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Nonphonon branches of the Bose spectrum in the 6 phase 
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We investigate all 18 branches of the Bose spectrum in the He model, which are of the form E 2  = D 2  + a k 2 .  
The frequencies D = 0, (8/5)'I2A, (12/5)'I2A, and 24 and the coefficients a are calculated for all branches. It 
is shown that the branches with D = 24 have complex dispersion coefficients a .  

PACS numbers: 67.503 

1. INTRODUCTION 

The  Bose spectrum in the superfluid phases of He3 
consis ts  of 18 branches  (18 is the number  of degrees  
of freedom of the complex tensor o r d e r  parameter  

A,,, i, j = 1,2,3). In the B phase of He3 t h e r e  are four 
phonon (Goldstone) branches-one acoustic, one longi- 
tudinal-spin-wave, and two transverse-spin-wave. 
T h e  remaining 14 branches have in the  B phase a gap 
at k = 0 and constitute different oscillations modes  of 
the  self-consistent field. At s m a l l  k t h e s e  branches  
are of the f o r m  

EZ(k) =Q2+akz. (1.1) 

The  frequencies 51 w e r e  calculated in  Refs. 1-5. The  
case of nonzero k was  considered in Ref. 1 with the aid 
of the kinetic equation and in Ref. 2 using the Bethe- 
Salpeter equation. T h e  branches  with 51 = 2A, however, 

as well as some branches  with 51= (8/5)lt2a, (12/5)11'~ 
w e r e  not investigated accura te  to k2. 

In th i s  paper  we investigate all the  nonphonon branches 
of the Bose spec t rum a t  s m a l l  k i n  the  B phase of the 
He3 model. The model i s  defined by a "hydrodynamic 
action" functional obtained by functional integration 
with respec t  to the F e r m i  fields.' In f i r s t -o rder  ap- 
proximation, the spec t rum of the  Bose excitations is 
given by the quadrat ic  par t  of the  functional. Investi- 
gation of this par t  makes  it possible to calculate the 
frequencies  S2 and the  coefficients a! in  (1.1) fo r  a l l  14 
nonphonon branches. We take special  notice of the fact 
that the coefficients CY corresponding to the four 
b ranches  with 51= 2A turn  out to b e  complex (and dif- 
fe ren t  f o r  the different branches). 

The  plan of the paper  is the following. In Sec. 2 we 
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describe briefly the He3 model and calculate the fre- 
quencies 51 for  all 14 nonphonon branches. In Sec. 3 
we obtain the coefficients a! for the 10 branches with 
Q =  (8/5)'12~, (12/5)'12~. The four branches with 51 
= 2A and the complex coefficients a! called for a special 
investigation (Sec. 4). 

2. THE ~e~ MODEL AND THE NONPHONON 
BRANCHES OF THE BOSE SPECTRUM 

We consider the model system of the HeS type pro- 
posed in Ref. 6. The collective Bose excitations in the 
system a re  determined by a functional of the hydrody- 
namic action 

1 I 
SA - - el.+ ( p )  c,.(p) + -1n det ~ ( c ,  c + ) ~ M ( o .  0 ) .  

2 
(2.1) 

,,*,. 
obtained after integration with respect to the Fermi 
fields. In (2.1), cia@) i s  the Fourier transform of the 
field ~ ia (x ,  7 )  with vector and isotopic indices i and a, 
respectively, and M i s  an operator: 

Here ij = cF(k - k,), ni = ki/kF, H i s  the magnetic field, 
p is the magnetic moment of the quasiparticle, 
o,(a = l ,2,3) a re  Pauli matrices, Z is a normalization 
constant, /3-' = T, and w = (2n + 1)nT is the Fermi fre- 
quency. The negative constant g in (2.1) i s  proportional 
to the amplitude of the scattering of two fermions near 
the Fermi sphere under the assumption that the ampli- 
tude i s  equal tog(k, - k,, k, -k,), where k, and& a re  the mo- 
menta of the incident fermions, and k, and k, those of 
the outgoing fermions. The method of obtaining the 
functional S ,  i s  described in greater detail in Ref. 6. 

The functional (2.1) contains all the information on 
the physical properties of the model system. We ex- 
pand the functional In det in (2.1) in the region T, - T - T, in powers of the deviation of cia@) from the con- 
densate value cg(p), which i s  different for the dif- 
ferent superfluid phases. We make the shift 

and separate from S,  the quadratic form 

(2.3) 
It is this form which determines in first  approximation 
the Bose spectrum obtained from the equation 

det Q=O. (2.4) 

Here Q i s  the matrix of the quadratic form and i s  deter- 
mined by the coefficient tensors Aii,, , B"ob. 

The quadratic form (2.3) is different for different 
superfluid phases. Its explicit expressions for the B, 
A, and 2 0  phases were given in our preceding paper.' 
We need here the formula for the quadratic form (2.3) 
in the B phase 

where 

e ( p )  =io-5,  G(p)=Z(02+f'+A")-L. (2.6) 

Following the substitution 

ci.(p) =ul.(p) +iu~.(p) ,  cia+(p) = u i a ( ~ )  --iuim(~) (2.7) 

expression (2.5) breaks up into two independent forms, 
one of which depends on u, and the other on v, :  

The coefficient tensors Aii ( p ) ,  Bkb (p) a r e  proportional 
to integrals of products of fermion Green's functions. 
We calculate them by the Feynman procedure based on 
the identity 

Using (2.9), we express Aij (p) in the form 

with the term 68 /g of Aij ( p )  eliminated with the aid of 
the identity 

which determines the gap A. 

Considering the limit T -0, we change in (2.10) to 
integration near the Fermi sphere in accordance with 
the rule 

(PV) -' - k,t (2n)  -&c,-' d o ,  d6, dB,. 
PI 

where &2, is an integral with respect to the angle 
variables. We then calculate directly the integrals with 
respect to w, and 5,. We arr ive  at the formula 

A similar procedure yields for Bqob , 

Our aim being an investigation of the nonphonon spec- 
trum, we consider A,, (P), Bijob (p )  at small k, but for 
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nonzero w .  We put f irst  k = O  in (2 .12)  and (2.13).  Then 
the integrals with respect to the angle variables and with 
with respect to the parameter a separate and can be 
easily calculated: 

Az+2a ( l - a )  o2 
A Z + a ( l - a )  o' 

0 

where 

f ( w )  =(w2+2A2)h(w),  g ( w )  =2A2h(o) ,  

(oz+4A') "+o 
h(w)=[w(wz+4A2)"l- 'In . 

Substituting (2.14)-(2.16) in (2.12) and (2.13) we obtain 
the first-approximation formulas for Aij ( p ) ,  Bija, ( p ) :  

Substituting them in (2.8),  we arr ive  at the quadratic 
form 

- "i C {sf ( w )  ( u 2 + v i )  + g ( w )  [2(u..~*-v,.v.~) 
15nzca 

P 

From this equation we easily obtain the frequencies of 
all 14 nonphonon branches. 

The expression under the sign of summation with 
respect to p breaks up into several independent forms 
with the variables 

The form with the variables (u12,u2,) i s  given by 

Equating its determinant to zero, we get 

If the first  factor in (2.22) i s  equal to zero, we arrive 
a t  the equation w%(w) = 0 ,  which yields the branch 
E2 = 0. This i s  one of the phonon branches equal to 
zero at k=O.  The vanishing of the second factor in 
(2.22) leads to the equation (5w2+ 8 h 2 ) h ( o )  = 0 and yields 
the branch E' = 8 h 2 / 5 ,  The forms with the variables 
( u ~ ~ , u , , ) ,  ( U , ~ , U , , )  have a t  k =  0 the same coefficients a s  
(2.21). They yield two more branches E2 = 0 and two 
branches E2 = 8 h 2 / 5 .  

We consider now the form with (u,,, uZ2, &,): 

[5f ( o ) + g ( o )  1 (u,,'+uZ2'+u~sz) 

+4g(w) ( u , ~ u ~ ~ + u ~ ~ u ~ ~ + u ~ ~ u I I ) .  (2.23) 

Equating i ts  determinant to zero we obtain 

The equation (5f -g) '= 0  gives two more branches E2 
= 8 a 2 / 5 , w h i l e  f + g= 0 i s  equivalent to the equation 
(w2 + 4 h 2 ) h ( w )  = 0 and gives the branch E2 = 4h2.  The u 
variable give thus five branches @ = 8 h 2 / 5 ,  three 
branches E2 = 0 ,  and one branch E 2 =  4A2. 

We examine now the v branches. The forms with the 
variables (I/,,, v , , ) ,  (v,,, v, ,) ,  and (v,,, v , , )  a re  the same 
a t  k =  0 .  The coefficients of these forms differ from the 
corresponding coefficients of the u forms by the sub- 
stitution g ( w )  - - g ( w ) .  Therefore the counterpart of Eq. 
(2.22) is of the form 

The equality f  + g =  0 yields three branches E2 = 4A2 (one 
each for the three forms), while 5f + g =  0 i s  equivalent 
to (5w2+ 12h2)h(w)  = 0 and yields the three branches E2 
= 12h2/5 .  

The equation corresponding to the form with (v, , ,  v,,, 
v , , ) ,  i s  obtained from (2.24) by making the substitution 
g ( w )  - - g ( w )  and i ts  form i s  

The equation (5f +g)2  = O  gives two more branches 
E2 = 12A2/5,  and f - g  gives E2 = 0 ,  corresponding to a 
phonon (acoustic) branch that vanishes at k =  0 .  The 11 
variable thus yield five branches E'= 12h2/5 ,  three 
branches E2 = 4A2, and one branch E' = 0 .  

We write down all the obtained frequencies with to- 
gether with their corresponding variables: 

We note that the branches with 51 = 0 and 51 = 2 A  a re  
"dualw in the sense that the variables corresponding to 
them differ by the substitution u, = I / , .  In this sense, 
the branches with 51= ( 8 / 5 ) l " ~  and a =  ( 1 2 / 5 ) l n h  are  
dual. We note also that the sum of the squares of the 
frequencies of dual branches i s  equal to 4h2 .  

3. BRANCHES WITH G! = (8/5)'12 A AND 
(12/5)'12 AAT SMALL k 

We calculate now the nonphonon branches of the spec- 
trum with corrections -k2 .  The most labor-consuming 
is the analysis of the branches with 51= 2A, in which the 
coefficients of k2 a r e  complex. We consider therefore 
f i rs t  thebranches other thanS2 = 2A,  inwhich the 
the corrections to the spectrum can be obtained by ex- 
panding the coefficient tensorsA,, (P),Bijab(P) in powers 
of k2, confining ourselves to terms -k2 .  We have 

We can thus obtain the corrections to the quadratic form 
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(2.19). Calculating the integrals, corresponding to this 
correction, with respect to the angle variables, 

dPl nlrn,j(n,k)2 = '/l ,n(k26ij+2k,kj),  
(3.2) 

j dQ, ( 2 n , . 1 ~ , ~ - 6 ~ )  n,,nlj (n,k) ' = ' / t05n [ kZ (26,,6bj+26,6b,-56.b6ij) 

+4kakb6,j- IOk;kj6~+2ksk;6bjf 2kbk,6.;f 2kokj6b;+2kbk,60,], 

we write the correction to (2.19) in the form 

+ k ; k j ( 4 ( ~ a , k , - ~ o i ~ & )  -10 ( u ~ ~ u , - ~ ~ ~ u ~ )  

+ ~ ( U , ~ U ~ - U ~ ~ U . )  + 8(uimuu-u.u.,) ) I ) .  (3.3) 

Since the B phase is isotropic and there is no preferred 
direction in it, i t  suffices to consider excitations that 
propagate in an arbitrary direction, say along the third 
axis. Following the substitutions k, = k, = 0 and k, = k, 
the correction (3.3) breaks up into a sum of forms with 
the same variables (2.20) a s  the main form (2.19). 
Adding (2.19) and (3.31, we obtain (at k, = k, = 0, k, = k) 
under the C, sign the sum of the following forms: 

We must put here w, =u, and take the upper signs 
*, r, or  else put ul, = v ,  and take the lower signs. The 
forms with the variables u~,,, w,, a r e  obtained from the 
second form of (3.4) by making the replacement 
(31,  ~'13) - ( 2 ~ ~ 2 ,  ~'23). 

It i s  easy to obtain from (3.4) all the spectrum branches 
of interest to us (except a= 2A) with corrections " k2. 
Consider, for example, the first  of the forms (3.4). 
Putting to,, = u,,, w,, = u,, (taking the upper signs in 
*, r), we equate to zero the determinant of the form 

cpQZ d 

5 do' 

Equating to zero  the first  factor in (3.5) yields 
cp2k2 d 

0 2 h ( o )  + ?- 0 2 h ( o )  = 0, 
s do" 

The last term here i s  of higher order, since dlnh!w)/ 
dw2 is finite a s  w -0. As a result we obtain the pho- 
non branch of the longitudinal spin oscillations: 

All the remaining phonon branches can also be  obtained 
in the approach described here when considering the 
forms (uu 9 (~23, ~32),  (vll, v22, &3)* 

Equating to zero the second factor in (3.5), we ob- 
tain the equation 

which yields the spectrum branch 

1 6 A V  ln h ( o )  E"=-+- 
3 5 

Using the formula 

d l n h ( o )  1 -=--- 
1 - (4A2+02)"+o -' 

202 2 C 2 + 4 A z ) - [  
ol 02+4A2 ln - 

do' (4A2+oz)  "-0 

and substituting w = i(8/5)lhA, we obtain 

I 

This leads to the spectrum branch corresponding to the 
variable u,, +u,,: 

Similar calculations a re  easily made for the remaining 
branches, with the exception of those with R = 2A. The 
simplest way of obtaining the sought formulas i s  to sub- 
stitute in the quadratic forms (3.4) values of ui, such 
that only the variable of interest remains, and then 
equate the form to zero. For example, to obtain the 
phonon branch (3.6) we substitute in the f i rs t  of the 
forms (3.4) w,, = u,, = u,,, while in the investigation of 
the nonphonon branch we substitute w,, =u,, =u,,. 

We write down the branches of the Bose spectrum 
together with their corresponding variables. These a r e  
the four phonon branches: 

E'=~,~k'/5; ~ i r - & I ;  

E'=2cn2kY5; urr-ur,, uzr-urr; (3.8) 
E2-cr2k2/3; vit+vzr+vrr; 

five u-branches with 52(8/5)1/2~: 

5 105 

and five v-branches with a= (12/5)"2~: 
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4. BRANCHES WITH SZ = 2A  AT SMALL k 

we obtain the equation We have obtained all the Bose-spectrum branches 
except those with 52= 2A, by expanding the coefficients 
of the tensors A,. , B,, at small k (3.1). This proce- 
dure, however, cannot be  used for branches with 62 
= 2 4  since the function h(w) (2.16), and with i t  also the 
functions f(w) and g(w), has a singularity -(w2 + 4 ~ ~ ) ~ " ~  
a t  w2 - - 4 ~ ' .  Therefore the branches with 52 = 2A call 
for a special investigation. 

(l+z')"Sz"n(z-l[ I+ (I+z2)"1]}=0. 

Putting also 

We s tar t  with the branch corresponding to the variable 
u,, +u2, + u,,. We separate from the quadratic form 
(2.5) the terms corresponding to the indicated variable, 
putting u, ( p )  = c(p)6,, v, = 0. In this case 

we can rewrite (4.12) in the simple form 

t+sh t-0. (4.14) 

If t i s  a nontrivial root of this equation we obtain, sub- 
stituting z = l/sinh(t/2) in (4.10) and (2.5) is transformed into 

Equation (4.14) and the dispersion law (4.15) turned 
out to be the same a s  for the single mnphonon branch 
of the spectrum in the Fermi-gas model with scalar 
point interaction, investigated in Ref. 8. It i s  indicated 
in Ref. 8 that a physical meaning can be  possessed by 
the branch (4.15), the first  to appear upon analytic con- 
tinuation with respect to the variable E from the upper 
half-plane to the unphysical sheet. This branch i s  ob- 
tained if t i s  replaced by the smallest (in absolute value) 
nontrivial (+ 0) root of (4.14), which i s  equal to 

where 

A (P* uIt+~2z+uaa) 

Using the Feynman procedure to calculate A (0, u,, 
+u,, + u,,) and integrating with respect to w, and 5 ,, we 
obtain 

The obtained branch was called in Ref. 8 "resonant 
excitation." It corresponds to the pole c, ( p ) ,  of the 
Green's function of the Bose fields, which i s  located 
near the branch point E' = 4a2, 

where 

We can treat  similarly the remaining three branches 
with 52 = 2A. They correspond to the equations We obtain similarly the coefficient functions corre- 

sponding to the variables v,, - v,,, v,, - v,,, v,, - v,,. 
They can be written in the form 

We calculate the integral (4.4) for F: 

in which it i s  necessary to take the minus sign for the 
variable v,, - v,, and the plus sign for v,, -us,,  I),, 

-v,,. Changing to the variable t (4.131 we obtain in 
place of (4.18) 

where 

a'=AzS1/4(o'+c~(n,k)2), bz=-l/,(oz+~pa(n,k)'). (4.7) 

As w2 - - 4A2 the quantity b2 is positive and close to 
A2. As will be  shown below, a 2 =  O(k2), s o  that 
2 arctan(a/b) << n and in first-order approximation F 
= n a b .  This leads to an equation that determines in 
first  order the dispersion of the branch u,, +u,, +us,: As a result, the dispersion laws for all branches with 

52= 2A a r e  given by formula (4.15), where t a r e  the non- 
trivial roots of Eqs. (4.14) for the branch u,, +u,, +us,, 
(4.191 forv12-v,,, and (4.20) forv13-v,,, v,,-v,,. 
The branches with direct physical meaning a re  those 
appearing f i rs t  in the analytic continuation from the 
physical sheet. For Eq. (4.19), the sought nontrivial 
solution with minimum modulus i s  of the form 

We direct k along the third axis and denote cos8,=x. 
Then (n,k)= and (4.8) i s  transformed into 

Putting 
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P 

TABLE I. 

and for Eq. (4.21) of the form 

t,mi.94+i 4.12. 

The coefficients of c:k2 a r e  complex for all the branches 
with 62= 2 4  a s  already noted above. The physical cause 
is the possibility of the decay of the Bose excitation into 
two fermions. 

5. CONCLUSION 

The method used in the present paper makes i t  pos- 
sible to calculate all the branches of the Bose spectrum 
at small momenta k, accurate to terms - k2. The re- 
sults  a t  k =  0 (the frequencies of the collective modes) 
coincide with those obtained in Refs. 1-5 by essentially 
different methods. A comparison of the present re- 

sults with one of the most complete investigation~, that 
of Wolfle,' is shown in the table. To facilitate the com- 
parison, we replaced in the table the coefficients of the 
type (20+ 26 /a rc tg  2&)/105 in front of c:k2 by their 
numerical values. It i s  seen that the branches cal- 
culated by Wolfle accurate to terms - k2 practically 
coincide with those obtained here. We note a t  the same 
time that Wolfle calculated, up to k2, only 9 out of 18 
branches (Nagai2 obtained 14 branches). The disper- 
sions of the branches with a= 2A were not obtained in 
Refs. 1 and 2, and those of two branches with 62= 
= (8/5)'I2a and three with a= (12/5)lr2h were further- 
more not obtained in Ref. 1. 

We note in conclusion that the branches with 
62 = (8/5)'12~, (12/5)'I2A a r e  readily observed and can 
be used to determine the temperature dependence of 
the gap A = A (T) . The experimental situation corresponds 
to finite values of the momentum k, s o  that calculation 
of the dispersion E = E(k) is important for comparison 
with experiment. 

'P. Wolfle, Physica (Utrecht SOB, 96 (1977). 
2 ~ .  Nagai, Prog. Theor. Phys. 54, 1 (1975). 
3 ~ .  Tewordt and D. Einzel, Phys. Lett. 56A, 97 (1976). 
'K. Maki, J. Low Temp. Phys. 24, 755 (1976). 
5 ~ .  R. Chechetkio, Fiz. Nizk. Temp. 2, 1365 (1976) [Sov. J. 
Low Temp. Phys. 2, 665 (1976)J. 

%. Alonso and V. N. Popov, Zh. Eksp. Teor. Fiz. 73, 1445 
(1977) [Sov. Phys. JETP 46, 760 (1977)). 

'P. N. Brusov and V. N. Popov, Zh. Eksp. Teor. Fiz. 78, 234 
(1980) [Sov. Phys. JETP 51, 117 (1980)). 

'v. A. Andrianov and V. N. Popov, Teor. Mat. Fiz. 28, 340 
(1976). 

Translated by J. G .  Adashko 

1222 Sov. Phys. JETP 51(6), June 1980 P. N. Brusov and V. N. Popov 1222 


