
The spectral intensity of the resonance bremsstrahlung 
of slow electrons turns out to be practically independent 
of the frequency: 

It is convenient to put Eq. (13) in the form 

W ( E )  = 
g(y) wx 

g(yo) (l+3'"oosn5/zzcs) ' 

where W, is  the total bremsstrahlung intensity, in the 
Kramers approximation, of an electron in the Coulomb 
field of a center with charge z. The term w@5/zzc3 is  
not small in comparison with unity only when E - w,, 
i.e., n- oo. Therefore the intensity of resonance 
bremsstrahlung, in the case when i t  is possible, is of 
the order of o r  larger than that of the bremsstrahlung 
from potential scattering. Figure 1 shows the total in- 
tensity W, of resonance and potentiaI bremsstrahlung 
for the collision of an  electron with the lithiumlike 
oxygen ion @+(lsZ2s), with wo equal to the energy of 
the transition 2s - 2p (the contribution of potential 
bremsstrahlung is shown by a dashed line). 

In conclusion we point out that the total radiation from 
the whole system also includes a contribution from re -  
combination radiation, and for E 3 w, (the inequality 

is to the accuracy of the level width) also a contribution 
from excitation of the ion. Therefore the total intensity 
of the radiation from the whole system does not have a 
slight jump downward a t  E 2 w,, but a sharp jump up- 
ward, because the excitation channel opens up. A 
separate treatment of the bremsstrahlung is neverthe- 
less  not without meaning, since it has its own peculiar 
spectral characteristics. 
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1. INTRODUCTION. STATEMENT OF THE PROBLEM 

1. Stochastic acceleration of particles is possible 
both a s  the Fermi  type of process1 and also a s  a result 
of resonance interaction with waves and  oscillation^.^ 
The two mechanisms a r e  similar in their physical 
meaning (they correspond to a heating-up of particles 
either in collisions with heavy clouds o r  else with 
oscillations of large effective temperature3), although 
there is a lso  a definite difference between them. 

To illustrate the relation between these mechanisms 
we can use the following model. Let a fast particle 
move in a random manner in regions (clouds) with a 
field E which is  constant in magnitude but not in direc- 
tion. The size of a region occupied by the field i s  1, 

and the average distance between regions is  lo>-  1. We 
note that resonance particles a r e  acted on by a constant 
field and such a model correctly reflects the main fea- 
tures of the interaction of fast  particles with a gas of 
solitons; it i s  most similar to  the Fermi  model of 
collisions with magnetic clouds (in the Fermi model, 
a particle is also acted on during a collision by a con- 
stant electric field - uXH,, where u is the velocity of 
the cloud). 

Let us consider the simplest one-dimensional case. 
In each collision with a region occupied by an electric 
field a fast  particle acquires o r  loses (depending on the 
sign of the field El) an energy1' A& =eE,L. But a parti- 
cle that encounters a favoring field (pointing along its 
velocity) and acquires an energy A& has a larger ve- 
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locity vo + Av, Av = eE, l/mvo, after the collision, and 
consequently takes less time, lo/(vo +hu), with lo>> 1, 
in reaching the next collision. The average rate of gain 
of energy by the particle is 

where E: =E:Z/Io is the average energy of the field 
(1 

(times a factor 8a). 

It is interesting that apart from an unimportant nu- 
merical factor of the order of unity, Eq. (1) agrees with 
the basic result of the theory of stochastic accelera- 
tion; if instead of 1 we insert in Eq. (1) the mean cor- 
relation length 

This model (and also, incidentally, a more rigorous 
analysis) shows that the mechanism of stochastic ac- 
celeration is not sensitive to whether the random field 
corresponds to strong turbulence (a gas of solitons) 
or  to weak turbulence (a gas of waves, in which case 
lo = I), and depends only on the turbulence spectrum of 
the mean square field. Fermi  acceleration corres- 
ponds to reflection from the cloud, while in resonance 
acceleration the particle passes through the field reg- 
ion, being only weakly perturbed. 

We note that the tails of accelerated particles ob- 
served in many plasma experiments are ,  a s  is  well 
known, due precisely to stochastic acceleration ef- 
fected by various plasma oscillations (of the Langmuir, 
ionic-acoustic, lower-hybrid, and other types). This 
mechanism is s o  widely encountered, and also more 
effective than the Fermi mechanism, that it seems 
quite natural to  regard it a s  the specific source of 
cosmic raysO5 The main problem is that of explaining 
the energy distribution of cosmic rays, since the ef- 
fectiveness of the acceleration is quite sufficient to  
account for their average energy. 

The problem is in fact to find an effective braking 
force which could secure a balance between accelera- 
tion and deceleration and give a stationary spectrum. 
The present paper is  devoted to the search for such a 
force. If we consider the resonance acceleration of 
fast but nonrelativistic particles, this problem has a 
bearing on the heating of a plasma to obtain controlleJ 
thermonuclear fusion. Most methods used for the 
heating of the plasma by means of waves of various 
frequency ranges reduce in the final analysis to a 
quasilinear increase of the energy of the resonance 
particles, provided, of course, that effects of binary 
collisions a r e  negligible. The resonance may be of 
Cerenkov or  of cyclotron type, and may be either be- 
tween an injected wave and the plasma particles or  be- 
tween the particles and secondary waves that ar ise  
awing to linear or nonlinear conversion. The physical 
essence of the effect, which is the object of our pres- 
ent study, is  that the stochastic acceleration (or 
stochastic heating) of the plasma must naturally be 
accompanied by an increase of the electromagnetic 
mass of a particle. This effect of "renormalization" 

of the electromagnetic mass is observa&le and is pro- 
portional to the rate of acceleration (-E:). Because 
energy is expended in increasing the electromagnetic 
mass there is a further deceleration of the particles. 
The main result of the present paper is that, in the 
framework of a classical (nonquantum) treatment the 
magnitude of the braking force owing t o  the effect in 
question is infinite. This is due to  the large contribu- 
tion of large wave vectors (momenta) of the proper field 
of the particle (ultraviolet divergence). A definite 
analogy can be traced between this divergence and the 
divergence of the Rayleigh-Jeans distribution for  
thermal radiation. 

The divergence of the classical expression for the 
deceleration clearly indicates that the effect is import- 
ant and rather large, which is also indicated by esti- 
mates obtained with a reasonable quantum cut-off of the 
divergence. When the effect of mass renormalization 
is taken into account one gets power-law energy spectra 
for the particles. Usually resonance stochastic ac- 
celeration can be described with a quasilinear collision 
integral. In the present paper we find an additional 
collision integral owing to the mass renormalization 
effect. In the framework of the classical description 
the coefficients of this integral diverge. With a rea- 
sonable cut-off they give additional terms of very sig- 
nificant size, which in many practically interesting 
cases a r e  larger than those that come from binary col- 
lisions of the particles. This means that the use of the 
quasilinear integral together with the integral for 
binary collisions (a widely used scheme in many theo- 
retical investigations) without the collision integral due 
to the effect of mass renormalization of the particles 
is not legitimate. The present paper contains the re- 
sult of a classical, nonquantum, treatment of the prob- 
lem for the general case of particles with any velocities 
(relativistic and nonrelativistic). 

To simplify the exposition we shall'suppose that a re- 
sonance quasilinear field E,, is given and is longitudinal, 
s o  that 

and shall a lso  assume that this field is  isotropic (which 
suffices for the analysis of the problem of acceleration 
and heating, since an anisotropy would lead only to an 
additional angular scatter of the particles). Corres- 
ponding to  our assumption that the field E,  is  longi- 
tudinal, we assume that its resonance with the parti- 
cles is  of the Cerenkov type, i.e., the resonance con- 
dition is of the form 

Cyclotron resonance can be examined in a similar way. 

The quasilinear collision integral takes the forms 

where q is the charge of the resonating particles, and 
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GP is the regular part  of their distribution function 
(k, ={kl, wl),dkl =dkldw,). 

2. EFFECT OF RENORMALIZATION OF THE 
ELECTROMAGNETIC MASS ON THE CHANGE OF 
ENERGY OF A RESONANCE TEST PARTICLE 

Each resonance particle in the given random field (2) 
acquires an energy which changes not only the stochastic 
component, but also the regular component of its ve- 
locity. Therefore, strictly speaking, we cannot pre- 
scribe its velocity a t  - w (adiabatic turning on), since 
in this case it would formally acquire an infinite energy 
up to the time t considered. Therefore we pose the 
problem with the initial conditions that we assign to the 
particle a velocity, say, v a t  time t =O (and for sim- 
plicity's sake also se t  r =O a t  t =O). Naturally this will 
not mean that the charge Q of the particle is created a t  
t =O; the velocity of the particle is simply fixed (mea- 
sured) a t  t=O, and its field exists for  t<O a s  well a s  
for t > 0. The change of energy of the particle will be 
given by 

d s  
-= 

dt 
q ( v ( t )  ( E , ( t ) +  E v ( t )  ) )  

- q S ( v ( t ) E b , )  e x p ( - i Q , t + i k , r ( t ) ) d k ,  d o ,  (4 

+ q  J < v ( t ) E k Q ( t )  ) exp( i l t v t+ ikr( t )  ) d k ,  

where El(t) is  the resonance field (1) a t  the pcxsition of 
the particle and Ea(t) is the proper field which the 
particle produces a t  its position. 

Then in the general case the motion of a relativistic 
particle is  described by the equation 

d v ( t )  -=- S ( E n , - v ( t )  (v(t)E,,))orp(-iQ,t+ik,r(t))dk, d o ,  
d t  e  

where G =m/(l - u2yh, c = l , E a  = / E {  exp(ik. r)dk, and 
the coordinate of the particle is vt +r(t), s o  that here 
and from now on r(t) describes the deviation from the 
rectilinear motion with the velocity v. Finally, 

I 

i ~ ~ ' ( t ) =  f [ k E k q ( t t )  ] d t r .  
- = 

We shall hereafter concern ourselves only with re- 
sonance interactions -&(a1) and go to the limit t - m  in 
Eq. (4), using the fact that 

sin Bit 

Q,  
+ n 6 ( B I ) ,  t--. (6 )  

We obtain the expression for the quasilinear increase 
of the energy of the particle by neglecting the proper 
field of the particle in Eqs. (4) and (5), and also ne- 
glecting the deviation of the trajectory from the recti- 
linear one. Then 

From this we get 

This result agrees exactly with that found from the ex- 
pression (3) for the mean particle energy 

namely 

where (d&/dt),,,, is given by the right-hand side of Eq. 
(8). 

The mass renormalization effect is  given by the parti- 
cle's proper fields Eu  and Ha. Keeping in mind the di- 
vergence which we have discussed, with the main con- 
tribution coming from the largest admissible wave 
number of the proper fields, we must include the proper 
fields Ea and Hu in the limit of small wavelengths, 
where the dielectric constant i s  practically equal to 
unity (1 kl >> w,, wpe; c =I). Then the field of the particle 
can be broken up into longitudinal and transverse com- 
ponents, EC(t) and Egt(t). In this approximation the 
longitudinal field 

4xkq 
Ekql ( t )  = - e x p ( - i k r ( l )  - i k v t )  

ik2 

is local in time, and, a s  can easily be seen, makes no 
contribution to the change of the particle's energy. 
Therefore we can regard the field Eu  in Eq. (4) a s  
transverse: 

(11) 
where v' =v - k(kS v) /k2 .  

In f i rs t  approximation in the field Eu and the intensity 
1 Ek1j %f the resonant field, the rate of change of the 
particle's energy can be written in the form of two 
terms: 

where the f i rs t  term is due to  the work done by the 
proper field, and the second, to the field E, (more 
exactly, to the change of the work of the field El which 
is linear in the field E~)." Namely, 

= - R e Q  2n2 ' J  d k  i dtn  ( v l ( t ) v t ( t r )  ( I + i k ( r ( t ) - r ( t t ) )  
- - (1 3) 
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Here SZ=\kl - k m v .  

Equation (13) includes only terms quadratic in r(t), 
which describes the deviation from rectilinear motion. 
We must insert into Eq. (13) for r(t), v(t) and r(tl), 
v(tf) their expansions to and including terms quadratic 
in the field El: 

r ( t )  =rd) ( t )  +rI2) ( t ) ,  v  ( t )  =v+v( l l  ( t )  ( t )  , (14) 

where r(')(t) and v(')(t) a r e  given by Eqs. (7) and (8), 
and r"'(t) and d2 ' ( t )  a r e  found from the next approxima- 
tion in terms of the field El : 

X(k lL  ( k v ) ' )  ( ( e x y  (-iS2,t))  (2+iSl,t) - 2 ) d k ,  d o , ,  

Using these expressions and substituting the ex- 
pansions (14) in Eq. (13), keeping only terms of order 
E:, and going to the limit t - m, using Eq. (6), after 
rather cumbersome calculations we get the following 
result: 

x { ( l k l - k v )  (k,'- ( k , v ) ' )  ( ( k t v ' )  - ( v l ) ' ( k , v ) )  +lk x ~ l ~ ( k , ~ -  ( k , ~ ) ' )  

. ( ( k k , )  - ( k v )  ( k , ~ )  ) l k l )  ; ki t=k, -k(kk, ) / l r ' .  

This expression, like the formula (8) for the resonance 
acceleration, contains a term in 6'(a1) in addition to the 
one in b(C2,). 

For  an isotropic field E,, the result becomes much 
simpler: 

The second term in Eq. (16) comes formally from 
6'(a1) when we integrate by parts, and is analogous to 
the well known corresponding term in quasilinear ac- 
celeration (heating up), a s  described by Eq. (9): 

(lE 
- -- 'q2 ~ ~ ( r , ~ ) ~ n ( n , ) a t ,  d o .  (&".,. E k ,  

In both cases this term is small in the ultrarelativistic 
limit v - 1, and is large, on the average, for non- 
relativistic velocities. It is  easily verified that the 
sign in Eq. (16) is opposite to that in Eq. (9); that is, 

the expression (16) describes a loss of energy by the 
particle. 

The second part of the work done by the forces is 

(G) 1 = q j < v ( t ) E k , >  dk ,  dw ,  exp ( - iQ , t+ ik i r ( t ) ) .  

On substituting the values of v(t) and r(t)  in this equa- 
tion, we again include only the contribution linear in 
Eq. We also keep only the contribution linear in El 
[since the expression (17) already contains one factor 
El]. The result of a rather cumbersome calculation can 
be written in the form 

6 ( R . ) d k  dk ,  d o .  (%ln--- 

(18) 
where (de/dt): is given by Eq. (15). 

The result Bq. (18)] holds both for anisotropic and 
isotropic fields El. If El is isotropic, we ,can use Eq. 
(16) for the f i rs t  term. We note that the total loss (12) 
contains twice the term (d&/dt): plus the second term 
of Eq, (16). In the limiting cases, nonrelativistic 
(v<< 1) and ultrarelativistic ( u  - 1)  we get the respective 
results 

de 
b ( Q , ) d k ,  d o ,  d k  

de q IE 1% 
( ) = - - v z  ne2 m 2 

Like the general expressions (16) and (18), the limit- 
ing formulas (19) and (20) diverge for  large k, since 
dk/@ = 4rdlkl. We shall discuss this result later. 

3. THE CHANGE OF THE ENERGY OF THE 
PROPER FIELD OF THE PARTICLE 

We shall give a proof that this effect of deceleration 
of the particle is due to the change of its proper field. 
For  this purpose it is convenient to consider the change 
with time of the high-frequency field (see Ref, 7): 

In calculating the expressions (21) and (22) we must 
keep terms t o  and including those quadratic in El, i.e., 
those of types E(O'E(~'  and E( ' )E(~) ,  and similarly for 
the magnetic field (the upper index indicates the degree 
in E,). The required fields a r e  calculated from Eqs. 
(10) and (11). It i s  easy to show that if in Eq. (22) both 
longitudinal fields a r e  given by Eq. (10) the corres- 
ponding change of the energy is zero. If in Eq. (22) 
one of the longitudinal fields is El and the other is EQ', 
then the result of the calculation of Eq. (22) is equal, 
except for sign, to (dc/dt):: 

Accordingly, (dc/dt): comes from the change of the en- 
ergy of the longitudinal field owing to  the action of the 
transverse high-frequency field of the particle. In pre- 
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cisely the same way one can derive that 

awllat=- (deldt) ,L. 

Thus the complete energy balance is established: The 
(negative) work done by the field on the particle goes 
into the increase of the energy of the field. 

We now need only to see what kind of field we a r e  
concerned with, the radiation field o r  the proper field 
of'the particle. Let us write out, for example, E:'(" 
as found from Eq. (11): 

4% (E~, ' -vl(E~,v)  ) e - , m v l  
E:"' (t)-=j Ql dk,  d o ,  

Since the effect in question is proportional to 6(52,),, 
s o  that Stl =0, the field E:*(" is propagated with the 
frequency k a v ,  i.e., is displaced a t  the particle ve- 
locity v, and not a t  the speed of light, a t  which an 
electromagnetic wave is propagated. Accordingly, 
what we have is a change of the proper speed of the 
particle, and not of the radiation field. Accordingly, 
the physics of the effect is that the quasilinear ac- 
celeration (heating up) leads to an increase of the en- 
ergy of the particle. It must also be accompanied by 
an increase of the proper field of the particle (a mass 
renormalization). The expenditure of energy to  in- 
crease the proper field leads to an added energy loss. 
The mass renormalization, like transition radiation, 
has a spectral density that does not depend on fre- 
quency? We can verify that there i s  no radiation a t  
high frequencies w = lkl>> w, by calculating the power 
radiated by the particle a s  the integral of the Poynting 
vector over a cylindrical surface with its axis along 
the velocity v. The random field El is a set  of wave 
trains of random lengths, on which there can be transi- 
tion radiation. It is exponentially small, however, 
in the limit with which we a r e  concerned here, that of 
wavelengths 2n/lkl much smaller than the size of the 
inhomogeneities. 

4. THE KINETIC EQUATION WITH MASS 
RENORMALIZATION INCLUDED 

To describe the kinetics of a system of accelerated 
(heated) particles, we shall, a s  usual, introduce the 
random component fp(r, t) and the regular component 
@ p(r, t) of the distribution of the particles. We shall 
use the spatial Fourier component fpVk(t)  of the random 
distribution function, 

fP(rr  t )  =J fPlk( t)eikr  dk. 

For  it we have the equation 

and for simplicity we regard the regular component a s  
uniform in space, 

where Jp is the flux of particles in momentum space. 

We again break up the field Ek into two components 

The field Egt of the particles is  found from the expres- 
sion 

v l d p  ' 
Ekqt(t)=-4nJ -j dt'fp,k(t ')cos{lkl ( t - t ' )} ,  

(2n)  -_ 
(26) 

and the longitudinal field produced by the particles is 
found in a similar way. The formal solution of Eq. (24) 
can be written in the form 

I 

f ~ , k ( t )  =f,,k(O) - exp{-i(kv) t }  Jdt' exp { i ( k v ) t T ]  ( F ~  
0 

t a 
- e x - i t }  j" d k  t { i ( k v t  { ( ~ , ( t - ) f ~ , ~ - ~ ( t )  (27) 

0 ap 

- ( p k S ( t 1 ) f  )fP,k-kt(t? )}. 

We can separate the integral (25) into three terms: 

J,=J:' +J;' +J?.'. , 

J , ~ ' = - ~  j < ~ ~ q ( t ) f , , ~ ,  ( t )  )exp{i(k+ k ' ) r }dkdk l ;  

which a r e  analogous to  (d&/dt): and (d&/dt): in the pre- 
vious calculations. We conduct our further calculations 
in such a way that only terms linear in Fa and quadratic 
in El a r e  taken into account. For  this purpose we 
iterate Eq. (27) the necessary number of times and drop 
terms of higher orders than those indicated. Finally, 
being interested only in terms linear in ap,  we keep 
only terms quadratic in fp , ,  (0). To the needed ac- 
curacy (since the expansion with respect to  the neces- 
sary  parameters has been carried out), we can calcu- 
late the quadratic combinations of the f p,k(0) by re- 
garding the particles a s  uncorrelated8: 

( f e ,  k ( 0 )  f p . ,  r,  (0)  )=meti (p-p') 6  (k+ k ' )  . 

After rather cumbersome calculations we get the result 

Unlike the quasilinear integral, the mass renormaliza- 
tion effects (index q)  lead not only to diffusion (coef- 
ficient Dia,), but a lso  to a friction force (the term in 
F;):  
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o r  in a different form 

Furthermore, 

q' IEk,IZ dk, dot dkti (81) D~'*"= - - 5 
2ne k,'lkl ( l k l - ( k ~ ) ) ~  

{(lki-(kv)) 

In the compact form (30) of the expression, the op- 
erators a/a act  only on the functions depending on p 
in the diffusion coefficient [and not on the distribution 
function 9 in Eq. (29)]. This is also reflected in the 
other way of writing the diffusion coefficient D:jB [Eq. 
(30a)], in which the differentiation has been done ex- 
plicitly. In just the same way the expression (31) can 
be written more compactly. The diffusion coefficient 
D ~ J "  is due to the magnetic force; the terms containing 
k,, in Eq. (31) ar ise  from the Lorentz force in Jf, 
while the terms that contain kii ar ise  from the in- 
clusioil of the Lorentz force in fp,,, which appears in 
J t  [see Eq. (28)]. The diffusion coefficient (31) does 
not lead to any change of the mean energy of the parti- 
cles. 

The term in the coefficient Df: proportional to k,, 
ar ises  from the electric force in Jit, and that pro- 
portional to k, ,  comes from Jv. These two terms make 
equal contributions to  the change (9) of the energy of a 
particle, each being equal on the average to (d&/dt): 
[the total (d&/dt), contains 2(dc/dt):, just a s  it is con- 
tained in Eqs. (12) and (18)]. Finally, the calculations 
give for the force of friction: 

I IKI 

1 1 + ( u , ~ + - ~ ~ ~ ~ t ~ ~ ~ ~ i  ((kl iI ) - ( tv)  (kLv)))-dkdkI dot 
(32) 

I kl 

In the expression (9) this force leads to the change of 
energy described by the second term of Eq. (18). Ac- 
cordingly, by still another method we have found ex- 
actly the same expressions fo r  the energy lost by parti- 
cles owing to the effect of mass renormalization. 

We note that all  of these coefficients Df, and found 
in this way diverge a t  large k (in proportion to  
dk/k2 =4xdk). This sor t  of divergence is of much 
greater significance than that which has been discussed 
in connection with the so-called turbulent broadening 
of resonancese6 The resonance denominators have di- 
vergences in higher orders near resonances, while the 
terms found here diverge independently of the reson- 
ance conditions, and the broadening of the resonance 

SZ, = O  does not remove this divergence. In the frame- 
work of the present approach we can a lso  calculate the 
change of the field amplitude of the transverse electro- 
magnetic waves, and verify that there is no emission of 
radiation in the high-frequency limit. In other words, 
not only do the individual particles not radiate, but also 
the system of particles does not occasion emission from 
the plasma, although very high frequencies a r e  present 
in the proper fields of the particles. 

5. DISCUSSION OF THE RESULTS 
We must discuss the limits of applicability of our 

results. In the estimates we must keep in mind the 
pleasant condition Ikl >> o,. It can be seen from Eq. 
(13) that times r = t -  t1&l/SZ=l/lkl contribute to  this 
expression (the fractional contribution of angles with 
cose =k.v/kv- 1 turns out to be small). Consequently, 
for lkl >> w, we have r(t l)=r(t)-  m(t), i.e., 

Accordingly the use of the expression (13) puts a 
restriction on the field amplitude E ,  but not on the 
quantity I kl . The restriction on E is not a severe one 
(the velocity of the oscillations of the particle in the 
field of the wave must be smaller than the speed of the 
particle o r  of light). It is important that the classical 
nonquantum restrictions on the quantity Ikl do not ar ise  
here. It can be seen from the preceding section that 
the divergence ar ises  from the fluctuations brought in 
by f,,, (0). The other well known divergences, due, 
for example, to spontaneous emission, alsoa come 
from f p ,  , (0). Therefore a t  any rate this divergence 
is not the only one of its kind. 

As for the quantum cut-off of the divergence, in 
principle, since we a r e  concerned with the cutting off 
of a virtual field, we could use k ,,, =%&/ti, where n 
is some numerical constant. In the case of isotropic 
distribution of particles and of turbulence, Eq. (29) 
with such a cut-off is of the form 

It can be seen from this formula that the effect of the 
mass renormalization is relatively small, - cy =q2/Ec; 
i.e., it is of the nature of the radiative corrections to  
the quasilinear collision integral. This means a lso  that 
the mass renormalization effect can greatly exceed the 
effect of binary collisions, which has a s  its small fac- 
tor 4 ~ n m v ~ / N , I E , ~ ~ ,  considering N ,  > 4mmv2/oIE,I2. 
The widespread use of the quasilinear integral along 
with the collision integral with the mass renormaliza- 
tion effect neglected is illegitimate over a broad range 
of practically interesting values of N,, and especially 
for the relaxation of relativistic beams (N, is  the num- 
ber  of particles in the Debye sphere). 

The new effect of the appearance of a friction force 
is qualitatively important (in comparison with quasi- 
linearity). In the nonrelativistic limit i t s  relative 
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importance among renormalization effects is of the 
order #<<I, but it i s  larger than the friction forces 
owing to binary collisions for IE112/4nnT > &Ewl/zP,T. 
In the ultrarelativistic limit i ts  contribution t o  the re- 
normalization effects is sizable o r  even predominant 
[larger by a factor ln(&/m) than the terms that describe 
the dispersion in energy). The presence of the friction 
force makes possible the existence of equilibrium dis- 
tributions of the particles. In the region of nonrelativis- 
tic velocities such distributions a r e  Maxwellian with the 
relativistic temperature Teff  - 3 m c 2 / 4 a x ;  i.e., they do 
not completely forbid escape (for example for  ionic- 
acoustic oscillationss) a t  nonrelativistic energies. For  
v-1, i.e., in the ultrarelativistic limit, the equilibrium 
distribution will be a power law, l / & r ,  both for ions 
and for electrons. 

T o  answer the question as t o  whether one can explain 
in this way the observed power-law spectrum of cosmic 
rays, it is necessary to  obtain a quantum-theoretical 
expression for u =u (Y). It is important that this is  al- 
most the only mechanism which, when one uses re- 
sonance acceleration,' can give a power-law spectrum 
for ions (for electrons there a lso  exists the model of the 
so-called turbulent plasma reactofios"). The mass 
renormalization effect can a lso  affect the propagation of 
transverse electromagnetic waves of high frequency, 
since an electromagnetic wave can vibrate particles a t  
a frequency corresponding to those that contribute to 
the mass renormalization. For  isotropic particles 

there is a n  additional anomalous absorption, which was 
calculated ear l ier  in Ref. 12. 

 ere the resonance field is given a subscript 1 throughout. 
2 ) ~ h e  physical meaning of these par ts  of the work done by the 

forces, which parts are due respectively to the transverse 
(superscript t )  and longitudinal (superscript  1 )  mass  renor- 
malizations, will be explained in Sec. 3. 
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Vibrational bistability in an optically excited nonequilibrium 
molecular gas 

N. F. Perel'man, V. A. Kovarskil, and I. Sh. Averbukh 
Applied Physics Institute, Moldavian Academy of Sciences 
(Submitted 21 December 1979) 
Zh. Eksp. Teor. Fiz. 79, 21-32 (July 1980) 

It is shown that a molecular gas subjected to sufficiently strong optical excitation of the electron transition 
can exist in two stationary states with different degree of excitation of the vibrational degrees of freedom. The 
transition from one state to the other is discontinuous when the parameters of the external action reach their 
critical values, and is an analog of first-order phase transitions. The case of a collision gas of molecules with 
few atoms and of a rarefied gas of complex polyatomic molecules are considered separately. The vibrational 
bistability of a molecular gas manifests itself, in particular, in ambiguity and jumplike changes of the optical 
characteristics of the gas. The effect is subject to hysteresis. 

PACS numbers: 51.70. + f 

F 1. INTRODUCTION wherein, owing to the large power of the absorbed ra-  

The optics of electron-vibrational molecular systems 
in weak electromagnetic fields has been well investigat- 
ed both experimentally and theoretically. If the prob- 
ability of optical excitation i s  much smaller than the 
reciprocal times of the different relaxation processes, 
then the absorbing electron-vibrational system i s  in a 
state of thermodynamic equilibrium, a s  is usually as-  
sumed in the study of the optics of these objects. In 
modern spectroscopy, however, a situation ar ises  

diation, the molecular gas i s  in an essentially non- 
equilibrium state. The disequilibrium of the absorbing 
system should in turn exert an influence on the absorp- 
tion process itself. This change in the properties of 
the medium under the influence of the radiation can man- 
ifest itself in a large number of specific nonlinear ef- 
fects, to which the present paper is  devoted. 

Consider a gas of molecules having two electronic 
states, 1 and 2, and N vibrational degrees of freedom 

9 Sov. Phys. JETP 52(1), July 1980 0038-5646/80/070009-07$02.40 O 1981 American Institute of Physics 9 


