
assumed in our calculation. "~ i sh inev  State University. 

Owing to  the nonexistence a t  present of experimental 
papers with n >  20, the following fact should be empha- 
sized. Since 

1 g a t  - ye-- 1 g a t  

2n 8 ' Y =--- 2n": 8 ' 

the conditions y, Y 5 1 for  which the ionization proba- 
bility deviates from the power law a r e  satisfied for 

in a monochromatic field, but for 

in a random field; that is, for a lower value of n in the 
latter case. For the experiment of Ref. 15 we have 
gat/$ =110; thus the inequality YS 1 gives nz 55, 
whereas the inequality ;j; 5 1 gives n 2 15. Accordingly, 
appreciable deviation of the ionization probability from 
the power law, characteristic of ordinary perturbation 
theory can be achieved more easily in a stochastic field 
than in a monochromatic field. 

In conclusion we can state that the proposed theory 
contains simple universal one-parameter functions, by 
using which one can easily calculate probabilities of 
nonresonance many-photon ionization in a strong 
stochastic electromagnetic field, and also the corres- 
ponding statistical factors. 
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Fine structure of the spectrum of depolarized light 
scattering in liquids 
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It is shown that accounting for the correlation of simultaneous fluctuations leads to the appearance of terms 
with spatial velocity derivatives in the permittivity. As a consequence the permittivity is no longer a scalar 
and a fine structure appears in the spectrum of the depolarized light scattering. 

PACS numbers: 77.20. + y, 78.20.Bh 

INTRODUCTION 

The intensity of light scattered by a liquid consists of 
two essentially different parts (see, e.g., Ref. 1). The 
f i rs t  is scattering by macroscopic fluctuations, i.e., 
the fluctuations of such hydrodynamic quantities a s  
entropy o r  pressure. The second is scattering pri- 
marily by the anisotropy fluctuations and in general by 
the relative location fluctuations of the particles on 
microscopic scale. Both types of scattering give com- 

parable contributions to the integrated scattering in- 
tensity, but a r e  characterized by essentially different 
spectral distributions. 

The microscopic fluctuations result in the appearance 
of non-shifted line (wing) the width of which A w ,  is of 
the order of the characteristic frequency v of micro- 
scopic movements in the liquid, A w w -  v =1 /T (for sim- 
plicity in the estimates below only simple liquids hav- 
ing no slowly relaxing parameters will be kept in mind). 
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The fluctuations of macroscopic quantities cause the 
appearance of a triplet of narrow lines of comparable 
intensity-a central non-shifted component of the en- 
tropic scattering (Rayleigh component) and the Man- 
del'shtam-Brillouin (MB) doublet. The widths of a l l  
three lines a re  smaller by a factor (A/aY - l / ( k ~ ) ~  >> 1 
(where A and k a r e  the wavelength and the wave vector 
of the light, a is a characteristic length of the order of 
interatomic distance) than the width of the wing. Cor- 
respondingly their spectral intensity in the maxima is 
(A/aY times greater than the spectral intensity of the 
wing. 

- 

An important experimentally most studied character- 
istic of scattering is the spectrum of depolarized 
s~attering."~ The fluctuations of macroscopic quanti- 
ties do not change the scalar character of the per- 
mittivity and therefore do not contribute to  the de- 
polarized scattering. This conclusion, however, is 
correct only when the spatial correlation of simul- 
taneous fluctuations is neglected. Whenaccount is taken 
of spatial correlation, the macroscopic fluctuations 
disturb the scalar character of the permittivity and lead 
to  the depolarized scattering. In the spectrum of de- 
polarized scattering, as will be shown below, three 
narrow lines appear. Two of them a r e  caused by the 
scattering by acoustic fluctuations, and their position 
and width of the spectrum coincide with the MB doublet. 
The third, non-shifted line is caused by the fluctuations 
of the transverse velocity (viscous waves) in contrast 
to  the central (Rayleigh) scalar-scattering line caused 
by the entropy fluctuations. Therefore the width of the 
central line of the depolarized scattering is determined 
by the viscosity of the liquid and not by the thermal 
diffusivity a s  in scalar Rayleigh scattering. 

Generally speaking, the influence of spatial correla- 
tion on light scattering is small and is determined by 
the parameter a/X<< 1. Therefore the intensity of the 
narrow lines in the depolarized scattering is much less 
than in the scalar scattering. It turns out that the ratio 
of intensities a t  the maxima of the narrow lines of the 
depolarized and scalar scattering is of the order of 
(a/A)2, i.e., of the same order a s  the ratio of the in- 
tensities at the maxima of wing and of the narrow lines 
of the scalar scattering. Thus the intensity in the 
maxima of the narrow lines of depolarized light is of 
the same order of magnitude as the intensity in the 
wing maximum. The spectral width of the narrow lines, 
a s  before, is (A/aY times less than the wing width. 
Therefore the contribution of the narrow lines to the 
integrated intensity of depolarized scattering is negligi- 
bly small. 

The spectrum of depolarized light scattering has been 
investigated theoretically in many The main 
attention was paid to the nature of a wing, i.e., of the 
spectrum of scattering in a region of large frequency 
shifts Aw -Aw,==~/T,  which is caused by microscopic 
fluctuations. In this connection the temporal dispersion 
of liquid properties, neglecting the effect of spatial 
correlation of fluctuations, have been taken into account 
by Leontovich3 and later more completely by R y t o ~ . ~ . ~  
This approach is justified in the region of sufficiently 

large frequency shifts, where A W T - 1  and the quantity 
ka -a/A<< 1 is always small. The formal use of the 
formulas obtained by Leontovichs in the region of the 
fine structure of scattering leads to singularities of 
both a t  the MB frequencies A @  =It w, and a t  the non- 
shifted frequency Aw = W  - w, =0, except that dips ap- 
pear in place of the maxima of the intensity. It should 
be noticed that the use of the above mentioned formu- 
las' a s  well a s  of the corresponding expressions from 
the works of Rytov6 in the region of small  frequency 
shifts Aw -C w, is not valid since w, a k and the ref ore 
the expansion In the parameter ka -a/A, i.e., the spa- 
tial correlation, must be taken into account along with 
the expansion in small AWT. Moreover, a t  small 
AWT 6 wMB/~wK<< 1 only the spatial correlations must 
actually be taken into account. The point i s  that the 
expansion in the parameter AWT means allowance for 
the dependence of the permittivity on time derivatives 
of quantities that determine the state of liquid. How- 
ever for small Awr<< l the hydrodynamic approxima- 
tion is valid and the hydrodynamic equations express 
the time derivatives of all  the hydrodynamic quantities 
in terms spatial derivatives {but not conversely). 

1. NONLOCAL CORRECTIONS TO THE PERMITTIVITY 

Light scattering is determined by fluctuations of the 
permittivity tensor 6eik(r, t). In the macroscopic de- 
scription, an arbitrary nonequilibrium liquid state b 
determined completely by specifying the hydrodynamic 
quantities, such a s  the pressure P(r ,  t) ,  temperature 
T(r, t), and liquid velocity v(r, t). In this approximation 
the fluctuations of the permittivity must be expressed 
through these hydrodynamic quantities. 

In the zeroth approximation in a/A this dependence is 
local in space and in time, i.e., 6cik(r, t) is determined 
by the values of the hydrodynamic quantities at the same 
point in space and a t  the same moment of time. Be- 
cause of the scalar character of pressure and tempera- 
ture, the fluctuations of these parameters in the zeroth 
approximation do not violate the scalar character of the 
permittivity and therefore do not contribute to the de- 
polarized scattering of interest to us. As regards the 
velocity, in the local approximation the scattering by 
velocity fluctuations is connected, in principle, with the 
appearance of additional terms in the material electro- 
dynamic equations which connect D and B with E and H 
(see Ref. 7, p. 310): 

where c, is the equilibrium value of the permittivity, 
eik = ~ , , 6 ~ ~  +6eik the permittivity in the non-equilibrium 
state a t  v =O. As is seen from Eq. (I), the relative 
values of these additional terms a r e  of the order of 
u/c. Their relative contribution to  the light scattering 
is of the order of (u/c)~, where u is the characteristic 
velocity (sound velocity) in the liquid. The order of 
magnitude of the ratio u/c equals 

o u Am, A o ~  ---- ka- - ka.10-'aka; 
c Ao, o o 

here w and k a r e  the frequency and the wave vector of 
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light, and Aw, is the wing width. Thus, the additional 
terms in (1) can be neglected since the allowance for 
the non-locality, a s  will be shown below, gives a much 
larger contribution, of relative order of ( k ~ ) ~ ,  to the 
scattering. 

In the next approximation the non-locality of the re- 
lationship between the permittivity 6si, and the hydro- 
dynamic quantities, i.e., the dependence on spatial and 
temporal derivatives, must be taken into account. In 
s o  doing it must be kept in mind that the time deriva- 
tives a re  expressed by the hydrodynamic equations 
through the spatial derivatives, s o  that actually only 
the spatial derivatives should be taken into account. 
Because of the pressure and the temperature a r e  sca- 
lars, the contribution of their fluctuations to bs,, is 
proportional to second derivatives of the type aaP/ 
axi8x,, i.e., it appears in the second-order approxima- 
tion in a/A -ka. In the first  approximation 6ci, con- 
tains only terms with spatial derivatives of the velocity. 
In the general case these terms a r e  of the form7 

where M,, M,,M, a r e  some constants (more accurately, 
they a r e  functions of the light frequency w). 

Since in the future we will be interested only in the 
nonscalar part of 6cik, we can use in place of (2) the re- 
lation 

The quantities MI and M2 a r e  the known dynamo-optic 
Maxwell constants1r8 (more accurately, the combination 
of the quantities MI and M2 is called the Maxwell con- 
stant M, namely M =(* +M:)'~ [Ref. (8)]. In a non- 
absorbing medium the constants MI and M, a r e  real. 

2. FINE STRUCTURE OF DEPOLARIZED 
SCATTERING 

One can represent an  arbi t rary  velocity field v(r, t )  
in the form of the sum v, +v, of a longitudinal (curl 
v, =0) And a transverse (div v, =0) part. The longitudi- 
nal velocity fluctuations a r e  accompanied by the isen- 
tropic pressure fluctuations and therefore represent 
acoustical waves. The transverse velocity fluctuations 
a r e  strongly damped viscous waves described by the 
hydrodynamic equation d ,  = vAv,, where v = q / p  is the 
kinematic viscosity, and and p a r e  the shear  viscosity 
and the density of the liquid. The natural frequency 
of these waves ivq2(q =I k' - kl , k and k' a r e  the wave 
vectors of the incident (k) and the scattered (kt) light 
waves) is pure imaginary, therefore the scattering by 
the transverse velocity fluctuations results in the ap- 
pearance of a nonshifted line, the width of which is 

here 0 is the scattering angle (the angle between k and 
k'). 

We will be interested in the spectrum of depolarized 

scattering, i.e., in the spectral intensity of the light 
scattered a t  the angle 0 = 90" and polarized along the 
x axis, which coincides with the direction of propaga- 
tion of the incident light. It is clear from the above 
that scattering by the transverse velocity fluctuations 
gives a non-shifted Lorentz-form line 

Here o, is the incident light frequency, and I;') is the 
integrated intensity of the depolarized (i.e., polarized 
along the x axis) scattering by transverse velocity fluc- 
tuations. Therefore the problem reduced to the calcu- 
lation of the intensity ILt) of the scattered light caused 
by the permittivity variations described by Eq. (3). 

The projection of the scattered-wave field on the x 
axis is determined by the known formula7 

where 

Here R, is the radius vector from some point inside 
the scattering volume V to the point of the field ob- 
servation; E = ~ ~ e ' ' "  is the electric field of the inci- 
dent wave, and q =kt - k. The x axis is chosen along the 
vector k and the y axis along k'. 

Substituting the expression (3) for 6ci, in (6) and in- 
tegrating by parts (after which we czn put, a s  usual, 
q = O  in the exponent), we obtain 

G,=VikEo, {(M,+LW,)E=- (MI-iM2)F,) 
-VikEo,(M1-iM2) F., (7) 

where V = V-I $ vdV i s  the velocity averaged over the 
volume. 

The transverse acoustic wave can have two indepen- 
dent directions of polarization in the plane perpendicular 
to  q =k t -  k. It is  convenient to choose the z axis and 
perpendicular to it the 5 axis a s  the directions of 
polarization, s o  that v, = v,  = u ,/21h. The intensity of 
the scattered light is determined by the square aver- 
aged over fluctuations, o r  the modulus of the quantity 

Substituting the value of G, from Eq. (7) and using the 
equationsg 

where T and p a r e  the equilibrium values of tempera- 
ture and density of the liquid, we will get for the inte- 
grated intensity of depolarized scattering 

where I, is the incident light intens it y, and (o is the 
angle between the direction of polarization of the inci- 
dent light E, and the vector k'. 

The second possible geometry of an  experiment in 
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which there is no scalar scattering a t  the observation 
angle 8=90° is as follows: the incident wave is propa- 
gated along the x axis and is polarized along the y axis, 
i.e., E, =E,,; a s  previously, the scattering is observed 
along the y-axis. Then the scattered-wave-field pro- 
jection on the z axis does not have a scalar component 
and can be easily calculated from Eqs. (3) and (6). In 
this case the final expression for the integrated in- 
tensity 1;:) of the depolarized scattering is of the form: 

The spectral dependence of the scattering is described, 
naturally, by Eq. (4) a s  before. 

Let us consider now scattering by fluctuations of the 
longitudinal velocity v,. Because of above-mentioned 
acoustic character of these fluctuations, they produce 
in the depolarized scattering doublet lines whose posi- 
tion and form do not differ from the ordinary MB 
doublet in scalar scattering. The scattering spectrum - - .  

i s  described by a Lorentz curve 

2:') 6" ( 0 )  = - rq2 
n (o-oo*~q)2+(yq2)" (9) 

(9' 

and q , c ,  x a r e  respectively the f i rs t  and the second 
viscosity coefficients and the thermal conductivity 
coefficient; C ,  and C ,  a r e  the heat capacities. 

The calculation of the integrated intensity 1;') is 
similar to that of 12' with the only difference that in 
this case v, is directed along the vector q. Finally, 
for the quantity 1:') we obtain 

here, as usual I,, is the incident-light intensity and cp 
is the angle between E, and k'. It is  easy to see  that in 
the second considered variant of the experimental 
geoemetry there is no scattering by longitudinal ve- 
locity fluctuations, since the polarization direction of 
the scattered wave (along the z axis) is perpendicular 
to  the vector q and therefore to the longitudinal velocity 
vector v, which is directed along q. 

3. DISCUSSION 

Thus, the addition, described by Eq. (3), to the per- 
mittivity of terms with spatial derivatives of velocity 
produces in the depolarized part of the scattering a 
triplet of lines whose integrated intensities a r e  deter- 
mined by Eqs. (8) and (10) and whose spectrum is given 
by Eqs. (4) and (9) respectively. 

For  comparison with the experimental data it is 
more convenient to use the value of the scattering co- 
efficient' a t  the scattering angle 0 =90° 

There a re  data in the literature1*8 on the birefringence 
constant M in a radiant flux, given with allowance for 
M, bys M=(M: + M ~ Y ~ *  By way of estimate let us, as- 

suming cp =0, consider the scattering coefficient de- 
termined by the Eq. (10) multiplied by the factor 
RZ,/VZo. Substituting in Eq. (10) the values of M=Ml for  
benzene, toluene, and carbon tetrachloride from Ref. 8, 
we obtain the value of R,,o(lO) and the value of the co- 
efficient R g o  of scattering by anisotropy fluctuations for  
these substances from Ref. 1; for their ratios we ob- 
tain (Y(A =435.8 nrn) =RQoo(lO)/RQ~= lo4  for  benzene and 
toluene and a(A =435.8 n m ) = 2 . 5 ~ 1 0 - ~  for  carbon 
tetrachloride. From this it is seen that the integrated 
intensity of the depolarized scattering by velocity- 
gradient fluctuations is a small part - of 
the integrated intensity of the entire depolarized wing. 
However, the intensities a t  the maxima of the de- 
polarized MB doublet and the wing intensities a t  these 
frequencies can already be of the same order of magni- 
tude: 0.01-1 since the ratio of the widths of the MB 
components to  the depolarized-wing width is usually' 
-lo-'- lo4. (For example, this ratio is -lom2 for 
benzene and for carbon bisulfide.) 

As to  the depolarized component (4) a t  the non-shifted 
frequency w,, its integrated intensity (8) has the same 
order of magnitude a s  (lo), and its width is less than 
that of the MB components in the ratio q / 5 ,  which for 
the majority of polyatomic liquids has the order of 
magnitude of 0.1 - 10 (Ref. 1). Therefore in this case 
one can expect even better ratio (0.1 - 10) of the scat- 
tering intensities determined by Eq. (8) to the de- 
polarized-wing intensity in vicinity of w = w,, The width 
of this component, determined by the ratio q/p,  is  then 
of the same order or even less than the width of the 
scalar central component. 

The depolarized scattering spectrum described by 
Eqs. (4), (8) and (9), (10) contains two real constants: 
Ml and M,. It is possible to measure both quantities 
by varying the angle cp between the polarization direc- 
tion of the incident wave E, and the scattering direction 
kt. We note that, as mentioned above, the constants 
Ml and M2 in the combination M = (M: +M:Y~ a re  deter- 
mined in experiments on the birefringence in a radiant 
flux, and M2 can be obtained independently in the fol- 
lowing way. Upon uniform rotation of the liquid a s  a 
whole v =ax r (62 is the angular velocity of rotation), 
the symmetric term in (3) turns into zero and only the 
antisymmetric term 6Eik = -2LV4eiR2 i-2' remains, where 
eik ,  is the unit antisymmetric pseudotensor. It is 
known7 that a medium with such a permittivity is 
gyrotropic with a gyration vector g = -2Ki-2. When 
plane polarized light propagates in such a medium 
the polarization plane rotates and the angle of rotation 
per unit path length equal 

where n =&lh is the index of refraction of the medium 
and Y is the angle between the vectors k and 62. 

Let us estimate the value of P, assuming8 M, -MI 
-10-(12-13) sec, cosy=l ,  A=5x10'5 cm, =I00 Hz, 
and n = 1.5. Substituting these values in (11) we obtain 
P = 10- '~ -~)  rad/cm; this value can be measured ex- 
perimentally. 
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Thus, even if M, is 10-100 times less than MI it  can 
be determined in principle by measuring the rotation 
of the polarization plane of the light in a uniformly 
rotating liquid. 

Relatively recently the rotation of the polarization 
plane of a light wave propagating through a rotating 
transparent medium (Pockels-glass SF-57) was de- 
tected e~perimentally. '~ In the experiment of Jonesl0 

=I00 Hz,n =1.84, the light path-length in the medium 
1 =40 cm, the rotation of polarization plane (p -10" 
rad, which corresponds to P =  2.5 XlO-"  rad/cm. It is 
seen from this that in this case M, is of the order of 
M, = ~ O - ( ~ - S ) M  -10-(14-16) sec, where the values of MI 

values were taken for simple liquids in the trans- 
parency r e g i ~ n . ~  
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The role of solitons in strong turbulence 
S. F. Krylov and V. V. Yan'kov 
I. V. Kurchatov Institute of Atomic Energy 
(Submitted 17 May 1979; resubmitted 5 March 1980) 
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We show that in those cases where it is difficult to subdivide the scale of the turbulence, equilibrium 
turbulence is possible. Stratification into phases is typical for such turbulence; the role of liquid drops is 
played by solitons. We find the parameters for the weak-turbulence spectrum which is in equilibrium with a 
soliton of a given amplitude. We consider the example of a system which allows soliton solutions, but which 
in not stratified into phases. 

PACS numbers: 47.25. - c 

We elarify in the present paper the reason why in 
strong turbulence the particular solutions in the form 
of solitons play such an important role. We show that 
the solitons, though particular solutions, a re  important 
solutions, since in a number of situations the typical 
behavior of strong turbulence consists in a decom- 
position into two phases-weakly non-linear spectrum 
and solitons. 

The dispersion of the waves for which soliton solu- 
tions exist is usually such that the energy transfer to 
the short-wavelength region is difficult, and the wave 
system is able to evolve for a long time without damp- 
ing. This fact makes it possible to arrive a t  a state of 
thermodynamic equilibrium, characterized by a col- 
lective temperature, and one can obtain exactly the 
shape of the spectrum in equilibrium with the solitons. 
The solitons play here the role of the liquid phase drop- 
lets, while the binding energy of the waves in the soli- 
ton plays the role of the vaporization heat. The reason 
why the soliton solution can be singled out is that the 
soliton guarantees the largest binding energy and, 
hence, also the largest entropy of the weakly non- 
linear spectrum. We s t ress  that in such considerations 
we a re  dealing with thermodynamic equilibrium only 
in the wave degrees of freedom; there is no equilibrium 

between the waves and the medium. 

The picture painted above i s  illustrated by the ex- 
ample of waves close to sound waves. In those cases 
where a subdivision of the scales is allowed and 
thermodynamic equilibrium has no meaning, solitons 
a r e  not necessarily attractive solutions, a s  is illustrated 
by the example of turbulence in the Rudakov-Tsytovich 
equation.' 

EQUILIBRIUM OF WAVES WITH SOLITONS 

We shall assume that the waves have a frequency 
w, = c,l kl + bw,, where c, is the wave velocity when we 
neglect dispersion, while the dispersion correction 
60, is small (6wk<< o,). Initially we consider weakly 
non-linear spectra for which the non-linear corrections 
a r e  smaller than the dispersive ones. When the dis- 
persion is almost that of sound, only almost collinear 
triads of waves interact, s o  that there appears apart 
from the energy and momentum conservation laws a 
new conservation law-we shall call it the law of con- 
servation of "longitudinal momentum" 

pll = lklnh, 

where n, is the occupation number. When multiplied 
by c,, the longitudinal momentum is nearly the same 
a s  the energy 
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