
I t  i s  known that in a system of interpenetrating oppo- 
site ion beams moving a t  a velocity V 2 C,, one can ex- 
pect an aperiodic Rew = 0 ion-acoustic instability. In 
our case this condition is violated already during the 
formation of a well when i t s  depth becomes cp a T,/e .  
Moreover, interpenetration of the opposite beams i s  not 
observed experimentally in the x = 0 plane, i.e., the 
waves a r e  not excited by the two-stream instability but 
by the initial bunching of ions whose flight time to the 
plane i s  approximately the same because of the approx- 
imately parabolic nature of the potential near the bottom 
of the well. 

As shown above, the nature of the motion of ions 
trapped in a potential well of a n  ion beam i s  largely 
governed by the space charge of the ions. The phase 
trajectories of the ions then differ qualitatively from the 
case of motion of noninteracting trapped particles. In 
particular, the ion space charge prevents the appear- 
ance of multivelocity motion typical of the case of f ree  
oscillations of charges in the well field. The phase pic- 
ture of these motions i s  disturbed already after the f i rs t  
quarter of the period o when the trapped ions f i rs t  col- 
lect near the bottom of the well. The rapid accumula- 

tion of this space charge results in generation of non- 
linear ion waves diverging to the walls a t  a supersonic 
velocity. The process of wave creation i s  character- 
ized by a frequency close to the ion plasma value, which 
corresponds to the density near the bottom of the poten- 
tial well. The resultant bunches of the ion density re- 
semble the formation of a sequence of ion-acoustic sol- 
itons a s  a result of decay of a low-frequency large-am- 
plitude perturbation in a plasma.' 

It follows that the dynamics of filling of a current dis- 
continuity in an ion beam is associated with the excita- 
tion of a strongly nonlinear wave process caused by the 
interaction of the trapped ions. 
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The production of electron-positron pairs by photons in the electromagnetic field of a strongly compressed 
discharge current channel is investigated. The dependence of the cross section on the pinch radius is 
connected mainly with the need of transfering the momentum to the electromagnetic field. With increasing 
channel radius, the cross section decreases rapidly because of the impossibility of momentum transfer. For 
high-energy gamma quanta, the main contribution is made by the region of distances far from the axis. In this 
case the cross section is determined by the logarithmic asymptotic expression for the field of a current 
regarded as a charged current carrying filament, and is independent of the radius. It is shown that with the 
aid of the pair-production process it is possible in principle to resolve the spatial structure of the pinch in the 
angstrom range, and consequently to determine experimentally whether the strong compression to the linear- 
atom state, predicted by the theory of equilibrium and radiation of a strong-current plasma, can be realized in 
pinches. 

PACS numbers: 52.55.E~ 

1. INTRODUCTION 

An analysis of the phenomena that accompany the pinch 
effect in a high-current diode,lm5 based on the theory of 
equilibriums and collisionless rad ia t i~n ' '~  of a dense 
high-current plasma, leads to the conclusion that the 
compression of the current channel can proceed up to 
degeneracy of the electrons, i.e., up to the density of 
the condensed state a t  high temperatures. The presence 
of such an unusual state of matter, the so-called linear 
atom,' makes i t  possible to explain consistently an ag- 
gregate of phenomena that accompany the pinch efect. 
Nonetheless, to prove experimentally the presence of 
linear atoms in the pinches, direct measurements must 

be made of the channel radius in the angstrom band dur- 
ing the nanosecond durations of the supercompressions. 

The traditional methods of plasma study by means of 
i t s  own radiation do not permit direct measurement of 
the radius of the current channel in the angstron band. 
The difficulty of measuring the radius of a pinch com- 
pressed to the state of electron degeneracy a r e  similar 
to those encountered, for example, when attempts a r e  
made to determine the radius of the hydrogen atom from 
i ts  emission. If the high-current compression reaches 
the state of electron degeneracy, i.e., atomic dimen- 
sions, then the electrons in the field of the current be- 
come likewise subject to the laws of quantum electrody- 
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namics. In attempts to find a tool capable of spatially 
resolve the current channel in the angstron range, i t  i s  
natural to turn to interactions between extraneous par- 
ticles and the electromagnetic field of the pinch. 

We consider in this paper pair production by photons 
in the electromagnetic field produced by the current- 
channel plasma. To simplify the formulas we use a 
system of units with A= c = 1. 

In the pair-production process, the recoil momentum 
is transferred to the external field. I t  i s  obvious that 
the momentum q  can be transferred to the field provided 
that the characteristic field-variation scale r, 5 l / q .  
The minimum momentum that must be transferred to 
the external field for pair production by a photon of fre- 
quency w i s  of the order of 

I t  i s  easily seen that a t  o 2 2m the momentum trans- 
fer  i s  of the order of m. This means that the charac- 
teristic size of the reaction region is of the order of 
l /m-  10-"cm and consequently the scale of variation of 
the external field should be of the same order, On the 
other hand, to measure a radius Y, "10'8cm by the 
pair-production method it i s  necessary for the gamma 
quantum to have a n  ultralativistic energy w>> m such 
that 

The characteristic time of the process i s  of the order 
of the time of flight of the photon through the reaction 
zone, sec. The state of the pinch does not 
change significantly within so  short a time, so  that the 
photon "feels" the true instantaneous field produced by 
the plasma charges. We separate from the true micro- 
scopic field $, i t s  value averaged over the ensemble of 
chargesA, = ,&,) : 

A, i s  the mean field of the collective interaction of the 
charges, and a, describes the field fluctuations, includ- 
ing those of the Coulomb field near the nuclei. 

In first-order perturbation theory in the external field, 
the cross  section of the process i s  expressed by a bi- 
linear combination of d,: 

By virtue of (1.2) the cross  section averaged over the 
various charge configurations i s  represented in the form 
of a sum of cross sections 

da=do,,~(A,A,+(n,,o,'>) --do,+dn., (1.3) 

where do, is the cross  section of the process in the 
mean field, and do, i s  the cross  section for pair produc- 
tion on the field fluctuations, including Coulomb fields 
near individual charges. If a large number a r e  simul- 
taneously present in the reaction zone and the mean field 
varies substantially over these distances, the main con- 
tribution to the pair production i s  made by the mean 
field-the first  term in (1.3). In the opposite limiting 
case of a slowly varying mean field A>> 1, the cross  sec- 
tion da, decreases rapidly with increasing r,, and the 
main contribution to the cross  section i s  made by the 
second term in (1.3). 

We shall assume the current channel to  be cylindric- 
ally symmetrical and uniform along the current and in 
azimuth. For the fields produced by the pinch plasma, 
the nonzero components of the 4-vector of the potential 
A, of the average field of the collective interaction a r e  
A, and A,. Near the current axis, A, depends quadra- 
tically on the radius, while a t  large distances from the 
axis it increases logarithmically: 

Here p i s  the linear charge density and I is the pinch 
current. 

In the transition region r-r, (Y, is the radius of the 
current channel) the A,@) dependence is determined by 
the plasma equilibrium conditions and depends on the 
concrete parameters of the pinch. In the particular 
case e Ip I =2Tt,  Ie(p- PI) I = ~ T L ( T L =  ~ ~ ( 1 -  P ~ ) " ~ ;  T i  
and T, a r e  the respective termperatures of the ions 
and electrons in the coordinate f r a m e s  moving with 
the charges) we get the so-called Bennett distribution'' 

where < 181 11, fi=v,/v, and v, i s  the electron driftvel- 
ocity. The energy of interaction of one charge with the 
fieldA(r) i s  of the order of 

Since m&'/e=17 kA, i t  follows from (1.6) that the char- 
acteristic energy scale of the electrons in the field of 
the pinch i s  2mc2  if 1 2  17 kA. 

Since specialists engaged in plasma physics hardly ev- 
e r  deal with quantum electrodynamics, we present below 
a detailed calculation of the c ross  section of the process 
of pair production by a photon in the pin.& field, using 
the diagram method of perturbation theory. The condi- 
tion under which the external field can be regarded a s  a 
small perturbation i s  

From this i t  follows, in particular, that for currents I 
217 kA the field of the collective interaction can be re-  
garded a s  a perturbation only in the ultrarelativistic 
case w>>m. 

2. PAIR PRODUCTION BY A PHOTON I N  A 
CYLINDRICALLY SYMMETRICAL FIELD 

The production of an electron and positron with mo- 
men& p, and p+ by a photon with 4-momentum k corres- 
ponds in second-order perturbation theory (in f i rs t  or- 
der in the external field) to two Feynman diagrams: 

P- -P+ P- Ft 

The matrix element is written in the form1' 
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M I i = - e w s e .  ( q )  (4n)'" e;ii ( p - )  

where q = p, + p+ - k is the 4-momentum transferred to 
the external field, e, is the photon-polarization 4-vec- 
tor, k sk,y,,u is the bispinor amplitude of the wave 
function, E = u +yo, and y, a r e  the Dirac y matrices. 

The differential c ross  section of the production of an 
electron in the momentum interval (p,, p_ + dp-) and a 
positron in the momentum interval p+ + dp+ i s  of the 
formlo 

Averaging over the polarization of the primary photon 
and summation over the polarizations of the secondary 
fermions yields 

Here 

Sp stands for the operation of calculating the spur of the 
matrix 

K= yoK'yo, x* = (kp,)/w = h - np,, 4 a r e  the energies of 
the positron and electron, and n = k / c ~  i s  the photon 
propagation direction. 

Calculation of the spur yields 

( p + p - )  i s  the scalar product of the 4-vectors. 

The component So, of the tensor (2.4) yields the well 
known result of Bethe and Heitler for the c ross  section 
of pair production in the electrostatic field of the nucle- 
us. Pair  production by photons in a nuclear field i s  a 
process described in detail in the literature. We shall 
therefore consider in detail the process of pair produc- 
tion by a photon in the mean field A, and calculate doA 
in (1.3). 

In the case of uniformity along the current channel, 
the Fourier component of the field A,(q) contains a 6- 
function of q, . Separating in A ,  ( r )  the amplitude A, 
from the coordinate function F,(r) 

A d r )  = X , , F d r ) .  

We obtain for the Fourier component A, (q) 

Here qL is the projection of the vector q on the plane 
perpendicular to the current direction. 

In the calculation of f,(q,) we encounter a certain dif- 
ficulty; the integral (2.5) diverges for a potential having 
an asymptotic form (1.4) a t  large distances. To elim- 
inate this difficulty we must make use of gauge invari- 
ance. We note that addtion of an  arbitrary constant C to 
A,(r) adds to A,(q) a term (2n)'Cb(q) that differs from 
zero only a t  q = 0. This operation does not manifest it- 
self, consequently, in processes that require the trans- 
fer  of a finite momentum q +O to the external field. By 
suitable choice of the constant C we can express F,(r) 
in the form 

Letting R - m, substituting (2.6) in (2.5), and changing 
the order of the integration, we get 

The integral (2.7) converges for the potential (1.4) which 
is logarithmic a t  large distance. 

As R - a, however, the constant C also  becomes in- 
finite. If, however, we recognize that the length I of the 
current channel is finite, then i t  becomes clear that the 
asymptotic form (1.4) holds in the region r,<<r<<l, and 
consequently C - ln(l/r,). 

In the particular case of the Bennett distribution (1.5) 
we have 

K,(z) is a Macdonald function. Inasmuch as in the case 
of a Bennett distribution the coordinate dependence of 
both components of the 4-vector of the field potential i s  
the same, fB(q,) does not depend on ct. 

It is seen from the concrete example of the Bennett 
distribution that the Fourier component of the field po- 
tential in the region q,r,>> l decreases exponentially 
with increasing radius r, of the current channel. This 
is due to the difficulty of transferring the momentum q, 
to the field in the case  when the characteristic dimen- 
sion r, of the region of the field variation i s  large com- 
pared with l/q,. Of course, a rapid (but generally 
speaking not necessarily exponential) decrease of f,(q,) 
in the region q,r,>> 1 i s  a feature of potentials F,(r) of 
arbitrary form that go over from a constant value a t  
r <<Yo to a logarithmic growth ad distances r>>r, far 
from the axis. 

In the opposite limiting case of a thin charged cur- 
rent-carrying filament q,r,<< l the main contribution t~ 
the integral (2.7) is made by the region of distances 
r"l/q,>>r, far  from the axis. In this case the Fourier 
component of the potential ceases to depend on r,: 

This property i s  likewise not necessarily due to the 
Bennett distribution (1.5), and i s  only the consequence 
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of the logarithmic behavior of the potential (1.7) a t  large 3. ULTRARELATIVISTIC CASE 
distances from the current axis. 

The independence of the field A,(r) of time and the un- 
iformity along the current direction lead to conservation 
of the energy and of the momentum projection on the 
current direction, a s  is manifest by the appearance of 
J(q,) in (2.5). Assuming, a s  usual, the square of the 6 
function to mean 

( I  is the length of the current channel), we reduce the 
cross  section du, (1.3) to the form 

Recognizing that the only nonzero components a r e  A, 
and A,, we can simplify somewhat the expression for 
SaB (1.4) with the aid of the 6 functions in (2.10). The 
final formula for the cross  section of pair production in 
a cylindrically symmetrical collective-interaction mean 
field i s  

For further investigation i t  i s  convenient to introduce 
a coordinate system defined in the following manner. 
The z axis i s  directed along the current. The x axis is 
chosen such that the wave vector k of the photon lies in 
the xz plane and makes an angle a, with the x axis  (Fig. 
1). Let p, be the projection of the vector p on the xz 
plane, 6 the angle between p and p,, cp the angle between 
p and the x axis, and = cy - a, the angle between p, and 
k. Thus, 

p,=lpls in0,  pX=lplcos0coscp, p,=lplcosOsinq, 
(2.12) 

dJp= 1 pl E ~ E  cos 0d0dc. 

The momentum transferred to the field i s  expressed in 
terms of the coordinates p = Ipl, 6, and 6 in the form 

-q2=qZ=2(o (0-p+ cos 0, cos c+-p- cos 0- cos 5 - )  
-mZ-E+E-+p+p-[sin 0, sin 0-+ cos 8, cos 8- cos i t+ -5 - )  I ) .  (2.13) 

FIG. 1 

Since the Fourier component of the field i s  a rapidly 
decreasing function of the momentum transferred to the 
field, the main contribution to the c ross  section i s  
made by the region of the minimum possible values of 
q,. In the region of not too hard quanta w 2 2m, the mo- 
mentum transferred to the field upon formation of the 
pair (2.13) i s  q, -m, corresponding to a spatial scale of 
the order of 10'8cm. To change to the scale of order 
10'8cm, which is of interest to u s  from the point of 
view of observing a linear atom in a pinch, i t  is necess- 
a ry  to turn to the relativistic case: 

o ~ m .  (3.1) 

I t  is known that under the condition (3.1) the electron 
and positron propagate in the laboratory frame in a nar- 
row cone in the direction of the initial photon with an 
apex angle on the order of m/o<< 1. Expression (2.13) 
for the momentum transferred to  the field must be ex- 
panded in powers of the small angles and of m/w up to 
terms of fourth order. We obtain 

To simplify the notation, we have changed from the 
angles 6, and & to the quantities 

6+=ea0+lmt r,=~,C*/rn. 

It i s  seen from (3.2) that in the region 9, - 1 and 7," 1 
the quantity q2 is of the order of m2. The last term of 
(3.2) is a small quantity of order m2/w2<< 1. This term, 
however, i s  significant in the narrow region 

in which the momentum transferred to the field becomes 
small: q 2 - m 4 / d  <<m2. In the region (3.3), accurate to  
m2/w2<<1, the angles 9, and 8- ,  a s  well as r+ and T - ,  

a r e  equal in absolute value but a r e  of wposite sign. 
However, 8, and T+ themselves a r e  of the order of unity. 
We note that in the derivation of (3.2) the last term was 
obtained by using the condition (3.3). 

The region (3.3) corresponds to the smallest momen- 
tum that must be transferred to the field, and makes the 
principal contribution to the pair-production section in 
the ultrarelativistic case. The characteristic spatial 
scale i s  in this case of the order of w/m2 and increases 
with the photon energy. In the ultrarelativistic case, 
depending on the photon energy, the parameter A (1.1) 
can be larger a s  well a s  smaller than unity. 

Relation (3.3) shows that the produced electron and 
positron a r e  emitted a t  almost equal angles to the ini- 
tial photon propagation direction, but on opposite sides. 
This i s  a general property of pair production by a pho- 
ton in the ultrarelativistic case. It is connected only 
with the expansion (3.2) of the momentum transfer near 
i t s  minimum value, and does not depend on the nature 
of the external field. 

The specifics of the cylindrical symmetry of the field 
manifests itself in conservation of the momentum pro- 
jection on the z axis. The corresponding 6 function in 
(2.11) reduces in terms of the coordinates (2.12) to the 
form 
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i m o  
6 (k.-p+.-p-.) = - ( +  - - ~ + + a )  , o>m. 

m cos a 2e,e- 

. (3.4) 
When (3.4) i s  taken into account, the angular dependence 
of the momentum (3.2) transferred to the field takes the 
form 

In the ultrarelativistic limit (3.1) we have 

Integration with respect to &- and T- i s  with the aid of 
6 functions. From (2.11) we get 

Here w = &+ + E, .  

In the particular case of the Bennett distribution (1.5) 
the Fourier component takes the form (2.8), and the 
c ross  section i s  equal to 

(A,-A, sin a)' 

(3.7) 

Here q, = Iql i s  given by (3.5). 

We continue the analysis of the c ross  section of the 
process for the limiting cases  of small and large radius 
r,, using the Bennett distribution as the example. As 
noted in Sec. 2, the general properties of the pair-pro- 
duction process in the limiting cases X << 1 and A >> 1 a r e  
not connected with the concrete dependence of the poten- 
tial A,(Y) in the region r-yo.  

4. CASE OF LARGE RADIUS X >> 1 

In the limiting case A = m2ro/w>> 1 the Fourier com- 
ponent of the field i s  exponentially small (2.8), and this 
leads to exponential smallness of the pair-production 
c ross  section. If the function (2.8) is exponential, the 
condition A>> 1 narrows down the range of angles that 
make the principal contribution to the c ross  section: 

u=t?++ 6--mloh'"<m/o, 6,-h-'"<I, r+-A-'"al. 

This means that we can put u = 9, = T+ = 0 in the pre-ex- 
ponential factor. The dependence of the cross  sections 
on the angles i s  determined by the exponential factor. 

The energy distribution of the produced particles has 
a sharp maximum near the value E = w/2 under the con- 
dition 

1. We have: 
Lro eb ((A. sin a-X,)' do =- exp(-2qLro), aw l ,  (4.1) 

' de, dit+ dr+ du 2 m3 

where 

Integration of (4.1) with respect to u yields the distribu- 
tion with respect to the positron parameters 

Ira e' dor =-- ( A ,  sin a-X,)' 
ds+d6+dr, 2 m3 

4h 
- - 6+'-4A~+~ cos a , hwl 

cos a I 
Integrating (4.2) with respect to the angles, we obtain 

the energy distribution of the positrons: 
do, n" lr ,e~(Xo sin a-X,)'o'" 

-=-8 

ds+ 2". m5r," cos'" a 

The total c ross  section of the process is 

The c ross  section of the process of pair production by a 
photon in a cylindrically symmetrical field, a s  a func- 
tion of the angle a between the photon emission direc- 
tion and the plane perpendicular to the current direc- 
tion, has (at A>> 1) a sharp maximum a t  a = 0. 

5. REGION OF HARD GAMMA QUANTA 

We consider now the opposite limiting case, that of a 
small radius and (or) hard gamma quanta: 

In this case the Fourier component of the field (2.9), 
and hence a lso  the pair-production c ross  section, does 
not depend on the radius r, of the current channel. This 
is due to the fact that under the condition (5.1) the main 
contribution i s  made by the region of the logarithmic 
A,(r) dependence, a region far from the axis. The con- 
crete structure of the pinch in the region r-ro does not 
affect in this case the pair-production cross  section. 

The general formula for the differential cross  section 
of the reaction in the region (5.1) i s  of the form 

do* - - (E+'+E-') (Xo-Az sin a)' 
"' 1 x+x-(uz+Bz) da, d6, d ~ ,  du nmZe+~-  cos a 

Here u = 9, + a_, w = &+ + &-, and 

We do not write out the cumbersome formulas and con- 
fine ourselves to the limiting cases a = 0 and a- r/2, 
when the photon propagates perpendicular and parallel 
to the current direction. 

At a = 0 the distribution of the c ross  section with re- 
spect to the positron parameters i s  given by 
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Integrating with respect to the angles, we obtain the 
distribution of the positron in energy: 

The total c ross  section of the process a t  a! = 0 and A << 1 
is 

where a = 8 = 1/137 is the fine-structure constant. 

We now consider the case cr - n/2, o r  more accurately 

In this case kina!>> 1, but on account of the f i rs t  ineq- 
uality of (5.6) the value of B2 (5.3) is small a s  before: 
B2 - ( m / ~ ) ~  t 2 a  << 1. The angular and energy distribu- 
tion of the produced positrons is of the form 

do* 81e'o ( X o - A z ) 2  E ( l - E )  [E ' f  ( I - E ) ' ]  
-= 
dE di3 dr  mk { ( l + ~ ~ + ~ ~ ) ~ ( l + @ ~ )  

+ 4 E 2 ( l - E ) Z ( 8 Z + ~ z )  I n  
( 1 + 6 2 + ~ 2 ) ' ( 1 + 6 2 )  ' a -' 2 

(5.7) 

The c ross  section of the reaction a s  a function of the 
positron energy is of the form 

doA - 1 6 n  le'o (X,-A,) '  
{ ~ ( l - E )  [E2+ ( I - E l z ]  

dE 3 m' 

Finally, integrating (5.8) with respect to E from zero 
to unity we obtain the total c ross  section 

344n le'(A,-A,)'o n  
or=7-;- , a+- 

2 ' 
I ,  w>m.  (5.9) 

d23 m' 

In the case of a cylindrically symmetrical field, the 
c ross  section for pair production by a photon is propor- 
tional to w/m and not to ln(w/m) a s  in a centrosymmet- 
r ic  field, and consequently increases much more strong- 
ly with increasing photon energy. 

In the intermediate region h - 1  expressions (4.4), 
(5.5), and (5.9) yield a value of the same order: 

By virtue of (1.6), with increasing current I the c ross  
section (5.10) increases in proportion to 12 and in the 
region ct(d/mc3)2 2 1, i.e., a t  I 2 200 kA, the cross  sec- 
tion for pair production by a photon in the mean field of 
the collective interaction of the pinch charges becomes 

FIG. 2. 

larger than the geometric c ross  section IY, of the cur- 
rent channel. 

To trace the dependence on the angle a between the 
photon propagation angle and the plane perpendicular to  
the current, we present the total c ross  section of the 
process a t  A<< 1 in the case of an electrically neutral 
(p = 0 in (1.4), and hence A, = 0) current channel: 

l l n  le'X.2o 
a,=- f ( a ) ,  Ao=O, A C I .  

45 m' 

The function f (a)  i s  given by 

and i s  plotted in Fig. 2. The integral in (5.12) is ex- 
pressed in t e rms  of elliptic integrals, but i s  simpler to 
find the sought dependence numerically with a computer. 
We point out that, in contrast to the case A>> 1, the 
c ross  section increases with increasing angle 0 in the 
region (5.1). 

6. DISCUSSION 

We compare now the c ross  section 0, for pair produc- 
tion in the mean field of the collective excitation with the 
the c ross  section a, (1.3) of this reaction on field fluc- 
tuations near individual charges. Noting that the cur- 
rent I is connected with the number N, of electrons per 
unit length of the discharge channel by the relation 
I = eN,u,, assuming that the electron drift velocity i s  
vo-c, and assuming the number of ionstobe Ni "N,, we 
find that the number of charges over the length 1 is 
X - ~ ~ l - I l / e c .  The cross  section for pair production by 
a photon in the field of a nucleus is well known1': 

where Z i s  the charge of the nucleus, Y, = 8/mc2 i s  the 
classical radius of the electron. The value of 0, can be 
estimated by multiplying the c ross  section (6.1) by the 
number of charges n 

The ratio U,/U, in the characteristic region A "  1 is 
thus of the order of 

Since re " l O - I 3  cm and Y,/Y, " loQ, it follows that a t  cur- 
rents I 2 1 7  kA, in the case of singly charged ions the 
ratio (6.3) i s  of the order of 109 - lo4. Consequently, 
for a strong current I 2  17 kA, the main contribution to 
the c ross  section of pair production by a photon in a 
pinch, in the characteristic region A =  m2ro/w-1 is 
made by the mean field of the collective interaction of 
the charges. The specific dependence of the c ross  sec- 
tion (4.4) of the process in the region A >  1 gives grounds 
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for hoping to use pair production by photons in the pinch 
field to resolve the spatial structure of the current 
channel in the angstrom region. The spectral and angu- 
lar distributions of the positrons carry  information on 
the spatial structure of the current and can reveal, in 
principle, the presence of linear atoms in pinches, and 
can consequently ascertain whether the compression un- 
der the influence of the forces of collective interaction 
and radiation c o l l a p ~ e ~ " ~ ' ~ ~  can reach the s h g e  of elec- 
tron degeneracy. 

It must be noted, however, that despite the large 
cross  section of the process (" 10'13 cm2), the charac- 
teristic time of pinch evolution in the state of maximum 
compression i s  estimated a t  s lom9 sec, so  that realiza- 
tion of the proposed experiment i s  a major problem in 
high-energy experimental physics. 

The author thanks A. F. Andreev, I. M. Lifshitz, and 
L. P. ~ i t aevsk i f  for a helpful discussion. 
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Equations are obtained for the Green's function describing the nonequilibrium phenomena in quasi-two- 
dimensional superconductors. The flow of a current in a direction perpendicular to the conducting layers is 
investigated by means of these equations in dirty quasi-two-dimensional superconductors ( r ~ , < l ,  where r is 
the mean free path along the layer, E, is the width of the energy band corresponding to motion across the 
layers). For finite voltages V applied to the sample, and sufficiently weak coupling between the layers (TE 

, '<A) ,  Josephson oscillations occur in the system with a frequency 2eV/N, where N is the number of layers in 
the system. In  contrast to tunnel junctions, in which the electric field is localized in the dielectric and does not 
enter the superconductor, the field in a quasi-two-dimensional superconductor does not vanish at any point 
within the crystal. The energy distribution of the quasiparticles is not an equilibrium one and this results in an 
increase in the energy gap of the superconductor. The transverse conductivity of the system in the normal 
state has the form 0,-e 'mdr~,  

PACS numbers: 74.50. + r 

As is well known, a number of layered compounds 
become superconductors a t  helium temperatures. The 
most studied of these layered compounds a r e  the di- 
chalcogenides of the transition metals, for example, 
NbSez, TaS2, TaSeZ. The properties of such materials 
a r e  described, for example in the review of Bulaev- 
sk&' These highly anisotropic crystals consist of lay- 
ers, within which the binding between the atoms is co- 
valent, while the layers a r e  bound to one another by 
weak van der Waals interaction. The anisotropy of 
these compounds can be significantly increased artifi- 
cially by intercalation-the introduction of other atoms 
o r  molecules in the space between the layers. Thus, 
for example, the ratio of the longitudinal and trans- 
verse conductivities of 2H-TaS& increases from 28 to 
lo5 by intercalation of pyridine. The critical tempera- 

ture of superconductors of such type is determined 
basically by the interaction within the layer and changes 
in intercalation only to the degree that the characteris- 
tics of the conducting layer change upon change in the 
distance between the layers. Thus, for example, in the 
intercalation of 2H-TaSz the temperature T, increases 
from 0.8-2 K to 2- 4.5 K, and in the case of 2H-NbSe 
it decreases from 7 to 4 K. 

There is interest in the problem of the transverse 
conductivity of the quasi-two-dimensional superconduc- 
tors. If the anisotropy is sufficiently strong that the 
characteristic energy connected with motion between 
the layers is less than the value of the gap energy, 
then the superconductivity has a quasi-two-dimensional 
character.') In this case, in the flow of near- 
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