
Thus, even if M, is 10-100 times less than MI it  can 
be determined in principle by measuring the rotation 
of the polarization plane of the light in a uniformly 
rotating liquid. 

Relatively recently the rotation of the polarization 
plane of a light wave propagating through a rotating 
transparent medium (Pockels-glass SF-57) was de- 
tected e~perimentally. '~ In the experiment of Jonesl0 

=I00 Hz,n =1.84, the light path-length in the medium 
1 =40 cm, the rotation of polarization plane (p -10" 
rad, which corresponds to P =  2.5 XlO-"  rad/cm. It is 
seen from this that in this case M, is of the order of 
M, = ~ O - ( ~ - S ) M  -10-(14-16) sec, where the values of MI 

values were taken for simple liquids in the trans- 
parency r e g i ~ n . ~  
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We show that in those cases where it is difficult to subdivide the scale of the turbulence, equilibrium 
turbulence is possible. Stratification into phases is typical for such turbulence; the role of liquid drops is 
played by solitons. We find the parameters for the weak-turbulence spectrum which is in equilibrium with a 
soliton of a given amplitude. We consider the example of a system which allows soliton solutions, but which 
in not stratified into phases. 

PACS numbers: 47.25. - c 

We elarify in the present paper the reason why in 
strong turbulence the particular solutions in the form 
of solitons play such an important role. We show that 
the solitons, though particular solutions, a re  important 
solutions, since in a number of situations the typical 
behavior of strong turbulence consists in a decom- 
position into two phases-weakly non-linear spectrum 
and solitons. 

The dispersion of the waves for which soliton solu- 
tions exist is usually such that the energy transfer to 
the short-wavelength region is difficult, and the wave 
system is able to evolve for a long time without damp- 
ing. This fact makes it possible to arrive a t  a state of 
thermodynamic equilibrium, characterized by a col- 
lective temperature, and one can obtain exactly the 
shape of the spectrum in equilibrium with the solitons. 
The solitons play here the role of the liquid phase drop- 
lets, while the binding energy of the waves in the soli- 
ton plays the role of the vaporization heat. The reason 
why the soliton solution can be singled out is that the 
soliton guarantees the largest binding energy and, 
hence, also the largest entropy of the weakly non- 
linear spectrum. We s t ress  that in such considerations 
we a re  dealing with thermodynamic equilibrium only 
in the wave degrees of freedom; there is no equilibrium 

between the waves and the medium. 

The picture painted above i s  illustrated by the ex- 
ample of waves close to sound waves. In those cases 
where a subdivision of the scales is allowed and 
thermodynamic equilibrium has no meaning, solitons 
a r e  not necessarily attractive solutions, a s  is illustrated 
by the example of turbulence in the Rudakov-Tsytovich 
equation.' 

EQUILIBRIUM OF WAVES WITH SOLITONS 

We shall assume that the waves have a frequency 
w, = c,l kl + bw,, where c, is the wave velocity when we 
neglect dispersion, while the dispersion correction 
60, is small (6wk<< o,). Initially we consider weakly 
non-linear spectra for which the non-linear corrections 
a r e  smaller than the dispersive ones. When the dis- 
persion is almost that of sound, only almost collinear 
triads of waves interact, s o  that there appears apart 
from the energy and momentum conservation laws a 
new conservation law-we shall call it the law of con- 
servation of "longitudinal momentum" 

pll = lklnh, 

where n, is the occupation number. When multiplied 
by c,, the longitudinal momentum is nearly the same 
a s  the energy 

41 Sov. Phys. JETP 52(1), July 1980 0038-5646/80/070041-03$02.40 O 1981 American Institute of Physics 4 1 



E = C . ~  I ~ I R , ,  

s o  that it is  more convenient to  use one of these quan- 
tities and their small difference (the correction to the 
energy is 

The momentum conservation law is also satisfied, 

p = kn,. 

For  the equilibrium distribution function we have a t  
once (Ref. 2, p. 25 of original) 

Thermodynamic equilibrium is characterized by the 
parameters T, y, and u, Their number equals the 
number of integrals of motion. Changing to  the average 
occupation number, we get a modified Rayleigh-Jeans 
law : 

In the particular case u =  0, u, =c,, Eq.,(2) gives the 
Rayleigh-Jeans distribution. When lui <<u, the spec- 
trum is almost isotropic, and when u, = l ul ,6w,<< u,lkl 
it is quasi-one-dimensional. 

We now consider the interaction of solitons with the 
weakly non-linear spectrum starting with the isotropic 
case u =O. The soliton has no internal degrees of free- 
dom and if the distance between the solitons is  much 
larger than their size, their entropy can be neglected 
in comparison with the entropy of the weakly non-linear 
spectrum. The entropy of the weakly non-linear spec- 
trum is determined by the integrals of motion and in 
equilibrium with the solitons reaches a maximum. 

To find the equilibrium we note that the way the phase 
volume A r  depends on the integrals of motion & and E' 

(in the isotropic case the momentum integral is im- 
material) is given by the formula 

i.e., the phase volume increases with increasing energy 
E and increasing of the integral c' in the spectrum. If 
part  of the waves change to  a soliton the energy in the 
spectrum diminishes and thus the phases volume de- 
creases. At the same time a soliton leads to the split- 
ting off of the integral &' which increases the phase 
volume. At equilibrium the variation of the phase vol- 
ume (3) vanishes and we must thus take into account 
that in the soliton c and c' a r e  rigidly connected: 

sf=-F(E), 6~ '= -  (dFlde) 68. 

Varying (3) and using this relation we find 

The function F(&)  is, a s  a rule, concave s o  that for 
a soliton which is  stronger than follows from Eq. (4) 
i t  is profitable to absorb waves-this increases the 
phase volume of the weakly non-linear spectrum and, 

hence, the entropy. Weaker solitons must gradually 
be dissipated under the impacts of weakly non-linear 
waves. We do not aim to evaluate F(&),  which gives the 
dependence of the binding energy of the waves in the 
soliton on the total energy in them, for any actual 
cases. For  the important case of two-dimensional soli- 
tons which a r e  close to Koretweg-de Vries solitons 
one can obtain this dependence by using Petviashvili's 
workS and for  the one-dimensional ion-sound solitons 
by using Karpman's work.4 

For  the consideration of the anisotropic case we note 
that only waves with almost collinear wave vectors 
interact significantly, s o  that for each direction one 
can ca r ry  out a quasi-one-dimensional consideration, 
projecting the conservation laws onto the chosen axis 
and introducing a coefficient u,(B) which depends on the 
angle. It is clear from the analysis of Eq. (2) that y ( 0 )  
is a minimum for  those directions in which the largest  
number of waves is  moving. This means according to 
Eq. (4) that the threshold for soliton formation i s  
smallest in that direction. The growth of the solitons 
moving in that direction is  accompanied by an iso- 
tropization of the weakly non-linear spectrum. 

DIFFERENCES OF THE EQUILIBRIUM BETWEEN 
SOLITONS AND WEAKLY NON-LINEAR WAVES AND 
OF EQUILIBRIUM BETWEEN A LIQUID AND ITS 
VAPOR 

The equilibrium between solitons and weakly non- 
linear waves differs from the liquid-vapor equilibrium 
because the attractive forces between the waves do not 
saturate, i.e., for the usually considered solitons 
dF/dc grows without bound with increasing &. In the 
case of a molecular system the vaporization heat, 
which is  the analog of dF/de,  although it depends on 
the size of the droplet, tends to  a finite limit when the 
size increases. Therefore in the case of non-linear 
waves the role of the nucleation process increases 
strongly-for each weakly non-linear spectrum we can 
indicate a soliton with an amplitude which is s o  large 
that it grows, absorbing the spectrum. The role of the 
dew effect grows-the weak solitons dissipate with 
subsequent absorption of the weakly non-linear waves 
by the strong solitons. 

For a system of non-linear wave the concept of the 
phase separation boundary has no clear meaning and it 
is impossible to obtain an equilibrium condition by 
equating the temperature and the chemical potential in 
the soliton and outside it. For  that reason one has s o  
far  not considered the equilibrium of solitons with 
weakly non-linear waves, although the analogy between 
the modulational instability and a phase transition has 
been noted long ago5 and efforts have been made in that 
direction. Due to the absence of a phase separation 
boundary, it is a lso  impossible to apply to the system 
of waves the proof of the impossibility of the existence 
of phases in one-dimensional systems, given in the last 
section of the book of Landau and Lifshitz.' Nonethe- 
less  it is apparently legitimate to call the soliton and 
the weakly non-linear waves phases a s  there is an 
equilibrium between them found from the condition that 
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the phase volume be a maximum. In other words, the 
solitons appear then when their formation increases 
the entropy of the weakly non-linear waves. 

We note that in our considerations we can replace the 
soliton by any stationary solution, for instance, a non- 
linear periodic wave. 

STRONG TURBULENCE I N  THE 
RUDAKOV-TSYTOVICH EQUATION 

Here we wish to give an  example of a system which 
has among its solutions stationary non-linear waves, 
but the typical solution dpes not break up into those 
waves and a weakly non-linear spectrum. A list of the 
oscillation modes described by the equation 

is  given in Ref. 1. One can consider Eq. (5) a s  basic 
for waves with a frequency which tends to a constant 
as k - For  that reason an  entropywise profitable 
scale subdivision does not require energy, proceeds 
unimpeded, and there is no need for the formation of 
periodic non-linear waves1 which would release energy. 

The group velocity tends to ze ro  when the size of the 
solutions is reduced, a ~ / a k - k - ~  s o  that IEI2 is frozen- 
in, and the evolution is confined to  a n  increase in the 
wavevector while the smooth envelope i s  conserved. 
This assumption was confirmed by solving (5) on a 
computer. A typical result for I El2 is shown in the 
figure where the smooth curve shows !El2 and the os- 
cillating one ReE. The solution is given for t =5. We 
chose for  the initial conditions 

The three-dimensional generalizations of Eq, (5) 
should behave similarly, and also waves with other 
kinds of non-linearity, but with the same dispersion- 
the main factor determining the nature of the evolution 
is that the frequency tends to  a constant a s  kbm. 

CONCLUSION 

Valuable in the present paper a r e  not the exact rela- 
tions such a s  (2) and (4), but the qualitative statements 
about the tendencies of the evolution of turbulence which 
do not require complete equilibrium. The latter include 
the statement that tlie amplitude of the solitons growth 
as their number diminishes, that the weak solitons a r e  

FIG. 1. Periodic solution of Eq. 5 for a = 4. We show one fourth of a period. 

absorbed by strong ones, and a lso  that there a re  no 
stationary solutions for the evolution of waves for which 
a subdivision of scale is not forbidden. We have, in 
fact, expounded here a method for  qualitatively analyz- 
ing the evolution of non-linear waves which some- 
times-for the case of complete equilibrium-can be 
given an exact meaning. Equilibrium is impossible if 
there i s  a fast  subdivision of scale (for instance, in the 
case of an ideal liquid o r  of three-dimensional Lang- 
muir waves6) o r  if there is a "cryptolinearity," i.e., 
if one can by a transformation completely remove the 
interaction, a procedure that involves an infinite num- 
ber  of integrals of motion. Almost a l l  equations of that 
kind a r e  listed in Whitham's book: 

The authors a r e  grateful to L. I. Rudakov for many 
critical discussions of the evolution of the solutions of 
Eq. (5). 
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