,  I,, =0, where 
/A, I A F  is the determinant of the matrix A ,  for  the AF 
phase. The determinant J A ~ ~  J A F  can be expressed a s  
the product of two second- order determinants: 

I dzs 
-(x-p.) *-i+T7 1 do, 

The determinant Dl expresses the stability of the AF 

state with respect to  enlargement of the magnetic mo- 
ments. In Ref. 14, which was devoted to  the study of 
phase transitions in metamagnets, i t  was shown that Dl 
can change sign when the external field approaches the 
exchange field in order of magnitude (h - X). In anti- 
ferromagnets, the transition to the SF phase occurs in 
fields considerably smaller than the exchange field 
(h -[2X(P - Pl)]"). In this range, Dl > 0. Thus the 
instability boundary h~t(T) of the AF phase is deter- 
mined by the equation Dz = 0 and can be expressed in 
terms of q(T)  and @(T): 

By introducing the quantities a+ = ( UI + az)/2, a- = (a1 
- @)/2, and h! = [@ - P1)(2 X +p  - /31)]1' (the instability 
boundary of the AF phase a t  T = 02), we can write hll(T) 
thus: 

h,, (T) =(h-p-pi)a-+[ (h,~)'~+~+h'o-~]". (18) 

It should also be noted that the determinant Dz vanishes 
when = 0; but this condition does not determine an 
instability boundary: Dz does not change sign on pas- 
sage through this value. 

The expression (11) together with the equations (2) 
forms a system of three equations for the three un- 
knowns hll(T), q(T),  and u2(T). This system can be 
reduced to a single equation for ul(T). For  this pur- 
pose we introduce ~(01) :  

o*=zo,. (19) 

On substituting (19) in the first  equation of the system 
(2), we get the following equation for 01: 

where 

For the SF phase, the determinant lAik1 SF can, by 
identical transformations, be reduced to the product 
of two second-order determinants: 

The determinant Dl 2 0 and vanishes on the SF-PM 
line; thus the boundary ~ L ( T )  of the SF phase is deter- 
mined by the equation Dz = 0: 

h.(~)=h;[l+ 
-T 8S/doz- (h-6) 

(22) 

where ha= [@ - P1)(2h + 6 - 61)]"(2X- 6 - P1)/(2X + P- PI) 
is the instability boundary of the SF phase a t  T = o . ~  

The transition field k,(T) is determined by equality 
of the f ree  energies F = F s F .  Using the systems of 
equations (2) and (3), we express h,(T) in terms of the 
values of the magnetizations u+(T), u-(T), and dT) :  

FIG. 2. Phase diagram of a uniaxial antiferromagnet @>O). The dotted line shows the h,dT) =(2h-p -~ , )o -+ { (2R-p - f i t )  [ (h-6+p-pi)o+' 
phase diagram of GdAIO,;' the dashed-dotted line represents the line h,> = , (T).  - (h-6) (aZ-a-') -TS(a,) -TS(02) +2TS(o) I}"', (23) 
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dT) is determined by equation (3), a+(T) and o-(T) by 
the system (2) with h = h,(T). 

3. We turn now to a study of the asymptotic behavior 
of the fields h,, hi,, and hl. In order to simplify the 
calculations, we restrict  ourselves to a study of sys- 
tems with spin s = +. 

In the low-temperature range (T < $TN), the values 
of the sublattice magnetizations q, q, o - 1. Then the 
expressions fo r  h ~ ,  h~t, and hl simplify considerably: 

If a transition of the first  kind occurs in the system (hit 
> hl), then Ah(T) determines the width of the region of 
existence of metastable states; for transitions of the 
second kind (hn < h ~ ) ,  I Ah(T) I determines the width of 
the region of existence of the IP. 

At temperatures close to the triple-point tempera- 
ture, it may be supposed that u=ut + Ao,o,= o ,+  Ao,, 
q = o, -  AD^ (AD, A q ,  AU, << 1). On expanding in the small 
parameters AD, Anl, and Auz in equations (2) and (31, 
we arrive a t  the following relations: 

where AT = T, - T and a =  ($A + 6)/2X(X - 6). 

We note that AU/U, = &"AT/T,; therefore the expres- 
sions obtained a r e  valid within a temperature interval 
AT 1 0 " ~ ~ .  

It follows from the relations (28)-(31) that in all  
easy-axis antiferromagnets, in the vicinity of the 
triple point the transition from the AF state to the SF 
phase occurs a s  a phase transition of the first  kind. 
The width A ~ ( T )  of the region of metastable states de- 
creases according to a linear law. The transition field 
h,,(T) and the instability fields hll(T) and hl(T) of the 
individual phases also vary, in this range, according 
to a linear law. The coefficients of AT in formulas 
(28), (29), and (30) may take different signs, depending 
on the relation between the exchange constants and 6. 
In other words, on approach to the triple point each of 
the fields h,, hit, and hl may either decrease or  in- 
crease; depending on the values of X and 6, a l l  vari- 
ants consistent with the inequalities h11 > h,, > hl a r e  
possible. 

On the phase diagram of the states of an antiferro- 

magnet (the H- T plane), there is in the AF phase a 
line h9.0(T) on which the value of the magnetization of 
the sublattice oriented opposite to the field, u2, vanish- 
e s 5  The temperature To a t  which the lines h l l ( ~ )  and 
h,,.o(T) intersect is determined by simultaneous solu- 
tion of the equations of the system (2) and of equation 
(17) under the condition uz = 0: 

To=-- ha 6. 
h+B-$, 

(32) 

At this temperature, the instability fields hll and h~ a r e  
determined by the following relations: 

hll=ht [I +- 4h +',(')I . (34) 

Ah=h,(g-f)e (35) 

f(c) and d&) a r e  certain functions of E, and f (&) < g(&). 

It follows from the relations (33), (341, and (35) that 
a t  temperature To the transition from the AF state to 
the SF phase, independently of the character of the ani- 
sotropy, occurs a s  a phase transition of the f i rs t  kind. 

Thus analysis of the temperature dependence of the 
transition field h,, and of the instability fields h* and hl 
leads to the conclusion that for antiferromagnets with 
anisotropy P > 0, the transition from the AF state to 
the SF phase occurs, over the whole temperature inter- 
val from zero to T,, a s  a phase transition of the first  
kind (Fig. 2). 

For  antiferromagnets with anisotropy P < 0 at  suffi- 
ciently low temperatures (T < $TN), the SF transition is 
of the same character as a t  T =O; that is, there a r e  
two phase transitions of the second kind with formation 
of an IP. With increase of temperatures, the width 

/ Ah(T) 1 of the region of existence of the I P  decreases 
[see (27)]; and a t  temperatures near the triple-point 
temperature, the SF transition occurs a s  a first-order 
phase transition. 

Thus for an antiferromagnet with anisotropy P < 0, the 
lines hl(T) and hll(T) intersect a t  a certain temperature 
T*. This situation requires additional discussion. The 
fact is that lines of second-order transitions from sym- 
metric phases (in this case the AF and the SF phases) 
to an asymmetric (the IP) in general cannot terminate 
a t  a single point. In fact such a point is also the ter-  
mination of a first-order transition line between the 
symmetric phases, and therefore a t  i t  both symmetric 
phases lose their stability. Thus if the system has 
other stable states, then in the vicinity of the inter- 
section point there will occur phase transitions to these 
states. In order to study these additional states in the 
vicinity of the point T*, it is necessary, in the pheno- 
menological expression (1) for the free energy, to in- 
troduce additional terms, describing the magnetic 
anisotropy energy. A possible form of the phase dia- 
gram is shown in Fig. 3. In Fig. 3(a) a r e  plotted the 
lines of instability of the individual phases, and in Fig. 
3(b) the corresponding lines of first-order phase tran- 
sitions. It is quite obvious that some of the points TI, 
TIl, TI, and Ti may coincide with T* . We remark also 
that the possibility of existence of the point T* was first  
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FIG. 3. Phasediagramofa uniaxial antiferrornagnet (P < 0). The dotted hnes denote h e  
of transition of the second kind to the IP from the AF and SF phases: '" - 
TI,. T, , TI,. , and T, are the terminal points of lines of phase transition of the first kind 
to the IP. 

indicated in Ref. 11. 

4. As is well known, in fields close to the flop field, 
an antiferromagnet is in the intermediate ~ t a t e . ' ~  Ana- 
lysis of the nuclear magnetic resonance signal from 
protons in this range makes i t  possible to determine, 
comparatively easily, the temperature dependence of 
the SF transition field. In the present research, this 
method was used to determine the transition field in 
CuC12 ,2Hz0 (s=$). The experimental method and the 
theoretical considerations applied to the interpretation 
of the experimental data were presented in detail in 
Refs. 8 and 13. We mention only that the investiga- 
tions were carried out over the temperature interval 
0.96 to 4.3 K, the accuracy of the temperature mea- 
surement was *0.005 K, the accuracy of adjustment and 
measurement of the field in the region of the specimen 
was Oe, and the accuracy of orientation of the crys- 
tal was 1'. The results  of the experiment a r e  in good 
agreement with data obtained by the method of antifer- 
romagnetic r es~nance ' "~  (Fig. 4). 

By use of experimntal data for CuC1,. 2H,O(T,= 4.36 
K, Tt=4.31 K, ~ : = 6 . 5  kOe, Ht=8.5 kOe'*'o) and of 
the relations (81, (9), and (151, one can determine the 
molecular-field constants 

The comparative closeness of the values of X and of 
( 6 ( is in agreement with the model of antiferromag- 
netic ordering in CuClz -2Hz0 proposed by Poulos and 
~ardeman? '  In this model, i t  is suggested that this 
antiferromagnet consists of alternating layers with fer- 
romagnetic ordering. Since in this case the difference 
in the distances between lattice si tes with parallel and 
with antiparallel orientation of the magnetic moments i s  
small, i t  is reasonable to expect that the intersublat- 
tice and intrasublattice exchange interactions will be  
close in magnitude. 

A theoretical h,(T) relation for CuC4. 2Hz0 was ob- 
tained by numerical solution of the system of equations 
(2), (3), and (23); it is in good agreement with the re- 
sults of the experimental investigation~ (Fig. 4). Re- 
sults of a numerical calculation of L(T) and h~l(T) for 

FIG. 4. Temperature dependence of the transition field h,, for CuCl,.H,O. Points, 
results ofexperimental investigation by the AFMR method (according to thedata of Ref. 
7); triangles, results of experimental investigation by the NMR method. The solid line 
represents the results of a numerical calculation. 

various values of P and PI show that a t  low tempera- 
tures, the instability fields remain practically constant; 
on further increase of the temperature, hi(T) and hl~(T) 
increase, while Ah(T) decreases monotonically, vanish- 
ing a t  the triple point. 
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