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We study the nonlinear evolution of a soliton with a nonplanar front in the framework of the equations found 
by Ostrovskii and Shrira [L. A. Ostrovskii and V. I. Shrira, Sov. Phys. JETP 44, 738 (1976)l. The general 
solutions obtained describe self-refraction and, in particular, self-focusing of solitons in media with arbitrary 
laws of nonlinearity and dispersion. We discuss the asymptotic soliton behavior connected with going beyond 
the framework of the adiabatic approximation. 
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5 1. INTRODUCTION single-parameter solitons (solutions of one-dimensional 

The phenomenon of self-focusing and defocusing has 
recently been extensively studied for quasi-sinusoidal 
waves. In media with a weak dispersion the shape of a 
stationary wave is f a r  from sinusoidal and, notwith- 
standing the obvious interest, similar phenomena for 
appreciably non-sinusoidal waves a r e  relatively little 
studied. A number of papers1-' have recently been de- 
voted to  a study of the two-dimensional evolution of 
solitons. In Ref. 1 the Kadomtsev-Petviashvili equa- 
tion, which i s  a two-dimensional generalization of the 
Korteweg-de Vries equation, was obtained. In Refs. 
3 and 4 non-linear solutions of that equation were found 
using the methods of the inverse scattering method. 
However, these methods usually allow one to obtain 
only asymptotic solutions "in explicit form" and do not 
allow one a t  all  to say anything about systems which 
cannot be integrated by the inverse scattering method. 

A geometric optics approach was suggested for the 
dynamics of solitons in Ref. 2 (earlier a similar ap- 
proach was suggested to be applied to the dynamics of 
shock waves7). As in many short-wavelength asymp- 
totic schemes8 a plane stationary (in this case solitary) 
wave is chosen a s  the zeroth approximation. In f i rs t  
approximation account is taken of slow changes in the 
parameters of a wave that remains locally close to 
being stationary. In an orthogonal system of coordi- 
nates (a, p )  formed by successive positions of the front 
of the soliton (a =const) and the normal to  it (0 =const), 
the local soliton velocity V and the angle f3 that the ray 
makes with the x-axis a r e  connected through the kine- 
matic  relation^"^ 

where A is the width of the ray tube. To close the sys- 
tem we use the law for  conservation of energy along a 
ray tube 

where W ,  is the total energy per unit length of the front 
of the soliton. Assuming that a l l  the energy is localized 
in the soliton (and its shape is known), we determine 
thereby W ,  a s  a function of the amplitude o r  the ve- 
locity. The system (1.1) [using (1.2)] is general for a l l  

evolution equations1'), and the specific nature of the 
equations manifests itself in the actual form of the 
amplitude dependences of the velocity and of the energy 
of the soliton. If the soliton velocity increases when 
its energydensity W ,  increases, then defocusingoccurs, 
and the rays diverge with increasing W ,  in such a way 
that the local energy density W ,  diminishes. if ,  how- 
ever, the soliton velocity decreases when its energy 
density W ,  increases, self-focusing  occur^.^ In Ref. 
2 particular solutions of the system (1.1) were ob- 
tained. In the present paper we shall obtain a general 
solution of the system (1.1) for media with weak non- 
linearities of arbitrary form. Both cases of self- 
refraction a r e  considered in this paper. 

$2. ANALYSIS OF THE INITIAL SYSTEM 
OF EQUATIONS 

It is convenient to  use for the description of the soli- 
ton instead of the pair of parameters V and 9 the pair 
cp and 9, where 

The original se t  of equations takes in those variables 
the form 

where the plus sign corresponds to q < O(q =- V/AA;) 
and q > O  corresponds to the minus sign. The quantity 
q thus determines the nature of the system (2.1): 
when q >O the system is hyperbolic, when q< 0 it is 
e l~ipt ical .~ '  The quantity q may change sign depending 
on the amplitude, and the system (2.1) can also be of 
a mixed nature. 

As an example we consider the modified Koretweg-de 
Vries equation: 

which possesses one-dimensional solitons of the formg 

where 
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The velocity of the soliton (2.3) depends a s  follows on 
the amplitude (in a fixed frame of reference): 

For the solitons (2.3) w,-a2-*, cp -aph, c(a) -a2; when 
the sign in front of the non-linear term is positive the 
system (1.1) is hyperbolic, if p <  4, if the sign is nega- 
tive, it is  hyperbolic, if p > 4. 

We state the Cauchy problem for the system (2.1) 
with initial conditions: initially ( a  =0) the front of the 
soliton is  given curved according to the law 0 = Oo(P) 
(we emphasize that the change !n 0 along the front here 
is not small, but only sufficiently slow) and the ampli- 
tude distribution along the front is  cp = cpo(P). The hodo- 
graph transformation a = cy(cp, 0), P = P(q, 0) reduces 
(2.1) to the linear system (2.5) [it i s  well known that 
then some particular solutions of (2.1) a r e  lost, in par- 
ticular the simple waves, but they a r e  easily found 
directly from (2.1)] 

The lower sign corresponds here and henceforth to the 
elliptical case. As usually in the hodograph method, 
we introduce a potential function W(cp, 8) a s  follows: 

Substitution of (2.6) into (2.5) leads to an  equation for 
w : 

We did not succeed in constructing the general solution 
of (2.7) for an arbitrary dependence c(cp). However, for 
a very important class of solitary waves, namely for 
the weakly non-linear ones (i.e., for such waves for 
which the correction to the velocity is  appreciably less. 
than the velocity of the linear wave) the situation sim- 
plifies considerably. Expanding c(cp) in a series in cp 
and restricting ourselves to the f i rs t  terms of the ex- 
pansion we get c(cp)-cpm, c$/c = m / q  and Eq. (2.7) re- 
duces thus to the well known Darboux equation 

where v=m/2 is the Darboux index. For  the solitons 
(2.3) v=2/p. For an algebraic soliton (solutions of the 
Benjamin-Ono equation) v = 3/2. The initial conditions 
for Eq. (2.8) a r e  specified on the curve I? of the initial 
data and have the form 

where the curve I? is given in parametric form: 
O = Oo(P), cp =cpo(P). The problem of the two-dimensional 
evolution of a soliton [in the framework of the system 
(1.1)] is  thus in the general case reduced to Eq. (2.7) 

and under the additional assumption of weak non- 
linearity (M =I V -  11 <<I) to the well known Darboux 
equation. We consider the solutions of (2.8) in the 
hyperbolic and the elliptical cases separately. 

$3. HYPERBOLIC CASE (DEFOCUSING) 

In this case the problem i s  similar to well studied 
problems of gas dynamics. The solution of Eq. (2.8) 
with initial conditions (2,9) in the point M(cpy, OM) can 
in a well known way be expressed in terms of the 
Riemann function R and the initial conditions 

,where W, is  W(p, 0) for cp, 0 E r ,  while P and Q a r e  the 
points of intersection of the curve I' of the initial data 
and the characteristics drawn through the point M. The 
Riemann function for Eq. (2.8) has the formlo 

where P, is a Legendre function of the first  kind. 
Equation (2.2) has its widest application in the cases 
of quadratic (P =1) o r  cubic (P =2) non-linearity, while 
the case p =+ is a lso  of definite interest. These values 
of the non-linearity index p correspond to integer val- 
ues of the Darboux index v (P =1, v =2; P =2, v = l ;  
p =$, v=4). Fo'r integral values of v the Legendre func- 
tions become Legendre polynomials P, (P,(z) =z ,  
P,(z) =+(3z2 - I ) ,  . . . ) '  By differentiating (3.1) one can 
find, using (2.6), expressions for a, and P a s  functions 
of cp and 8. One can considerably simplify Eq. (3.1), 
which gives the general solution of Eq. (2.8), in two im- 
portant particular cases. 

1) At the initial time ((1 =0)  a plane front is  given with 
some distribution cp =cp(P) of the amplitude along the 
front. Since W = 0 = O  along the I' curve and P =Po(cp), we 
get from (3.1) 

*B,+~M 

W ( M ) =  B~(cp)Rdq. (3.3) 
sy-eM 

For  the solitons of (2.3) Eq. (3.3) takes the following 
form. if we use (3.2) 

Explicit expressions for a, and P, for instance, a t  
p =2, a r e  obtained from (3.3b) in accord with (2.6): 

[where C = c(cp)/cp2 =const] and enable us to construct a 
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family of equal level lines for the surfaces q ( a ,  P) and 
@(a, 8). 

2) Initially the soliton has the same amplitude cpO 
along the whole front which is curved according to the 
law e =  eo(P) (phase modulation). Under those initial 
conditions we have from (3.1) 

where P and Q a r e  points with, respectively, the co- 
ordinates [cpO, 6,- (cpY - (PO)] and [cpO, 8 + (cp, - cpO)]; 
W, =2jPo(8)d6. Equation (3.4) becomes especially 
simple for v =l and 2. As example we consider the 
evolution of a soliton front curved a t  the initial time 
according to the law 0 = m  tanhh for  v = 1 (P = 2). When 
v = 1, Eq. (3.4) can be rewritten in the form 

whence we find expressions for  a and P: 

(where Acp =cp - cpO) which take for the given e0(P) de- 
pendence the form 

In Fig. l a  we show for a converging wave a picture of 
the equal-level lines of cp and 8 in the a, P plane. The 
horizontal sections of the curve give the amplitude 
and angle distributions along the front ( a  =const), and 
the vertical sections give those along the ray (P =const). 
A more visualizable, but less general graphical form 
of representing the solution i s  provided by the pictures 
of the fronts and rays in the x, y-plane a t  different 
times (Fig. lb). For clarity we used in Fig. l b  scale 
distortion. It is clear from Fig. 1 that due to focusing 
the amplitude in the central region of the front increases 
with increasing a, since an increase in the amplitude 
of the wave leads to an increase of its velocity, and the 
rays also diverge. The amplitude remains finite in the 
focus. Moreover, when a = a, there occurs a singu- 
larity in the form of a kink in the front and a jump in the 
amplitude. 

3) Initial distributions which a re  not unique. It is 
well known that Riemann's Eq. (3.1) is applicable if the 
.characteristics drawn through the point M intersect the 
r curve only once. This is equivalent to  uniqueness of 
the inverse functions Po(cp) and P0(e), or, what amounts 
to the same, to monotonicity of the initial distributions 
eo(P) and cpo(P). In those cases when the functions 
eo(P), cpo(P) a re  not monotonic but have one o r  more ex- 
trema, one must split the I' curve into sections of 
monotonicity [the solution of the problem in those re- 
gions is given by Eq. (3.1)] and then solve the Goursat 
problem (with initial data on the characteristics) using 

FIG. 1 .  Evolution of a convergent wavefront in the hyperbolic case (qO =0.1): a) full 
drawn lines-q = const.; dashed l ines4 = const; b) solid lines-wavefronts, dashed 
lines-rays. 

the results of the solution of the Cauchy problem a s  
boundary conditions. For  the solution of the Goursat 
problem the Riemann function method is not applicable 
and one can use another form of the general solution 
of the Darbow Eq. (2.8) (valid only for integer v): 

The integration is performed here v times, G and a re  
arbitrary functions determined from the boundary con- 
ditions. Such a form is not convenient for a solution 
of the Cauchy problem, as it i s  difficult to express the 
arbitrary functions G and in terms of the initial data. 
 h he solution in the form (3.7) was obtained in Ref. 6 
for the case v =2(p = 1 ).I In those cases when the initial 
distribution contains sections of a plane front with con- 
stant amplitude, the solution obtained by the hodograph 
transformation method joins up with the simple waves. 

$4. ELLIPTICAL CASE (SELF-FOCUSING) 

The solution of the elliptical Eq. (2.8) (this case cor- 
responds to the lower sign) with the hyperbolic condi- 
tions (2.9) is, strictly speaking, an example of an in- 
correct problem. However, similar problems have 
been successfully solved re~ent1y. l~ ' '~  We show that if 
the initial conditions a re  sufficiently smooth-in a 
sense that will be exactly defined below-the problem 
has a unique solution. The solution remains smooth 
only for  a certain time, and the moment when the 
singularities appear and their nature a r e  of particular 
physical interest. We continue the function W(cp, 8) into 
the complex region with respect to  one of the varia- 
bles, and the other independent variable will play the 
role of a parameter. The substitution of variables 
z - -  iz changes the elliptical equation to a hyperbolic 
one with the well known Riemam function R(6). Let, 
to fix the ideas, Po be P0(e). Analytically continuing 
Po(@ into the complex region Po(@) - Po(e +i 0,) and thus 
defining the function W(0, O,, cp) on the curve of the 
initial data, we find the complete solution using the 
Riemann formula (3.1). The value of the function W 
a t  the point M(cpM, 8,) is thus, as in the hyperbolic 
case, an integral along the curve of the initial data 
continued into the complex plane on the section bounded 
by the points of intersection with the characteristics 
passing through the point M. The condition for the exis- 
tence of a solution is the condition for  the existence of 

46 Sov. Phys. JETP 52(1), July 1980 V. I. Shrira 46 



an anaIytica1 continuation of the function Po(z). The 
presence of discontinuities of the higher derivatives of 
the functions Po(cp) and Po(8) makes a n  analytical con- 
tinuation impossible, while a s  in the hyperbolic case a 
solution exists even when there a r e  first-order dis- 
continuities of the first  derivative. The non-existence 
of a solution means that the given initial distribution 
will evolve non-analytically right from the s tar t ,  the 
soliton will disintegrate, and our approach is inap- 
plicable. As above we consider separately the cases 
of initial amplitude and of phase modulation. 

1) In the f i rs t  case the amplitude distribution cpo(@) 
is given on the initially plane front. We analytically 
continue the function o0(cp)- Po(cp +icp,) and, substituting 
this expression into (3.1) [and using (3.2)] we get again 
Eq. (3.3) with that difference that the integration is 
taken from the point P(q,  - ie,) to  the point Q(pu +ieM) 
(Fig. 2). If the function cpo(P) i s  non-monotonic (let 
it have, to fix the ideas, a single maximum value, 
equal to cp,,,), the function Po(z) has a branch point 
z =cpm,,. The function Po(z) is analytic in the cp, cp, 
plane with a cut along the real  axis from cp,,, to a. 

The integration path must in that case not intersect the 
cut. 

In the case of an initial phase modulation a soliton 
with constant amplitude cpo is specified, with a front 
that is  curved according to the law 8 = eo(P). Its further 
evolution is described by Eq. (3.4), where the integra- 
tion goes from the point PCB, - i(cp, - cpO), qM] to the 
point Q[O, +i(cp, - cpO), cp,]. If 8 = O0(P) is non-monotonic, 
the integration contour is  chosen using the same con- 
siderations a s  in the analogous case of amplitude modu- 
lation. As an example we consider the evolution of the 
soliton (2.3) (for p =2) for the same initial conditions 
a s  in the example of O 3, i.e., 8 = m  tanhP and cp =cpO. 
Changing variables 8 = e/m and analytically continuing 
Po =arctanhe, we get, after a double integration over 8, 
in accordance with (2.6) and (3.4), the answer in ele- 
mentary functions: 

We analyze separately the solutions for converging 
and diverging wave fronts. 

a )  The picture of the evolution of a converging wave 
front is shown in Fig. 3, Because of the linear focusing 
the amplitude in the central, curved part of the front 
increases initially; this leads to a lagging of that part 
and to an even larger bending of the front. The rate of 
the turning of the ray and of the growth in the ampli- 
tude increases with increasing a. When a =a, and 

FIG. 2. Integration path in the 
p,p,, 0 space. 

I., 

FIG. 3. Evolution of a convergent wavefront in the elliptical case ($ = 0.1). The nota- 
tion is the same as in Fig. 1, the dotted line is the region of the discontinuity. 

P = O  there appears a singularity in the solution: the 
derivatives cp&, cp;, 8&, 6'; become infinite. Assuming 
that the appearance of a singularity a t  the point (a*,O) 
does not "spoil" a t  once the whole solution (in the 
framework of our equations this assumption is valid) 
we can, by using (4.1), determine the moment when the 
singularity appears for each given P, i.e., on a fixed 
ray. It turns out that the region of the discontinuity 
(as we shall call the region where singularities occur 
in the solution and the adiabatic approach is, in general, 
inapplicable) widens with increasing a, but not on the 
entire front, but only in the region bounded by the 
asymptotes P =* PI@, =ln[2/(cp - cpO)]). The self-focusing 
affects the change in the soliton amplitude in an essen- 
tial way until it leads to its disintegration. 

b) The picture of the evolution is somewhat different 
in the case of a diverging wavefront, a s  can be seen 
from Fig. 4. Because of the linear divergence, the 
amplitude in the central part decreases and the speed 
correspondingly increases. The front is deformed in 
such a way that its peripheral sections become curved, 
after which the soliton amplitude on these sections 
s tar ts  to.grow with increasing velocity until singulari- 
ties appear a t  the points (a*, *a). The discontinuity 
region is bounded by the asymptotes P =* PI. Charac- 
terist ic for the examples considered is  the presence of 
a long incubation period during which the self-focusing 
effect develops weakly (the rays turn through an angle 

FIG. 4. Evolution of a divergent wavefront in theelliptical case. The notation is the 
same as in Fig. 3. 
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of the order cp, when a - a*). 

The examples considered give a qualitative represen- 
tation of the self- focusing of solitons in media with 
varying non-linearity and dispersion laws, which is 
described by the general solution (3.1). 

$5. DISCUSSION OF THE RESULTS. 
ASYMPTOTIC BEHAVIOR OF THE SOLUTIONS 

1. Region of applicability of the initial system. The 
initial set of Eqs. (1.1) was obtained in the geometric- 
optics approximation. In the linear theory the geo- 
metric-optics approximation is applicable provided 
A2 >>RX, where A is the wavelength, A a characteristic 
scale on which 0 and 40 change along the front, and R 
a characteristic radius of curva'ture of the front (we 
consider the worst case when R >A). For  solitons this 
condition is insufficient. In order that one can assume 
the wave to be locally close to a soliton it is necessary 
that the non-one-dimensional corrections by which the 
exact field equations differ from the locally one- 
dimensional equations of the type (2.3) a r e  small. How- 
ever, the one-dimensional evolution equations them- 
selves are,  a s  a rule, obtained under the assumption 
of weak non-linearity (M = I  V - 11 << 1)  and dispersion. 
This leads to an additional condition of the kind 
X,<<RM (the condition for  an adiabatic evolution of the 
soliton) which is compatible with the linear conditions, 
if 1 >> M>> (AJA)'. For  instance, for a soliton on water 
this means that (AHy >> h4, where h is the depth of the 
liquid and H the height of the solitary wave. The region 
of applicability of the solutions found earlier3) is thus 
defined by the inequality 

Both in the hyperbolic and in the elliptic cases con- 
dition (5.1) ceases, as a rule, to be satisfied only close 
to  singularities. For  estimates, therefore, i t  is con- 
venient to  assume the characteristic distances a t  which 
a singularity manifests itself in the solution to  be the 
scale of the applicability of the solution. 

2. Hyperbolic case. As in a non-linear hyperbolic 
system the effect of the non-linearity is not a t  all 
compensated, the appearance of singularities of the 
kind of an infinite derivative ("toppling") in the solution 
i s  inevitable. Assuming that the existence of a "shock 
wave" is possible which propagates along the soliton 
boundary conditions were given in Refs. 2,5,6 which 
connect the magnitude of the jump in the amplitude and 
the angle (i.e., the kink in the front) and the speed of 
its propagation along the soliton front. In the frame- 
work of the initial set (1.1) it is completely impossible 
to say anything about the further behavior of the solu- 
tion. Very roughly one can estimate the characteristic 
distance a t  which the singularity appears a s  A/&, where 
E - ((P,,, - q,,,)/qO. Qualitatively the evolution of the 
soliton is determined by the relation between the fol- 
lowing effects, each of which manifests itself in its own 
characteristic range of a: 

a )  convergence and divergence of the wavefront o r  of 
its separate sections which take place already in the 

linear approximation; 

b) scattering of perturbations along the soliton front 
determined by the characteristics of the set (2.1) 
[characteristic scale A/c(cpo)]; 

c) "toppling" of the scattered perturbations, leading 
t o  the formation of shock waves and loss of energy by 
the soliton through the emission of linear waves lagging 
behind it, and in some cases to a disintegration of the 
soliton. Small perturbations ( c c  1) of the soliton 
manage to be scattered f a r  before toppling occurs in 
the framework of (2.1). When E -1 toppling proceeds 
a t  the same time scale a s  "scattering." Convergence 
of a section of the front decreases the scattering time 
and the toppling time, while divergence increases them. 
Several peculiar effects connected with converging and 
diverging fronts a r e  described in Ref. 2. 

3. Asymptotic behavior of the solutions in the hyper- 
bolic case. In the region where condition (5.1) is not 
satisfied the change in the soliton parameters proceeds 
non-adiabatically and is accompanied by the emission 
of energy in non-soliton form. Taking into account the 
thus produced high-frequency dissipation one can at- 
tempt to "correct" the initial set  in such a way that it 
describes the evolution of the soliton after the "col- 
lapse" in the framework of (2.1). An exact (in the 
framework of the Kadomtsev-Petviashvili equation) dis- 
persion relation was obtained in Ref. 3 for small per- 
turbations propagating along the front of the soliton. 
Up to terms 42 ( k  is the wave number along P )  this re- 
lation has the form 

where is the frequency of a small-amplitude wave 
with wavevector k, p = (2/3)lh. The second, "dissipa- 
tive" term in the dispersion relation (5.2) is caused by 
the emission of energy in non-soliton form by the soli- 
ton. The dispersion relation (5.2) corresponds to  the 
linear Burgers equation. Taking it into account that 
the small perturbation of the soliton is finite leads to 
the Burgers equation 

Since under a non-adiabatic transformation the soliton 
must lose energy, one may assume that the dispersion 
relation (5.2) and thereby Eq. (5.3) a r e  (accurate to the 
value of p )  true also for different shapes of solitons, 
(Apparently one can show this rigorously using an 
asymptotic procedure similar to the one used in Ref. 
1.) The shape of the soliton differs under a non-adia- 
batic (but nevertheless sufficiently smooth) evolution 
somewhat from that of a stationary solitary wave. (The 
recently developed perturbation methods based upon 
the inverse scattering theory enabled one to find these 
deformations for some exactly integrable systems, in 
particular for  the Korteweg-de Vries equation.13) 
However, since only integral characteristics appear in 
Eq. (5.2) (we restrict  ourselves everywhere to the f i rs t  
terms in the expansion in cpO) we may assume that all  
functions such a s  c(cpO), a(cpO), V(cpO) remain unchanged 
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with the same accuracy. Equation (5.3) enables us to 
reach important conclusions about the asymptotic be- 
havior of the solution. Any (sufficiently small in com- 
parison to cpO) initial perturbations initially scatter 
along the front (analogous to the break-up of the group 
velocity in one-dimensional problems7) and the next 
stage of their evolution i s  described by Eq. (5.3). The 
exact solution of Eq. (5.3) is  known (e.g., Ref. 7). The 
asymptotic behavior of its solutions depends weakly on 
the initial conditions. If the initial perturbation was 
localized on the soliton front, its area  A[A = cw cp(P)d/3] 
is conserved, the amplitude (1 cp,,, - cpm,,l ) decreases 
a(A/ tph but the base of the profile increases a(.4tph. 
A perturbation with zero initial a rea  is damped in pro- 
portion tot-'. When one perturbation overtakes another, 
they merge. 

The Burgers equation (5.2) is valid for  small pertur- 
bations of the soliton (E<< 1). If, however, the per- 
turbations a r e  not small, but localized on the front, 
Eq. (5.2) can be used for the description of the final 
stage of the evolution when the amplitudes of the re- 
sulting shock waves have become sufficiently small. 
However, in that case we cannot connect the asymptotic 
behavior of the solution with the initial conditions, hav- 
ing only a qualitative idea about the evolution of the 
solution. Zakharov's asymptotic solution3 ( u  = 2 , P  =1) 
corresponds in that case to  a completely damped shock 
wave. 

An isolated case is the situation of "negative vis- 
cosity" (i.e., II <O) which occurs when dW,/da< 0 and 
dV/da<O, e.g., for the solitons of (2.3) when the sign 
of the non-linear term is negative and p > 4. In that case 
the instability is  explosive14 and our approach is inade- 
quate. 

4. Elliptical case. A plane soliton is unstable and the 
non-linear stage of the evolution of the instability is 
given by the general Eq. (3.1). The evolution of the 
soliton leads to the appearance in the solution of "spike" 
type of singularities (similar to the singularities ar is-  
ing in problems on the one-dimensional self -modulation 
of quasi-sinusoidal waves in the hydrodynamic approxi- 
m a t i ~ n ) ? ~ " " ~  There a re  in this case no simple general 
formulae to estimate the limits of applicability of the 
solution and it is necessary, after havingfound the solu- 
tion, to determine the region of i ts  applicability using 
condition (5.1). 

$6. CONCLUSION 

Application of the geometric optics approach enabled 
us to reduce the problem of describing the two-dimen- 
sional dynamics of quasi-stationary solitons to the so- 

lution of the linear Darbow equation, the general solu- 
tions of which, which describe both self-focusing and 
def ocusing (in the weak non-linearity approximation), 
a r e  given in this paper. In a well defined sense the 
problem is exhausted. However, there is, apparently, 
no general answer to the resulting problem of what 
happens further when the solutions which we have found 
cease to be applicable, the quasi-stationarity of the 
soliton is violated, and the non-soliton part of the solu- 
tion ceases to  be negligibly small. For  the solution of 
actual problems it  is necessary t o  study the appropriate 
local two-dimensional equations of the Kadomtsev- 
Petviashvili type, which is a very complicated problem. 
However, for  the case of small perturbations on the 
soliton front the Burgers equation (4.3) enabled us to 
describe the stage of the evolution after the "collapse" 
of the solution in the framework of the initial hyperbolic 
system. The Burgers equation also describes quali- . 
tatively the asymptotic behavior of a wider class of 
initial perturbations. This asymptotic behavior is 
"intermediate" in being compared with the asymptotic 
behavior of the solution obtained by the inverse scat- 
tering method for the Kadomtsev-Petviashvili equation.' 

The author is  grateful to L. A. ~ s t r o v s k i i  and 
E. N. ~el inovsk i i  for useful discussions and their in- 
terest  in this paper and to V. E. Zakharov for a useful 
discussion of the results. 

'1 Everywhere in this paper we assume the medium to be isotropic. 
') We note that more general kind of system which describes threedimensional 

motion of solitons is also determined by the sign of q (sign q = sign (dWddV) 
') We emphasize that in the weak non-linearity approximation (M << 1) the 

general solution of the set (2.1) is found without additional assumptions. 
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