
for hoping to use pair production by photons in the pinch 
field to resolve the spatial structure of the current 
channel in the angstrom region. The spectral and angu- 
lar distributions of the positrons carry  information on 
the spatial structure of the current and can reveal, in 
principle, the presence of linear atoms in pinches, and 
can consequently ascertain whether the compression un- 
der the influence of the forces of collective interaction 
and radiation c o l l a p ~ e ~ " ~ ' ~ ~  can reach the s h g e  of elec- 
tron degeneracy. 

It must be noted, however, that despite the large 
cross  section of the process (" 10'13 cm2), the charac- 
teristic time of pinch evolution in the state of maximum 
compression i s  estimated a t  s lom9 sec, so  that realiza- 
tion of the proposed experiment i s  a major problem in 
high-energy experimental physics. 

The author thanks A. F. Andreev, I. M. Lifshitz, and 
L. P. ~ i t aevsk i f  for a helpful discussion. 
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Equations are obtained for the Green's function describing the nonequilibrium phenomena in quasi-two- 
dimensional superconductors. The flow of a current in a direction perpendicular to the conducting layers is 
investigated by means of these equations in dirty quasi-two-dimensional superconductors ( r ~ , < l ,  where r is 
the mean free path along the layer, E, is the width of the energy band corresponding to motion across the 
layers). For finite voltages V applied to the sample, and sufficiently weak coupling between the layers (TE 

, '<A) ,  Josephson oscillations occur in the system with a frequency 2eV/N, where N is the number of layers in 
the system. In  contrast to tunnel junctions, in which the electric field is localized in the dielectric and does not 
enter the superconductor, the field in a quasi-two-dimensional superconductor does not vanish at any point 
within the crystal. The energy distribution of the quasiparticles is not an equilibrium one and this results in an 
increase in the energy gap of the superconductor. The transverse conductivity of the system in the normal 
state has the form 0,-e 'mdr~,  

PACS numbers: 74.50. + r 

As is well known, a number of layered compounds 
become superconductors a t  helium temperatures. The 
most studied of these layered compounds a r e  the di- 
chalcogenides of the transition metals, for example, 
NbSez, TaS2, TaSeZ. The properties of such materials 
a r e  described, for example in the review of Bulaev- 
sk&' These highly anisotropic crystals consist of lay- 
ers, within which the binding between the atoms is co- 
valent, while the layers a r e  bound to one another by 
weak van der Waals interaction. The anisotropy of 
these compounds can be significantly increased artifi- 
cially by intercalation-the introduction of other atoms 
o r  molecules in the space between the layers. Thus, 
for example, the ratio of the longitudinal and trans- 
verse conductivities of 2H-TaS& increases from 28 to 
lo5 by intercalation of pyridine. The critical tempera- 

ture of superconductors of such type is determined 
basically by the interaction within the layer and changes 
in intercalation only to the degree that the characteris- 
tics of the conducting layer change upon change in the 
distance between the layers. Thus, for example, in the 
intercalation of 2H-TaSz the temperature T, increases 
from 0.8-2 K to 2- 4.5 K, and in the case of 2H-NbSe 
it decreases from 7 to 4 K. 

There is interest in the problem of the transverse 
conductivity of the quasi-two-dimensional superconduc- 
tors. If the anisotropy is sufficiently strong that the 
characteristic energy connected with motion between 
the layers is less than the value of the gap energy, 
then the superconductivity has a quasi-two-dimensional 
character.') In this case, in the flow of near- 
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critical current between the layers, the modulus of 
the order parameter remains practically unchanged and 
the crystal can be regarded a s  a system of ser ies  con- 
nected Josephson tunnel junctions with superconductors 
of atomic thickness. The stationary Josephson effect 
in quasi-two-dimensional superconductors has been in- 
vestigated with the help of the Ginzburg-Landau equa- 
tions.' The hypothesis has also been a d ~ a n c e d " ~  that 
in such crystals a nonstationary Josephson effect should 
also be observed, i. e., that oscillations of the current 
in the sample should develop upon application to the 
crystal of a constant voltage V perpendicular to the 
layers. 

It is understood that the theory of the nonstationary 
Josephson effect in tunnel junctions cannot be carried 
over directly to layered superconductors. For  exam- 
ple, i t  is assumed in this theory that the electric field 
arising in the tunnel junction does not penetrate into the 
superconductor because of the screening by the elec- 
trons in the metal. In the case of layered superconduc- 
tors, this assumption is, of course, invalid, since the 
thickness of the conducting layer has atomic dimensions 
and cannot be greater than the screening length. There 
a r e  no theoretical schemes which would describe the 
effects of the type of the nonstationary Josephson effect 
in quasi-two-dimensional superconductors. 

In ordinary superconductors, nonequilibrium proces- 
ses  a r e  completely described by the equations for the 
Green's function, integrated over the energy variable 
5:" The equations for the quasi-two-dimensional 
superconductor should be distinguished from the equa- 
tions for the ordinary superconductors by the fact that 
since averaging should not be carried out in them over 
distances of the order of interatomic (i. e., of the or- 
der of the distance between layers) in the direction per- 
pendicular to the layers, since these equations should 
describe the physical quantities and their differences 
in each layer. Such equations will be obtained in this 
work. With the help of a calculation based on them, it 
will be shown that the nonstationary Josephson effect 
should actually occur in quasi-two-dimensional super- 
conductors. The characteristic frequency of the 
Josephson oscillations and the voltage per layer a r e  
of the order of the energy gap A (of the order of A'/T 
near T,). Correspondingly, the characteristic total 
voltage on the sample turns out to be N times a s  large. 
The electric field arising in the volume of the super- 
conductor in this case is not screened. The energy 
distribution of the electrons becomes nonequilibrium, 
which leads to an increase in the energy gap of the 
superconductor. The mechanism of this phenomenon 
is analogous to the mechanism proposed by dliashberg4 
for the stimulation of superconductivity by a microwave 
field in ordinary superconductors. 

DERIVATION OF THE EQUATIONS DESCRIBING THE 
NONEQUlLlBRlUM PROCESSES IN  
QUASI- TWO-DIMENSIONAL SUPERCONDUCTORS 

The most powerful and convenient method of study of 
nonequilibrium processes in ordinary superconductors 
is provided by the equations for the Green's function, 
integrated over 5 =p2/2m - &= :" In this section, we 

shall derive similar equations describing the quasi-two- 
dimensional superconductors. 

We consider a quasi-two-dimensional metal. We 
choose the z axis of the system in a direction perpen- 
dicular to  the layers. The Fermi  surface of the layer- 
ed metal with weak coupling between the layers has a 
shape that is close to a cylindrical surface with a gen- 
eratrix parallel to the z axis. Let the single-electron 
spectrum of the metal in the normal state have the form 

where C, << E=. In the strong coupling approximation, 
E, = cosap, for the motion of the electron along the z 
axis, in which the interaction only between neighboring 
layers is taken into account. We shall not make speci- 
fic the form of the interaction between the layers, since 
account of any sort  of interaction, for example, cor- 
relation,' leads only to a renormalization of the param- 
eters of the spectrum. For  our purposes, i t  is only 
important that the spectrum exist and have a quasi- 
two-dimensional form, i. e., &,<< &=. We assume that 
there a r e  no other energy bands near the Fermi  sur- 
face, and shall take only one band into account. 

We write down the Gor'kov equations for t k  Green's 
function in the Keldysh technique,' generalized to the 
case of a superconductor a s  is done in Refs. 5 and 8: 

(1 
Here 

u, is a Pauli matrix; g and F a r e  the ordinary and 
the Gor'kov Green's functions; 5 is the mass operator 
which describes the scattering of electrons by tmpur- 
ities and phonons. The expressions for A and C, and 
also the relations between the components of the ma- 
tr ix G, can be found in Refs. 5 and 8. 

Further, a s  in the derivation of the equations for or- 
dinary superconductors, we subtract from Eq. (11, 
which has the form G;'G = 1, the conjugate equation 
GG;' = 1 and transform to the momentum representa- 
tion in coordinates along the layer. Just  a s  in iso- 
tropic superconductors, making use of the fact that 
C changes a t  energies that a r e  large in comparison 
with the characteristic energies of the superconductor, 
we can integrate the obtained equation over 511 = (P: 
+p2,)/2m - &=. We transform to the nodal representa- 
tion of Wannier in the coordinates z and 2'. As a re- 
sult, we obtain 
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where by the product of functions, we mean the convo- 
lution with respect to the internal frequency variable, 
for example, 

where 

where the integrand contains the function 6, integrated 
over (11: 

The terms with the vector potential were not written 
out in Eq. (2), since i t  is more convenient for the solu- 
tion of our problem to include the potential A in the 
phase of an order parameter, X - X  + (e/c)$, where V$ 
= A .  Moreover, it has been taken into account in ex- 
pressions (3)-(5) that the Wannier functions w,(z) a r e  
real  for bands that do not intersect with other bands. 

The last term on the left side of Eq. (2) represents 
the integral of the collisions with the impurities, ob- 
tained with the help of the "cross technique" of averag- 
ing over the impurities with neglect of the intersecting 
diagrams.' A ba r  over a function indicates averaging 
over the angle cp in the p,p, plane: 

u(zl - z d  is the Fourier component in the x and y coor- 
dinates of the potential of the impurity atom at  641 = 0, 
we assume the scattering in the p,p, plane to be iso- 
tropic, z, a r e  the coordinates of the impurity atoms, 
and the angular brackets indicate averaging over the 
impurity locations. 

We note that the Hamiltonian of electron-phonon in- 
teraction used in our research is of the form 

= Jn (z )  q (z ' )  ~ ( z ,  z ' )  dz dz', 

where n(z) is the electron density operator, cp is the 
phonon operator, and K(z, z') is the interaction func- 
tion. In ordinary superconductors the K(z, 2') a r e  re- 
laced by d functions because K falls off a t  distances t - 2' 1 that a r e  small in comparison with the charac- 

teristic dimensions of the problem. In layered super- 
conductors, the fall-off radius of K is not small in 
comparison with the distance between the layers and 
therefore K(z, 2') cannot be replaced by a 6 function. 

As a result, arguing in the same way a s  in the case 
of ordinary superconductors, i. e., assuming that the 
characteristic phonon frequency w, >> A, T and w, << E,, 

we obtain a self-consistent equation which describes A 
in terms of F. This equation differs from the corre- 
sponding equation for ordinary superconductors by the 
fact that A depends on two coordinates. For  the ma- 
tr ix elements we get 

where 

k(zlz2) falls off over the same distances / z l -  zz 1 a s  
the function K. 

The Green's functions for ordinary superconductors 
satisfy the orthogonality ~ond i t ion ,~  greatly simplifying 
the solution of the equations. A similar relation can 
be obtained also for layered superconductors: 

We also need a formula for the z compopent of the 
current in terms of the Green's function G,,. This for- 
mula is easily obtained from the general expression for 
the current in terms of the Green's function9; i t  has 
the form 

The charge density is determined by the expression 

0 where dGnm = G,, - G,,, and G:, is the Green's function 
in the absence of currents and potentials. Thus, the 
current is determined by a combination of the Green's 
functions that is antisymmetric in the number of layers, 
and the charges and consequently the potentials by a 
symmetric combination. 

EQUATION FOR THE DISTRIBUTION FUNCTION; 
THE JOSEPHSON RELATION 

We consider a layered superconductor, through which 
flows a current in the direction perpendicular to the 
layers. We assume the size of the sample in the direc- 
tion along the layers to be small in comparison with the 
penetration depth of the magnetic field (which is much 
greater than the Meissner length in ordinary supercon- 
ductors'), so that the current is distributed uniformly 
over the cross  section of the sample and the quantities 
entering into the equation do not depend on the x and y 
coordinates. In the general case, i t  is impossible to  
find a solution of Eq. (2), and we shall limit ourselves 
to the case in which the interaction between the layers 
is so  small that we can restrict  ourselves to the ap- 
proximation of strong coupling of the electrons in the 
layers and to take into account the overlap of the Wan- 
nier functions only in the neighboring la ers .  In this 
approximation, we omit c, with 1 m - n f > 1 in Eqs. 
(2) and retain only E,,+~ = cl, which is equal to the band 
width in the p ,  direction. Moreover, we discard in 
Eqs. (2)-(7) the nondiagonal matrix elements, which 
contain the overlap integrals, and leave only the largest 
diagonal elements 

Let the sample contain only such impurities for which 
the decay radius of the potential u(z) is small  in com- 
parison with the thickness of the conducting layer, i. e., 
with the fall-off radius of the Wannier functions. We 
can then neglect also the quantities v,,,,,,,, with n+ m and 
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retain only the quantity the order parameter in layer n and transform from the 
functions to  the functions 

which has the meaning of the free path time in motion 
along the layer, and in which nz, is the concentration 
of the ith type impurities in a single layer. 

Thus we take into account the nondiagonal matrix ele- 
ments cl only for an atomic potential having a charac- 
teristic value of a few electron volts, and shall not take 
into consideration the nondiagonal matrix elements of 
quantities of the type of the potential p, whose charac- 
teristic value is of the order of a milli-electron volt. 

We now make one more simplifying assumption, that 
the superconductor is dirty, i. e., 

Since q characterizes the probability of transition of 
the electron from one layer to another, the condition 
(11) means that the electron manages to be scattered 
many times from the impurities before undergoing 
transition to the neighboring layer. In this case, the 
functions Grid - (7 ~ l r ~ ~ ~  which a r e  nondiagonal in 
terms of the number of the layer turn out to be small, 
which greatly simplifies the solutions of Eqs. (2). In 
particular, thanks to the relation (7), the gap compo- 
nents that a r e  nondiagonal in the layer number also 
turn out to be small. With the help of direct calcula- 
tion, we can establish the fact that 

For  this reason, we shall take into consideration only 
the diagonal elements 4. Thus, we shall solve the 
equation 

which is much simpler than (2). 

In the equilibrium case, in the absence of current, 
under the condition that the time of energy relaxation 
by the phonons 7, is large, Arc >> 1, the solution of the 
matrix equation (12) is given by the functions 

and by the functions_ob_ained from (13) with the help of 
the transformation SgS', where S has the form (in the 
time representation) 

- d o  exp { - i ~  (t) /2 )  s = ( , ; ) ,  "( 0 

This transformation corresponds to a change in the 
phase of the order parameter by an amount ~ ( t ) .  

Upon neglect of the transitions between layers, i. e., 
a t  cl=0, the solutions of Eq. (12) would also be the 
solutions obtained from (13) by a shift of the phase xn(t) 
by a different amount in each later. At ci+ 0, solutions 
of the type SngS; do not satisfy the equation (12). For  a 
solution of (12), we separate the phase factors Xn of 

We obtain the following equation fo r  ;,,,,.: 
V  V  * V  V  V  

€1 (An n-lg,,-, ,, + Xn n+l gn+l ,,, - gn An,+l n, gn n.-l-L*-l n*) 
V V  V V  . . V  V  v 

- euzgnn. + gnn.ok - ioybn, .  + g,,. ~ G A W  + ~,,9',,,,.- gnn,~,,, 

where 

in the time representation 

exp {i ( ~ , - x . , ) / 2 )  A,.%-, = ( 0 

As has already been noted, under condition (111, the 
components of 2 that a r e  nondiagonal in n and that de- 
termine the current a r e  less  than the diagonal ones, 
so  that there is an analogy with an ordinary super- 
conductor, in which the characteristic l a / a x  << 1 (where 
I is the free path length). The role of the anisotropic 
part of the function in an_ordinary superconductor is 
played in our problem by gn,l, while the role of the 
isotropic part is played by inn. Correspondingly, our 
method of solving Eq. (15) is similar to the method 
used in the case of ordinary superconductors: fro? 
Eq. (15) a t  n' =n* 1, we express &,,.I in terms of g,, 
and then substitute the found ?,,,I in Eq. (15) a t  n' = n  
and, a s  a result, obtain an equation for g,. 

For  brevity, we make still another simplifying as- 
sumption; we shall assume that AT, TT, i~ <<I. This 
assumption is not one of significance, and the problem 
is rather easily solved even for arbitrary AT and TT 
(see for example, the review, Ref. 10). We also take 
it into account that we a r e  solving a spatially homo- 
geneous problem (if, of course we disregard the mi- 
croscopic inhomogeneity); therefore all  the functions 
should depend only on the differences between the in- 
dices, but not on the indices themselves. Therefore 
we omit the indices and introduce the notation: 

and s o  forth. The equations obtained for ;* and 2 have 
the form 

where, a s  in Eqs. (2) and (15), convolution over the 
internal frequency variable is implied. 

The terms of Eq. (18) describing and corre- 
spond to the upper and lower diagonal blocks of (18). 
The equations for and have the same form a s  in 
(la), only o r  2A replaces 2. It is seen from these 
equations that the corrections to the solutions (13) for 
& and p, necessitated by the current flow, have the 
order of magnitude of T&/A. Consequently, a t  suffi- 
ciently weak coupling between the layers, when T E: << A, 
the density of states of the superconductor, which is 
determined by the functions gR'A', changes little when 
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current flows. Thus, a t  

we can speak of quasi-two-dimensional superconducti- 
vity with Josephson interaction of the layers (see Ref. 
1). In what follows, we shall assume the condition (19) 
to be satisfied. 

We now consider the term of Eq. (18) corresponding 
to the equation for 2 (a 2 x 2 block in the upper right 
corner of the matrix). This equation describes the 
perturbation of the distribution functions and has the 
same structure a s  the equation describing the stimula- 
tion of superconductivity by microwave radiation! con- 
sidered by gliashberg and co-workers."" The Eliash- 
berg equation differs from ours in that his contains 
a,Q, in place of A,, where Q, is the superfluid mo- 
mentum in the ordinary superconductor. AS in Ref. 
11, the solution of the equation for 2 has the form 

where n i s  a nonequilibrium distribution function sub- 
ject to determination. The part of the Green's function 
gP that is even in c, such that g, =Sp2+ 0, which deter- 
mines the nonequilibrium character of the distribution 
of the quasiparticles over the branches of the excitation 
spectrum,'0 is equal to zero in our case. 

We now calculate the distribution function n in the 
case in which the phase difference of corresponding 
neighboring levels increases linearly with the time: 

It will be shown below that, a s  in Josephson junctions, 
the condition (21) corresponds to a constant voltage V 
=vN applied to the sample, where N is the number of 
layers in the sample. We shall assume that v - A >> 1/ 
rc. In this case, a s  in Ref. 11, it  turns out that 

and the time average of the distribution function can 
change markedly in the system. 

Substituting the explicit forms of gR and kA (13) and 
using (201, we get the following equation for the func- 
tion n(c): 

e-v 
+-0(1e-~l-~)[n(e-~)-n(e)])=-l~(n). &.-. (22) 

It is seen from this equation that the distribution func- 
tion differs little from i t s  equilibrium form at ~177, 

and can differ strongly from the equilibrium form 
at  E~~TT, >> 1. 

In the first  case, n is easily found by perturbation 
theory, by considering the case of a temperature close 
to critical, when the region of significant energies c - A, v << T and the 7 approximation can be used: 

lPh - &-no), 
7. 

where no is the equilibrium distribution function, 

At ~ 7 ~ .  ci >> 1 analysis of Eq. (20) is complicated; a 
similar equation was solved under this condition in Ref. 
11; we shall not consider this case. 

We note that it follows from (23) that the disequili- 
brium increases the energy gap. In particular, the 
nonequilibrium increment to the Ginzburg-Landau equa- 
tion introduced in Ref. 11 has the form 

where F and Il a r e  elliptical integrals of the first  and 
third kind, respectively. 

We shall now show that the voltage on the sample is 
determined by the relation V = Nu, where v = (in+l - in)/  
2e, i. e., for the potential averaged over the space, 
the Josephson relation is valid. In order to calculate 
the distribution of the potential qo(z), we must solve 
the Poisson equation 

where p is defined by Eq. (10). 

The function 2 of the form (20) satisfies the condition 
Spg=O, but a t  the same time Sgd& diverges a t  high 
energies; therefore, we much approach the calculation 
of p by formula (10) with great care. We must use the 
expression for the function G not integrated over (it 
can be calculated in the zeroth approximation in ~ 1 )  and 
subtract from it  the function G O  in the absence of a 
potential. As a result, we obtain converging integrals 
that do not depend on the order of the integration and 
the calculation of the trace. Such a procedure is ap- 
plied in the calculation of the charge density in ordinary 
superconductors." As  a result, we obtain from (24) 

where k2 = 8e2m/d has the meaning of the square of the 
reciporcal screening radius, and differs from the k2 of 
Tomas-Fermi for an isotropic metal by the fact that in 
place of the Fermi wavelength there appears the char- 
acteristic scale of the fall-off of the Wannier function. 

In correspondence with the condition (211, we shall 
assume that X, = 2eun (the part of the phase that is in- 
dependent of n does not have a value; to it corresponds 
a change in the potential cp by a constant amount). We 
shall seek a solution of (25) in the form 

q ( 2 )  = E z + q n ( z ) ,  (2 6) 

where qo'(z) is a periodic function with period a. It 
follows from (26) that 

cp,=aEn+Q+EI, (27) 
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where and Z a r e  the diagonal matrix elements of the 
function @ and a r e  linearly periodic functions with 
period a; they do not depend on the number n. The 
first  term in (26) drops out of the left side of (25); this 
term is determined by equating to zero of the term 
under the summation sign in the right hand side of (25), 
a term that is increasing linearly with z: 

Thus, the fall-off of the potential aE in a single period 
is equal to v. For  the periodic part of the potential, 
we obtain the following equation from (25)- (28): 

GT P ~ ~ Z ~ = ~ S ~ ( Q + E H )  C wz(z-an), 

the solution of which has the form 

where U is a function satisfying the conditions U1'(z) 
=w2(z) and l i m ~ ( z )  =O, z- ", while 

+- 
a'=d I [U' ( z )  l a  dz. 

In order of magnitude, a - d  and z -d. However, if the 
function d ( z )  is even, then Z = O  and, according to (291, 
@ = O .  If the distribution of quasiparticles over the 
branches of the spectrum were also perturbed, then the 
numerator in (29) would have the form 

CALCULATION OF THE TRANSVERSE CURRENT 

For calculation of the current, we need to separate 
in (17) the component corresponding t o g  and, carrying 
out a transformation that is the inverse to (14), we 
substitute i t  in Eq. (9). The results can be reduced to 
the following form: 

e de 
j = - j - - ~ e , ~ p o ~ { [ ( & ~ ~ + g + # ~ + & * ) ~ - ~ +  32 2n 

- [ A +  (@"A-&+&A-gA) I+) J ,  (30) 

where [. . . ]+ denotes the anticommutator. The quan- 
tity 

does not depend on z, a s  can easily be shown. A rough 
estimate gives the order-of-magnitude value J - ~lmd/a .  
Calculation of (30) under the condition that V= 0 and the 
phase difference between neighboring layers 6x does 
not depend on time gives the Josephson relation between 
j and 6x: 

j=j. sin 8x 

-such a result was, obtained earlier with the help of 
the Ginzburg- Landau equation.' 

Now let the phase difference increase linearly in 
time according to (21). As was shown in the preceding 
section, this means that a constant potential V=Nv is 
applied to the sample. In this case we can obtain from 
(30) the following expression, which determines the 
current : 

where 

The quantity UL characterizes the transverse conducti- 
vity of the layered metal in the normal state, the order 
of magnitude of which is DL- e27&:dm, where TE; has the 
meaning of the reciprocal time of hopping between 
neighboring layers. 

Thus the transverse conductivity is proportional to 7, 

just a s  the longitudinal. We note that in dirty quasi- 
two-dimensional conductors (7 s 1 <d), we also have 71' 
-7d; this result was obtained experimentally on TTF- 
TCIQ,'~ and a physical interpretation was given to it. 

It is seen from (31) that a t  constant voltage on the 
sample, in addition to the constant component, there 
is an alternating one in the current, with frequency 
2ev. The component corresponding to the constant 
current has a simple physical meaning-the integral 
contains the product of the state densities in different 
layers and the difference between their distribution 
functions. If we use the equilibrium distribution for 
the distribution function in (311, the expression for  the 
current (31) will differ from the similar expression for 
the Josephson tunnel junction only in the value of the 
resistance. This type of voltage dependence of the 
current has been analyzed in many researches (see, 
for example, Ref. 13). In particular, a t  high voltages 
(V = V/N i> A, T), 

and the value of the critical current a t  ev << A is 

However, the distribution function n differs from the 
equilibrium one. At T T ~ C :  << 1 the nonequilibrium cor- 
rection is proportional to the small parameter 77, d 
but on the other hand it contains a divergence a t  & = A ,  A 

+ v connected with the divergence of the density of 
states. But, since the distribution function in Eq. (31) 
is multiplied by the density of states, an unintegrable 
divergence is obtained under the integral. In fact, the 
divergent expression is of course valid only a t  I c 
- A[, [ c - v -  A [  >1/7 a n d i s  cut off inside thesein- 
tervals. The part of the direct current connected with 
the nonequilibrium nature of the distribution function a t  
TT,E :<<~ ,~ /T ,  <<v, A<<T, 1?~-2~[>>1/7 , ,  calculated 
with logarithmic accuracy, has the form 

u m.e? j - u+ A 
a 2T [ (u+2A)" 

In UT. 

Thus, in this case the difference of the shape of the 
volt-ampere characteristics of the Josephson tunnel 
junction and the quasi-two-dimensional superconductor 
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is small. 

At 77. c21 >> 1 the difference of the distribution function 
from the equilibrium value is not small, while the de- 
pendence of the current on the voltage in the quasi-two- 
dimensional superconductor differs greatly from the 
dependence in the Josephson tunnel junction. We shall 
not calculate the current in this case. 

We have calculated the current in the case of a given 
voltage on the sample. In the specified current regime, 
the volt-ampere characteristic of a quasi-two-dimen- 
sional superconductor will obviously be similar to the 
characteristic of a superconducting point contact. 

CONCLUSION 

Microscopic equations have been obtained in the pres- 
ent work, describing nonequilibrium processes in 
quasi-two- dimensional superconductors. These equa- 
tions a r e  similar to the equations for the nonequili- 
brium Green's functions, integrated over 5, which de- 
scribe the kinetics of ordinary three-dimensional sup- 
erconductors. The obtained equations a r e  used for the 
calculation of the current arising in a quasi-two-dimen- 
sional superconductor under the action of a constant 
voltage applied transverse to the layers. It is shown 
that a t  a sufficiently weak interaction between the lay- 
e r s  in the sample, in addition to the constant current, 
an alternating current also develops, i. e., a nonsta- 
tionary Josephson effect takes place. The frequency of 
the oscillations and the voltage developed across a 
single layer, a s  in tunnel junctions, a r e  connected by 
the Josephson relation. The electric field is not equal 
to zero over the entire volume of the layered supercon- 
ductor. The energy distribution of the quasiparticles 
can deviate significantly from equilibrium, this non- 
equilibrium character leads to an increase in the ener- 
gy gap of the superconductor. 

We have considered the case in which the periodicity 
of the crystal in the transverse direction is not violated. 
In the solutions of the kinetic equations obtained by u s  
for a periodic and homogeneous crystal, the fields and 
the currents in the different layers a r e  identical, i. e., 
the oscillations in them a r e  synchronous. However, in 
real crystals, there can be significant departures f rom 
periodicity, for example, those connected with inter- 
calation. Such a crystal should correspond to a system 
of Josephson junctions that differ from one another. In 
such systems, a s  is well known, the oscillations in the 
different transitions can become synchronized even in 
the case of different junctions, if their parameters a r e  
close together (see, for example, Ref. 14). Therefore, 

i t  should be expected that synchronized oscillations will 
also ar ise  in layered crystals with small departures 
from periodicity. 

According to the estimates given in the review,' the 
parameters of several quasi-two-dimensional super- 
conductors satisfy the necessary requirements and it 
would undoubtedly be of interest to observe this effect 
experimentally. Observation of the nonstationary Jo- 
sephson effect in layered crystals can obviously be of 
interest from the point of view of applications, since 
the characteristic voltage on the sample is N times 
greater than in the case of a tunnel junction, and con- 
sequently the power of the Josephson radiation from 
junctions should increase also. 

The author is grateful to A. F. Vol'kov for useful ad- 
vice and comments. 
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