
provided the trapping interval Ak, covers the whole of 
the energy-bearing par t  of the spectrum. In the case  of 
small  soliton amplitudes the trapping interval decreases  
rapidly and the attentuation of a soliton is described by 
the relationship found in Ref. 2. 

We have considered only the attenuation of an  ion- 
acoustic soliton under the action of plasma waves. 
Clearly, this action may a lso  amplify a soliton if the 
plasma contains high-intensity short  Langmuir waves 
with k,> k,. 

We shall conclude by noting that we can consider simi- 
lar ly the problems of transformation of Langmuir waves 
under the action of collisionless shock waves, and also 
the interaction of ion-acoustic and electromagnetic 
waves. 

The authors a r e  grateful to V. I. Karpman and to G. M. 
~ r a i m a n  f o r  discussing the results. 
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The approximation of the normal skin effect is used to consider the problem of penetration of a high- 
frequency p-polarized nonlinear ionizing electromagnetic wave into a plasma under conditions when the 
plasma permittivity changes its sign in the field of the wave. The change in the permittivity from positive to 
negative values is abrupt. The limits of this abrupt change are found and their behavior is studied as a 
function of the angle of incidence and frequency of the wave. The abrupt change in the permittivity of the 
plasma at  its boundary results in a jump in the amplitude dependence of the reflection coefficient of the wave. 
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The problem of investigating the properties of a p-po- 
larized electromagnetic wave propagating in a nonlinear 
medium is of considerable interest  in theory and in 
practical applications. The problem i s  considerably 
more  difficult to tackle than the corresponding problem 
of the behavior of an  s-polarized wave because of an  in 
c rease  in the number of components of the electric field 
vector and because of the possibility of a discontinuity 
(jump) in the permittivity of the medium when the sign 
of this permittivity changes in the field of the wave.' 
Therefore, the solution of the problem should allow for  
the jump in the field and permittivity; the boundaries of 
this jump a r e  not known in advance and should be  found 
in the process of solution. 

The structure of continuous spatial distributions of the 

field of a high-frequency P-polarized electromagnetic 
wave in a locally nonlinear medium was studied by Ele- 
onskirand Silin.2'3 Our task will be t o  determine the 
structure of discontinuous distributions of the field of 
such a wave which appear when the permittivity of the 
medium changes i t s  sign in the field of the wave. We 
shall concentrate mainly on a nonlinear wave which ion- 
i ze s  a plasma with a permittivity co> 0 in the absence of 
the field because this problem i s  of interest  in practical 
tasks  of generating a plasma in a microwave discharge. 
We shall find the boundaries of a permittivity jump, and 
study their behavior a s  a function of the angle of inci- 
dence and frequency of the wave. We shall show that 
under certain conditions such a wave can only create a 
plasma with a negative permittivity. Under the same 
conditions there  may be  a finite value of the electric 
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field component parallel to the electron density gradient 
a t  a plasma resonance point and a discontinuity of the 
permittivity for a normally incident wave. The abrupt 
change in the permittivity of a plasma a t  i t s  boundary 
results in a jump in the amplitude dependence of the re- 
flection coefficient of the wave. 

1. We shall assume that a half-space z 3 0 is filled 
with a plasma whose permittivity in the absence of the 
field is E, and which adjoins a dielectric (permittivity 
E,). A plane p-polarized wave is incident from this di- 
electric a t  an angle 6 to the normal and the components 
of the electric and magnetic fields a r e  E&O, E,, EJ and 
H,,{H,, 0, 0); it is assumed that the wave is capable of 
ionizing a gas. The frequency of this wave is w>> v (v 
is the effective collision frequency). We shall ignore the 
dissipation of the wave energy associated with collisions 
of electrons on other particles and with the transforma- 
tion into plasma waves. 

We shall assume that the depth of penetration of the 
field L, i s  considerably greater than the characteristic 
lengths of diffusion, heat conduction, and redistribution 
of the density of electrons because of their heating by 
the inhomogeneous field. Then, the dependence of the 
permittivity on the field amplitude i s  local. We shall 
select this dependence in the form 

The dependence (1.1) allows for the possibility of exist- 
ence of a threshold field E, due to allowance, in the 
equation describing the plasma particle balance, for the 
trapping of electrons by  molecule^.^ When the electric 
field is less than E,, there a r e  no perturbations in the 
plasma and the behavior of the field represents a linear 
problem. 

For simplicity, we shall assume that the field depen- 
dence of the permittivity i s  quadratic: the qualitative 
behavior of the solutions i s  not affected by a more com- 
plex dependence. The practical range of the validity of 
this dependence will be discussed a t  the end of the pa- 
per. 

We shall use the following equation for the mangetic 
field of the wave5: 

If we seek the field in the dielectric in the form of a 
sum of the incident and reflected fields, omitting the 
factor exp(iwt), 

o 0 
lit = - E;: sin 0, k, = - e ib  cos 0, 

C C 

and the field in the plasma in the form 

we find that the conditions of continuity of the tangential 
components of the fields a t  the z = 0 boundary yield the 
following equations for the determination of the modulus 
of the reflection coefficient R and i ts  phase q, a s  well 
a s  of the modulus b,  and the phase cp,  of the transmitted 

wave a t  the boundary: 

111 (pIf - (82-11)'" 
tgq ,  = -=. - 

(~z-?l)'~/Ez-(p,'/&i ' & I  biz ' 

b,'=Ho2(1+Rz+2R cos rp), u,=b,'leIb,, 

where 

The amplitude of the magnetic field in the plasma b 
and i ts  phase cp a r e  given by 

( b  = wz/c), where the integration constant M represents 
the energy flux of the wave into the plasma; M = - 4~S /c .  
If far  from the boundary the plasma i s  opaque (&, - q 

0), then M = 0. 

The moduli of the components of the electric field 
(EL = E,/E,, E,,= E,/E,) normalized to E,  a r e  calculated 
from 

We then have 

The dependence (1.1) introduces also the boundary con- 
dition in the interior of the plasma: perturbations 
should disappear on reduction of the electric field of the 
wave to ha. Therefore, where 

]E l  =Eq, E=EO, (1.7) 

the solution of the nonlinear problem should join the so- 
lution of the linear problem. 

Under transparency (c0> q) conditions, the solution of 
the linear problem i s  a plane wave with the electric 
field amplitude E, traveling into the interior and, there- 
fore, 

If co 6 q, the solution of the linear problem decays with 
depth and, therefore, 

2. The solution of the f i rs t  equation in Eq. (4) i s  

where C, i s  the integration constant. 

The dependence of the permittivity E on the coordinate 
5 is given by 

The radicand in the integral should be nonnegative, i.e., 

The formula (2.2) is structurally similar to an expres- 
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sion which gives the time in the problem of motion of a 
point in the field of a central  force.6 However, in con- 
t r a s t  to the problem in the mechanics when the boundar- 
i e s  of the region of motion away f rom the force center 
a r e  given by the roots  of a n  equation of the (2.3) type, 
the presence of the factor  db/d& capable of vanishing in 
the integral in Eq. (2.2) makes the problem of determin- 
ation of the range of permissible values somewhat more  
complex. 

We can see  from Eq. (2.1) that generally three values 
of the plasma permittivity correspond to the same mag- 
netic field b.  The equation describing these values dif- 
f e r s  from the corresponding equation in the nonlinear 
theory of a longitudinal field near a plasma resonance,' 
but the qualitative result  i s  s imilar .  However, i t  i s  im- 
portant to note that the parameter  in th is  equation is not 
the amplitude of the incident field but some value of the 
field in the plasma allowed by the inequality (2.3). 

Let u s  now assume that the wave amplitude i s  such 
that the plasma permittivity &, a t  the boundary i s  nega- 
tive. Then, the value of & in the bulk of the plasma 
changes i t s  sign going abruptly through the value & = 0. 
Consequently, we shall solve the problem separately for  
the positive and negative values of & and then match the 
solutions a t  the boundaries of the jump using the condi- 
tions of continuity of the tangential component of the 
fields. Each of these solutions should satisfy the in- 
equality (2.3); the function F in the range of positive 
values of c will be  denoted by F, and that in the range of 
negative values by F - .  

We shall f i r s t  consider the case  when a wave ionizes 
a transparent plasma (&, - q >  0). Selecting C, in Eq. 
(2.1), we find that the boundary-value condition (1.8) 
yields the following expression for  the range of positive 
va lues  of the permittivity 

The inequality (2.3) [where b2(&) is given by Eq. (2.4)], 
which defines the range of physically permissible posi- 
tive values of E ,  can be transformed to 

where x = &/&,, y = q/&,. The allowed region of variation 
x must include the point x = 1. 

It is found that the structure of the solution of the in- 
equality (2.5) depends strongly on the value of parame- 
t e r  x/c,. If x/E,,,< 2, the allowed range of variation of 
E consists only of the point c = &, irrespective of the an- 
gle of incidence from the transparent region (0 < q < &,). 
If u/&,a 2, the range of allowed values of c depends 
strongly on 17. When q i s  defined by 0 < q  ql(n), where 

the range of allowed positive values of & represent  the 
interval [E,, E,] whose left-hand boundary E, var ies  on 
increase in q from z e r o  to E,. 

FIG. 1. Dependence of the magnetic field on the plasma per- 
mittivity [2n/co< (2% - Eo)/2u, u> ZJ. Curve 1 represents the 
dependence b2(&) corresponding to Eq. (2.1); curve 2 repre- 
sents the dependence b2 (&) corresponding to Eq. (3.1). 

The value of q, considered a s  a function of the para- 
meter  %/&, has  a maximum a t  x= 4 . 5 ~ ~  amounting to 
0.044&,, so  that for  &, = 1 the value E, = 4 corresponds 
to the maximum angle of incidence 8= 6". If q a  ql(n), 
the allowed range of variation consists  only of the point 
& = E,. Thus, the positive boundary of the jump in the 
permittivity for  x<2&, and for  a l l  values of q in the 
transparency range when x z  2c0 and 172 qI(x) i s  &+ = &,. 

Under these conditions a plasma with a positive permit- 
tivity can exist only in the unperturbed state; an ioniz- 
ing electromagnetic field transforms abruptly this plas- 
ma to a state with a negative permittivity. 

A more  detailed discussion i s  needed to  determine the 
positive boundary of the jump in the ca se  when xz 2&, 
and O-(qSq, .  

Curve 1 in Fig. 1 shows the dependence b Z ( c )  [Eq. 
(2.1)] in the ca se  when 2q/c0< (2u- &,)/2u At the value 
E = &+ satisfying the equation 

E + ~ - ~ T ~ E + ~  

the derivative d b / d &  changes i t s  sign. We can show that 
in the range of variation of q of interest  to u s  the value 
of &+ l ies  between E, and E,. At the point c+ the deriva- 
tive dc/dL vanishes and the range of permissible posi- 
tive values of & should b e  limited on the left by the point 
&+. The dependence b2(&) observed in the interval [&+, &,I 
is represented by the continuous curve 1 in Fig. 1. 
Thus, in this  case  the value of &+ i s  the positive bound- 
a r y  of the jump in the permittivity. The direction of the 
jump in the range of negative values of & i s  indicated by 
a r rows  in Fig. 1; curve 2 i s  the dependence bZ(&) in the 
range of negative values of &. I t  will be discussed be- 
low. 

In the case  under consideration the magnetic field in 
the range of positive values of E increases with depth, 
whereas the modulus of the electr ic  field decreases 
tending to E,. I t  follows from Eq. (2.7) that in the case  
of smal l  angles of incidence, we have 

3. The solution in the range of negative values of & 

will be sought in the form 
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For nonzero values of c the component E,  vanishes for 
7~ = 0 and the wave is transverse. 

FIG. 2. Dependence of /&-I (curve 1) and of 0.1(CI (curve 2) on 
the parameter t ) / ~ ~ ( x  = O.1Z0). 

where C is (at this stage) an arbitrary constant. Its 
value and the highest negative permittivity c,, repre- 
senting the negative boundary of the jump, can be found 
from the conditions 

In the case when n<  2c0 and 7~ has any value in the trans- 
parency range or  when x 3  2c0 and ?> ql, we obtain 

We can see that the value of C is negative like c, . 
At low angles of incidence (11 << d 4 ) ,  we have 

The range of validity of the f i rs t  of the above formulas 
i s  given by the inequality g << 4&2,/x SO that a t  low values 
of x this formula can be used in a wide range of angles 
of incidence. The values of I & - 1  (curve 1) and 1CI (curve 
2) a r e  plotted in Fig. 2 a s  a function of p/c, for x/c, 
= 0.1. 

A study of the dependence b2(&) [Eq. (3.1)] in the range 
of negative values of c shows that the magnetic field i s  
a monotonically rising function of lcl. The fields E ,  and 
Ell a r e  characterized by a considerable variation in the 
vicinity of E- .  Then, El decreases in the region 2 c 

E, ,  where 

(C-I) "02 
l e l  =--- 

2q 

At the point the field E, has a flat minimum and then 
i t  r i ses  slowly approaching asymptotically the value 
(7~/2n)'/~ in the limit l & I  - m. The electric field com- 
ponent Ell increases on increase in ( & I .  

If x< 2c0, then near the boundary of the jump (&- & - )  
the field E, predominates over the field Ell irrespective 
of the angle of incidence from the transparent region. 
The ratio of these two components is maximal for & = & _  

and is given by 

ELZ/EI l2=q&~/~-yeO-q) .  

Away from the jump the ratio of the field components is 
reversed and Ell begins to predominate so that in the 
bulk of the plasma the electric field vector rotates. 

The most interesting field pattern is observed in the 
case of normal incidence of the wave (7 = 0). According 
to Eq. (3.3) the negative boundary of the jump c-  tends 
to zero together with 7~ a s  p''2 and, therefore, the field 
component E, parallel to the electron density gradient 
remains finite a t  the boundary of the jump in the limit 
7J- 0 (6% = c,): 

We thus find that for x< 2&, and normal wave incidence 
a transverse electromagnetic wave i s  excited by the 
longitudinal component of the field whose amplitude is 
~,(&, /x)"~ at the plasma resonance point. This effect i s  
nonlinear: it i s  associated with the  specific nature of 
the dependence of the plasma permittivity created by the 
wave field on the angle of incidence of the wave. 

The inequality (2.3), where b2(&) i s  given by Eq. (3.1), 
determines the range of permissible negative values of 
the permittivity and i t  is obeyed by a l l  negative values 
of & beginning from c-. Since the range of permissible 
positive values of c consists of the point & = c,, the re- 
verse jump from the negative & to the positive values on 
reduction in the amplitude of the incident wave i s  pos- 
sible only a t  the point c = &, and, consequently, there i s  
no hysteresis in respect of the incident wave amplitude. 

For n >  2&, and small angles of incidence the positive 
boundary of the jump is the value c, given by Eq. (2.8). 
In the limit g- 0 we have c, " 7 ~ " ~ -  0 and the field com- 
ponent E,  disappears a t  the point & = 0. 

The negative boundary of the jump and the constant C 
can be found from 

where b, i s  the modulus of the magnetic field a t  c = E,. 

In the limit q-- 0, we have c, - 0 and C- 0 so that the 
boundaries of the jump merge a t  the point E = 0. The 
field and permittivity vary continuously across  the plas- 
ma resonance point E = 0 and everywhere in the plasma 
the following formula applies: 

bZ = 
E:(~x/Eo-1)- E*' 

2x 

It should be noted that in this case the field component 
E, vanishes everywhere including the point & = 0. 

The transition from the negative values of E to the 
positive ones occurs in the reverse order when the am- 
plitude of the incident wave i s  reduced: the transition is 
from the point E -  to the point E,. This can be seen in 
Fig. 1 since & -  i s  the smallest negative value from 
which we can go to curve 1 retaining the tangential com- 
ponents of the field. 

The above solution allows us  to calculate, with the aid 
of the formulas in Eq. (1.3), the reflection coefficient of 
a wave incident on a plasma. It is interesting to consid- 
e r  the behavior of this coefficient in the case when there 
is a jump of the field and permittivity. Since the plasma 
permittivity a t  the boundary changes abruptly in a cer- 
tain range of amplitudes, there i s  a corresponding jump 
in the dependence of the reflection coefficient of the 
wave on i ts  amplitude. 

For simplicity, we shall consider the case x(w) < 2&,. 
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The formulas in Eq. (1.3) a r e  expressed in terms of 
quantities which a r e  conserved after transition across  
the jump so that the modulus and the phase of the reflec- 
tion coefficient a r e  equal to the values R, and $, found 
from the linear theory for variation of the field ampli- 
tude a t  the boundary from E, right up to E - ,  where the 
amplitude a t  the boundary corresponding to the permit- 
tivity & _  a t  the same boundary i s  

If E Z- E-, the permittivity a t  the boundary E, i s  negative 
and the reflected field i s  strongly enhanced. Thus, for 
E = E- the modulus and phase of the reflection coeffi- 
cient have a discontinuity. The magnitudes of the dis- 
continuities a r e  

(the symbol + 0 in the arguments means that the ampli- 
tude approaches the value E -  from above). 

According to Eq. (1.3), tan$ is proportional to db/dE 
=F,(E) from Eq. (2.3). We can show that in this case 
the value of & -  is given by the root of the equation F - ( E )  
= 0 and, consequently, we have $ ( E - )  = 0. 

Figure 3 shows the dependences of the modulus R 
(curve 1) and of the phase (curve 2) of the reflection 
coefficient on the amplitude of the incident wave in the 
case when E, = 1 and the initial state of the plasma i s  a 
neutral gas with R, = $, = 0 ( x =  0.07, c2= 1, b= 10"). If 
allowance i s  made for the diffusion of electrons and spa- 
tial dispersion, i t  i s  found that the reflection coefficient 
varies continuously though rapidly in the region of the 
jump (dashed part of curve 1). Calculations show that 
the dependences of R and q5 on the angle of incidence in 
the range of fields E 2 E ,  a r e  relatively weak, a s  ex- 
pected for high values of the electron density in the 
plasma. 

The solution of the problem in the E, = 0 presents no 
difficulties and we shall not consider it in detail. We 
shall simply note that the plasma exists in the range 
where t. < 0 and the fields vary continuously in this re- 
gion. 

If a wave i s  incident on a plasma boundary a t  an angle 
82 b,, where b, i s  the angle of total internal reflection 
from the unperturbed plasma (7 3 c,), it follows from 
Eqs. (2.1) and (1.9) that 

With exception of the range of variation of q, the solu- 
tion (3.7) is similar to the solution for a surface elec- 
tromagnetic wave7 and, therefore, we shall not discuss 
i t  in detail. The range of allowed positive values of & 

corresponding to all  H. represents the interval [&,, c,], 
where &+ i s  the root of the equation db/d& = 0. 

We shall now consider the problem of the practical 
range of validity of the ionization law (1.1). We begin by 
noting that a dependence of this type may be valid also 
in strong fields. If in the electron energy balance the 

FIG. 3. Dependence of the reflection coefficient of the wave on 
i t s  amplitude: 1) modulus R ;  2) phase $. 

main losses a r e  inelastic and the ionization process i s  
multistage, the ionization frequency depends quadratic- 
ally on the field. 

Under conditions typical of microwave discharges in 
inert gases (we  10l0- lo1' secq, n -1012 - 1014em-3, 
T, - 1-3 eV, E " 10' V/cm) a dependence of the (1.1) type 
i s  valid in the range of pressures p - 1-30 Torr.  We 
then obtain 

where a! and p a r e  the coefficients representing the 
trapping of electrons by molecules and electron recom- 
bination, respectively; U i s  the excitation potential; T 
i s  the temperature of the gas; 6v i s  the energy frequen- 
cy of collisions of electrons with atoms; E, i s  the plas- 
ma field. 

In the case of argon of special purity (containing - of electronegative impurities), we find that es- 
timates give 

If the energy balance of electrons i s  dominated by 
losses due to elastic processes, the ionization frequen- 
cy depends on the field exponentially and then Eq. (1.1) 
i s  valid only in weak fields defined by A<< (~T/u)"~E,.  

The author i s  grateful to F.G. Bass for his interest. 
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