
-AA a(T-T.)#. (3.30) 

The two examples considered show how fluctuations in 
the critical range, during phase transitions of the se- 
cond kind in ferroelectric materials and liquid crystals, 
affect the characteristics of laser  radiation produced by 
impurity atoms and molecules. A deeper investigation 
of this problem is naturally of interest. Of particular 
interest is a study of the mutual influence of equilibrium 
and nonequilibrium phase transitions. 

We take this occasion to thank G. A. Lyakov for dis- 
cussion of the results of the research. 
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Solutions in the form of large-amplitude spin waves are obtained in the long-wave limit for the spin-dynamics 
equations of superfluid 'He. The dispersion laws of these waves in the A and B phases are obtained and their 
stability is investigated. The magnetic-relaxation diffusion mechanism due to the spatial nonuniformity of the 
magnetization distribution is considered. A method of measuring the spin-diffusion coefficient in the 
superfluid phases of 'He is proposed. 
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1. INTRODUCTION 

 experiment^"^ show that the relaxation of the mag- 
netization in superfluid 3He to the equilibrium value 
from the initial nonequilibrium state can apparently not 
be attributed in all cases to the action of one mecha- 
nism. The experiments a re  presently interpreted 
usually by the only theoretically sufficiently well de- 
veloped "intrinsic" mechanism of Legget and 
whose applicability i s  restrictedby the requirement that 
the magnetization be uniformly distributed in space. 
This restriction is strong in those cases when the ini- 
tial state is prepared by tipping the magnetization 
by a finite angle from the direction of the external mag- 
netic field H,. Even a small inhomogeneity of H,, be- 
cause of the difference between the Larmor frequencies 
a t  various points of space, leads after a sufficiently 
long time to a considerable nonuniformity in the distri- 
bution of the magnetization. Even more important is 
the fact that in the A phase the spatially uniform pre- 
cession of the magnetization is unstable and a nonuni- 
form distribution of the magnetization sets-in sponta- 

neously even in an ideally uniform external field. The 
onset of the nonuniformity, together with spin diffusion, 
leads to a rather effective mechanism of longitudinal 
relaxation in the superfluid 'He. 

A theoretical investigation of the spatially inhomo- 
genous states calls in the general case for the solution 
of a rather complicated nonlinear system of partial 
differential equations (see, e. g. ,  Ref. 6). The problem 
is simpler for weakly inhomogeneous states, where the 
influence of the spatial nonuniformity on the precession 
of the magnetization can be regarded a s  a small pertur- 
bation. This approach i s  applicable if the energy of the 
inhomogeneity of the condensate of the Cooper pairs is 
small compared with the magnetic energy -xH;, where 
x is the magnetic susceptibility of the 3He. In connec- 
tion with the investigation of the relaxation, we shall be 
interested in states in which the energy inhomogeneity 
is comparable in order of magnitude with the spin-orbit 
energy. For  the customarily employed fields H,  = 200- 
300 Oe, the condition of smallness of the spin-orbit en- 
ergy is satisfied with good accuracy a t  all temperatures. 
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Near T,, where both the spin-orbitenergy and the in- 
homogeneity energy tend to zero, this condition is sat- 
isfied also for weaker fields. 

In the present paper we obtain weakly inhomogeneous, 
in the sense indicated above, solutions of the system of 
spin-dynamics equations of superfluid 3He. These so- 
lutions a re  a natural generalization of the spatially uni- 
form magnetization precession on the one hand, and of 
small-amplitude spin waves on the other. The obtained 
solution make i t  possible to consider the action of a 
new, diffusion mechanism of the relaxation of magneti- 
zation and to obtain for simple cases predictions of the 
time dependence of the relaxation and of the dependence 
of the relaxation time on the external parameters. We 
emphasize that the considered mechanism, although 
connected with the flow of spin currents, is a volume 
phenomenon. Consequently, we a r e  not dealing here 
with the influx of magnetization into the measuring 
volume from the outside, a s  is the case in the relaxa- 
tion mechanism proposed by Anderson (see the refer- 
ence in the article by Corruccini and Osheroff2) and 
Vuorio. 

A brief exposition of the principal results of the pres- 
ent paper was published in Refs. 5 and 8. 

2. EQUATIONS OF MOTION 

Our problem involves the following characteristic 
lengths: the coherence length to, the magnetic length 
I, - c/o,, and the dipole length lQ - c/a.  Here w, 
= -gHo is the Larmor frequency, g is the gyromagnetic 
ratio for the 'He nuclei, 52 is the frequency of the lon- 
gitudinal oscillations of the magnetization, and c is the 
spin-wave velocity. We shall consider, a s  is custo- 
mary in spin dynamics, a magnetic-field region for 
which I,>> 5,. For  such fields, the order parameter 
can be regarded a s  "rigid," i. e . ,  i ts  spatial and tem- 
poral variations reduce to rotations in spin space (the 
orbital coordinates a r e  assumed fixed). These rota- 
tions a re  conveniently parametrized with the aid of the 
Euler angles a, P, y in accordance with the equation 

where fi is the rotation matrix and A,,"' = (A,"') is the 
initial form, independent of the coordinates, of the or- 
der parameter. 

The Hamiltonian that generates the equations of mo- 
tion of the inhomogeneous case is obtained by adding to 
the Leggett HamiltonianQ the inhomogeneity energy of 
the condensate. The volume density of the inhomo- 
geneity energy F, depends on the spatial derivatives 
A,,, which can be conveniently expressed in terms of 
the "angular velocitiesn w,, in accordance with the defi- 
nition 

For  substitution in F, i t  is convenient to change over 
in this formula to a coordinate system that rotates to- 
gether with A,,; in this system, in the lowest order in 
the spatial derivatives, we have 

where the tensor of the superfluid spin densities pikc,, is 
a certain combination of A/$) and (Ale)); m is the 
mass  of the ' ~ e  atom, and the "angular velocity9* in the 
moving system of coordinates 3,, is expressed in the 
following form in terms of the angles a, @, and y and 
their derivatives with respect to the coordinates a,, 
= aalax, etc. : 

- 
oit=-a, sin p cos ~ i - p . ,  sin y, - 
02g=a, t sin fi sin r+p, r cos Y, - 

03t=a, t cos p+y, t. 

Let the inhomogeneity be characterized by a wave 
vector q. The requirement that the inhomogeneity be 
weak then means that ql, << 1. We assume also that 
l,/lQ -52/wL << 1. The procedure described in our pre- 
ceding paper1' allows us  to obtain for the magnetization 
equations of motion that a re  accurate to (ql,)' and 
(Ww,) '  inclusive. Just  a s  before," the unit of mea- 
surements of the spin S is taken to be i t s  equilibrium 
value, but we continue to use a dimensional time, to be 
able to observe directly the dependence on H, in the 
final formulas. The density of the Hamiltonian must in 
this transition be divided by xH0/g. The independent 
variables a r e  chosen to be a and 9 = o + y and their 
canonically conjugate momenta P =S, - S, and Sc, where 
S, and Sc a r e  the projections of S on the axis z and b of 
the immobile and moving coordinate systems, respec- 
tively. The z axis is oriented along the equilibrium 
direction of the spin, i. e . ,  opposite to H,. By virtue 
of the previously proved" conservation of the orienta- 
tion of S relative to the moving system of coordinates 
we have S, = I S I  =S. The angle j3 between the magneti- 
zation -xH0S and H, is connected with P and S by the re- 
lation cosP = 1 + PIS. 

The density of the Hamiltonian must be averaged over 
the "fast" variables that vary with a frequency - w,. In 
the uresonantucase, S - 1 s 52/wL, there is only one fast 
variable a ,  and in the "nonresonant" case, S - 1 - 1, 
both angles a and 9 are  fast. Putting G =F,/xH,~ and 
V= V/XH,~ ,  where the bar denotes the corresponding 
averaging, we arrive a t  the following density of the 
Hamiltonian % 

It differs from the density of the Hamiltonian of the 
preceding paper1' in that V is replaced here by V+ G. 

In both the resonant and nonresonant cases G, in ac- 
cordance with i t s  definition and with Eqs. (3) and (4), is 
a function of the angle /3 and of the derivatives a,,,B ,,, 
a&. The derivatives a re  assumed to be slowly varying 
and a r e  not averaged. The equations' of motion a re  ob- 
tained in accordance with the general procedure (see, 
e. g . ,  Ref. 12) by making the following substitution in 
the equations of Ref. 10: 

and similar ones for the angles P and a. 

To describe the relaxation we must include in the 
equations of motion also the dissipative terms. We 
consider here the hydrodynamic limit wro << 1, where 
r0 is the time between the quasiparticle collisions, 
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when the disequilibrium can be described with the aid 
of the dissipation function. It suffices to retain in the 
dissipation function only the terms with the spatial de- 
rivatives of S. The dissipation due to the temporal 
derivatives of S were considered in Ref. 13 and is of no 
importance here. We then have for the change in the 
energy density: 

dB 
-=- as* as, 
dt xHoaDt,--- 

azL az; 
Here D,, is the tensor of the spin-diffusion coefficients. 

The equations of motion that agree in %form with the 
Hamiltonian density (5) and the dissipation function (6) 
take in the resonant case the form 

--=--+-- as a ( - ) +% [ s , ~  .-Ssin2 p a , . , r ~ f i , ~ ) , ] .  (7) 
o, a t  a m  az, am, ,  w,. 

+A [Ss in$a t t , ,+2s in  BS,ta,,+2Scos pa,$,,,]. 
oLS sin B (10) 

In the nonresonant case, the obtained system must also 
be averaged with respect to @, a s  a result of which aV/ 
as vanishes and aV/$ in (10) should be replaced by 
av/ap.  In all other respects the equations remain un- 
changed. 

3. SPIN WAVES 

The system of equations derived in the preceding sec- 
tioi contains the angle only in the derivatives with re-  
spect to the time and the coordinates; i t  is therefore 
convenient to introduce new variables h =  V a  and v = wL 
+ aa/at, which a re  connected by the relation 

Using the condition wr0 << 1, we neglect for the time 
being the dissipative terms in Eqs. (6)-(10). The sys- 
tem has then stationary solutions of the form h=h"', 
P=Po, ~P=@,,S=S, and 

a (V+G)  
v=- OL. 

cos p 

The constants h$"' and Po a re  determined by the initial 
conditions, +o i s  the root of the equation aV/a+ =0,  and 
So = 1 + v(cosp - l)/w,. These solutions describe the 
precession of magnetization turned into a spiral, with 
wave vector h, and i t  is natural to regard them a s  
large-amplitude spin waves. The precession frequency 
w = -wL + v is determined by Eq. (12). 

As p - 0, the dependence of w on h goes over into the 
dispersion law of ordinary spin waves in the strong- 
field limit. At h=O we have also G=O and Eq. (12) 
determines the homogeneous-precession frequency 
shift (cf. Ref. 10). Solutions with h +  0 correspond to 
states with a nonzero average flux of the quantity P de- 
termined by the derivative aG/ah,. 

cyclic variable. The result a r e  stationary solutions 
characterized by two constant vectors h(O'= Va! and 
g(O)= V*. The deviation of the precession frequency 
from the Larmor frequency is also determined for such 
solutions by Eq. (12), and the rate of change of the an- 
gle @ is determined by Eq. (8). In this case a flux of S, 
equal to aG/ag, is present in addition to the flux P. 

If we now take also the dissipative terms into account 
in the equation of motion, then the obtained solutions 
become damped. In the resonant case the condition 
as/at = 0 takes the form 

where (h 1 D 1 h) = ~ , h , h , .  Equations (13) has a solution 
a t  not too large h, and determines @,, while So is ob- 
tained from the condition a@/at=O. The value of S is 
close to unity and changes little, therefore aP/at 
= a(cosp)/at, and then Eq. (9) determines the time 
variation of the longitudinal magnetization component 

8 (cos p) /&=sinz p ( h  1 D 1 h )  . 
Integration of this equation leads to the angle-relaxation 
law 

We see thus that in the resonant case states with uni- 
form spin current relax within a time of the order of 
(Dh2)-'. 

In the nonresonant case the diffusion ensures relaxa- 
tion of only the transverse spin components. At con- 
stant S, the angle P varies in accord with 

while the quantity S, can be restored only via other 
mechanisms, for example the mechanism of Leggett 
and Tagaki. In contrast to the resonant case, states 
with spin current a re  possible here, and when the mag- 
netization i s  uniformly distributed these states corre- 
spond to h = 0 but g # 0. These states can also relax 
via the mechanism of Leggett and Tagaki, but in the 
next higher order in (C~/W,)~. 

The obtained solutions with constant h in the resonant 
state and with constant h and g in the nonresonant state 
constitute a rather special class of solutions. This 
raises the question of their stability to violation of 
homogeneity. The stability of the solutions depends on 
the properties of the given concrete phase and must be 
investigated separately for each phase. 

4. SPIN-WAVE STABILITY IN  THE A PHASE 

We first  write down an expression for the inhomo- 
geneity energy density F ,  in the A phase. The order 
parameter in the A phase is of the form 

Akf= ( 3 / 2 ) " z ~ d h ( f : 1 '  +ift(''), 

where d, f"', and f"' a re  real unit vectors, and f"' fC2' 
=O.  In place of f"' and f"' i t  is frequently sufficient to 
specify the vector 1 =f"' xf"'. It is important that A,, 

In the nonresonant case the angle also becomes a can be factored into spin and orbital parts. Since F ,  is 
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invariant to separate rotations in spin and orbit spaces, 
the spin part  of p,,,, can depend only on d, and the or- 
bital part  only on 1. The spin part should be propor- 
tional to bi, - didk, in order that the rotation that leaves 
d in place not lead to a change in energy. For  the orbi- 
tal part there a r e  two independent combinations, and a s  
a result 

Here c,, and c, are  the velocities of the spin waves pro- 
pagating respectively along and across 1. Near T, 

where X, and x are  respectively the magnetic suscepti- 
bilities of the normal 3He and of the A phase, 2, is the 
zeroth harmonic of the spin part of the Fermi-liquid in- 
teraction, v, is the Fermi velocity, and U' is a coeffi- 
cient close to unity. It takes into account the strong- 
coupling effects and is connected with the jump Ac, of 
the specific heat on going from the normal phase to the 
A phase of 3He by the relation AC,,/C,= 1.42. ' F a r  
from T, allowance for the strong coupling effect is com- 
plicated, and the velocities c,, and c, should be regarded 
a s  phenomenological constants of the order of v,. De- 
tails on the temperature dependences of c,, and c, can 
be found in the review of Leggett. l4 

We shall assume that a t  the initial instant of time 
d lH,. Substitution of (4) in (16) and subsequent 
averaging over the angle a! lead then to the following 
expression for G: 

where, to abbreviate the notation, we have introduced 
u = cosg and 

Substituting a,, = h,, and P , ,  = cp,, = 0 in (18) and then 
in (12) we obtain an explicit expression for the frequency 
of the spin wave in the A phase 

To investigate the stability of the homogeneous spiral 
solutions i t  is necessary to examine the behavior of 
small inhomogeneous perturbations of the wave vector 
h, putting h=hto'  + E ( Y ,  t) and substituting h in the latter 
form in the system (5.14) and (5.17), with G defined by 
Eq. (18). The other variables also deviate from their 
stationary values, Q, = @, + cp, etc. The system li- 
nearized with respect to the perturbation has-solutions 
of the form exp[i(k. r - wt)], where w and k a re  connec- 
ted by the dispersion equation: 

We have introduced here the abbreviated notation: 

1  iolo,  - (V + G), i ( 1  - u )  o/oL 
- i o /o ,  v, 0. @ v:u, * (1 - (k  - I C  I k )  / oLa 

- iolw, - - ( V + G ) , ,  v , u , @  V .  u, u - 
0 ( k J C J k )  . o ( 1 - u ) ( 3 - u ) ( k I C I k )  - i ( i - u ) -  ( 1 - u ) -  s- 

OL OL 2oLe 

V,*,o-V,m,,+ (kIC I k ) / ~ r ' = P V / a @ ' +  (kI C J k )  /a=', 
V,*,+=a2(v+G) /aua+ (kl  C I k )  /20~'(1-u') ,  

v , N , s = a v / a ~ a @ + i ( h  JC 1 k ) / ~ ~ ~ ,  - 
o=o+ (u-2) ( h ] C  I k ) / w ~ .  

In the A phase 

= 0. 

and at  the minimum = 0 of the potential 

At (kl c I k), ( ~ I c  I k), (hl c I h) -nA2, Eq. (21) has two 
pairs of roots. The f i rs t  pair w,,, -aA corresponds to 
waves that go over a s  k - 0 into longitudinal oscillations 
of the magnetization. In the principal order in nA/o, 
these waves have the following dispersion law: 

This branch is obviously stable. 

The second pair of roots w,,, is of the order of nA2/ 
w,. At these w all the elements of the determinant in 
the left-hand side of (21) a r e  of the order of S1,2/oL2, 
with the exception of one element of the order of unity. 
Equation (21) is satisfied in the prinicpal order in 52,/ 
o,, if the minor complementing the unity element 
vanishes. Thus, the dispersion equation for the second 
branch takes the form 

At h=O we have therefore 

(25) 
and for k satisfying the condition 

The frequency wz,, < 0, i. e., the homogeneous preces- 
sion of the magnetization is unstable. Condition (26) 
shows that the increasing perturbations a re  those with 
k2 -(I  - u2)/ln2. According to (25), the instability de- - 
velopment time for typical values of k is 

and increases a s  u - * 1. 

At h#O the condition that the roots of (24) be real  is 
of the form 

Let the vector h be directed along one of the principal 
directions of the tensor C,,, e. g., h 11 1. Then the con- 
dition (27) can be satisfied for all k if h lies in the in- 
terval defined by the inequalities 
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where v = (1 + u)/(l - u). It is also necessary to have 
h2 2 3QA2/4cIl2 and u >+; under these conditions a l l  the 
expressions under the radical signs a re  positive. At 
u >5/7, the difference vlf2 - 2(v - 3)l" becomes nega- 
tive and i t  must be replaced by zero in the inequalities 
(28). The conditions (28) determine the region of the 
stability of the large-amplitude spin waves for h N 1. At 
h 11 the stability region is determined by the same in- 
equalities, with ct replaced by cf. At arbitrary orien- 
tation of h the analysis becomes more cumbersome. It 
is clear, however, that there exists a region h - l/lQ 
in which the large-amplitude spin waves a r e  stable a t  
not too large tipping angles of the magnetization. 

We ascertain now how the instability development is 
influenced by spin diffusion. At h = 0 the dispersion 
equation for small perturbations takes, with allowance 
for diffusion, the form 

At (kl C 1 k) >> 51,' the principal term of the expression in 
the curly brackets is equal to (kl c 1 k)'/4. The ratio of 
the first  term to the second is then independent of k and 
it is convenient to characterize i t  by the parameter 
A=a.DwL/c2, where D and c2 a re  certain mean values of 
D,, and C,,, and a is a number of the order of unity. If 
A << 1, then the effect of diffusion is small, and such a 
situation is possible far  from the temperature T, of the 
transition into the superfluid state, where D -vF2ro and 
A-w,T,<<~. 

As T - T, we have 

and the oscillations in question acquire a diffusion 
character. In the region (kl C ( k ) ~  52,2, where insta- 
bility exists if no account is taken of diffusion, the rel- 
ative value of the diffusion term is of the order of 
Akl,, where 1, -c/aA. At A<< 1 the value of A 121, is 
also small, but even a t  A s  1 there exists a region 
k << l/Al, where the diffusion is insignificant and in- 
stability is present a s  before. As seen from (29), the 
perturbations that a r e  now increasing a re  those with 
k 5 l/Al, and, accordingly, the instability development 
time at (1 - u2) - 1 is 

When account is taken of diffusion, the solutions with 
h#O a re  nonstationary, but s o  long a s  the variation of 
h can be regarded a s  slow we can use the same insta- 
bility-investigation procedure a s  for the stationary so- 
lutions. This procedure is suitable for estimates also 
when the rate of change of h i s  comparable with the 
characteristic frequencies of the perturbations. Just  
a s  in the case h=O, the diffusion is insignificant a t  
A << 1. At A >> 1 there can exist stable solutions with 
h 2 l / ~ l , .  

In the nonresonant case, substituting V a  = h and V@ 

= gin (18), and inserting the obtained expression in (12), 
we obtain the precession frequency 

The stability analysis is similar to that of the resonant 
case. The equation for the frequencies of the small 
perturbations has here, too, two pairs of roots. 

where 

It is easily seen that a t  all h there exist k that satisfy 
the condition 

and in the nonresonant case there exist no regions of 
stability of large-amplitude spin waves. 

5. MAGNETIZATION RELAXATION IN THE A PHASE 

It is customary to describe magnetic relaxation in 
terms of the so-called longitudinal relaxation time T,, 

i. e . ,  the time required to restrore the magnetization 
projection parallel to H,. The equation for the longi- 
tudinal component of S is obtained by adding Eqs. (7) 
and (9) 

In the experiments is measured the magnetization of 
a certain finite volume, and Eq. (35) must be integrated 
over this "measurementv volume. The last two terms 
in the right-hand side a re  the respective divergences of 
the superfluid and diffusion spin currents and lead to 
surface contributions to the magnetization change due to 
i t s  influx into the measurement volume from the outside 
We shall assume here that there is no such influx and 
take into account only the volume magnetization source 

The previosuly discussed stationary solutions corre- 
spond to an absence of a magnetization outflow 
(sin 2+, = 0). The maximum possible value of the out- 
flow % ( I +  C O S ~ ) ~ ~ W , ~  i s  reached a t  sin2G = 1. If this 
value of @ is maintained in the entire measurement 
volume, then the relaxation will take place within the 
minimum possible time, of the order of 7, ,,,= 8wL /%.. 
For  a pressure 20 bar we have T,,,,= 10-'H0/(1 - T/T,) 
[ s e c / ~ e ] .  The actually observed times a re  usually one 
or  two orders of magnitude higher, meaning that sin2G 
or  i t s  mean value a re  usually small. 

In the discussed solutions of the spin-wave type, the 
deviation of @ from a, is ensured by the influence of the 
spin diffusion [see Eq. (13)]. We ascertain now the 
conditions under which this relaxation mechanism be- 
comes important. We consider to this end the relaxa- 
tion in a slightly inhomogeneous magnetic field, and 
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then wL in Eqs. (7)-(10) depends on the coordinates. 
The field directions are  also inevitably slightly dif- 
ferent at various points, but this matters little if  the 
inhomogeneity i s  small. Taking the gradients of both 
sides of (lo), we get 

We have left out here the terms of order 02/wL L, c2/ 
oLL3, and DwLt/L3, which remain small compared with 
Vw,, under the conditions that will be imposed below 
on b, during times on the order of the relaxation time. 
L is the characteristic length over which the field 
varies; in particular, I b 1 - 1/L. 

According to (37), h increases in proportion to the 
time at b#O. Retaining in (7)-(10) terms of higher 
order in h, we arrive at a system of equations that de- 
termines the asymptotic solutions of the system (7)-(10) 
at large t: 

1 as I Q*" 
---=-- (hlDlh) 

I ( I  + c 0 s $ ) ~ s i n 2 ( ~  --SsinzB, (38) 
OL at s a, or. 

i ao i a~ 
--=S-I+(1-cos B )  (--+ I )  , 
o~ at at (39) 

-- I a' = T ( h l ~ l h ) s i n ' B .  
at o~ 

(40) 

The asymptotic values a re  reached after times t k  l/ 
o,A, i. e., short even compared with r ,,,,. 

An important property of the system (37)-(40) is that 
it does not contain spatial derivatives, so that in this 
approximation the magnetization behaves independently 
a t  different points of space. If h varies slows (a cri- 
terion will be formulated later), then the system (37)- 
(40) has solutions close to damped large-amplitude spin 
waves. 

AssumingaS/a t = 0, we obtain the value of sin2& which 
determines in this case the relaxation rate 

sin 2 0 ,  - - 8oLS(hlDlh) $ 
QA' td2-. 

So long as  its right-hand side is less than unity, Eq. 
(41) has solutions and the system i s  close to resonance. 
The relaxation is determined in this case by formula 
(14) in which, however, owing to the time dependence of 
h, i t  i s  necessary to replace (h (D (h)t and (h (D (h)dt: 

Only the principal term was retained in the argument 
of the exponential. The corrections are  of relative 
magnitude l/wLtA and i t  must be ensured that their 
absolute values remain small compared with unity, 
i. e., formula (42) cannot be used for times signifi- 
cantly longer than the relaxation time 

The obtained relaxation law is particularly useful in 
the case when b can be regarded a s  constant in the en- 
tire measurement volume. Formula (42) then describes 
the change of a directly observable quantity. For the 
relaxation to proceed in accord with (42) it is necessary 
that the condition that follows from sin2@ 1 not be 
violated during the entire process. Substitution of (42) 

in (41) shows that sin2a has a s  a function of the time a 
maximum whose value, at  the specified external condi- 
tions, is determined by the tipping angle 8,. Sin2a 
reaches unity first  at 

At larger tipping angles, the character of the relaxation 
should vary in the course of the magnetization relaxation 
1). The dependence of the course of the relaxation onthe 
tipping angle, observed experimentally by  ebb,^ is 
apparently explained precisely by this fact. A quanti- 
tative comparison of Webb's results with the formulas 
obtained here i s  made difficult by the fact that in  his 
experiments the field did not have the simple form 
H ,  = H o ( l  +be r) ,  at which the relaxation proceeds in the 
same manner at all points of the measurement volume. 
A quantitative check on formulas (42) and (43) calls for 
experiments with a controllable magnetic field gradient. 

Under the conditions when the right-hand side of (41) 
exceeds unity we have aS/at <O and the system goes off 
resonance. The produced transition i s  atransition from 
the "intrinsic" stationary Josephson effectg to the non- 
stationary one. In the resonant case, i. e. , at 1.9 - 1 1 
>> QA/wL, we can neglect aV/aa in (38) and the subse- 
quent relaxation will proceed according to (38)-(40) a t  
constant S,. The restoration of S, is due to the action 
of other mechanisms, for example, the mechanism of 
Leggett and Takagi. 

We formulate now the restrictions that must be im- 
posed on the field inhomogeneity b in order that the ap- 
proximations made in the discussion of the relaxation 
process be valid. Above all, the resultant inhomogen- 
eity must be weak in the sense formulated in the intro- 
duction, i. e. ,  we must have ch << oL. If we stipulate 
that this condition be satisfied during the relaxation 
time rD, a limitation is imposed on b - 1 b 1, 

The requirement that h vary slowly, 52, rD<< 1, imposes 
a stronger restriction on b:  

If we forego this condition, thenthe system (38)- (40) re- 
mains valid, but we can no longer use the quasista- 
tionary solutions for its analysis, and must seriously 
take into account the time dependences of S and @. 

We have so  far disregarded the fact that a t  small h 
the spiral solutions a re  unstable. To be able to neglect 
the instability it  i s  necessary that the inhomogeneity 
due to the instability development be small compared 
with the inhomogeneity produced by the external field 
during the relaxation time. At A << 1 the perturbations 
with k - l/l, increase, and it  is therefore natural to 
assume that the scale of the produced inhomogeneity is 
I,. The requirement bwL r, 2 l/lQ leads to a lower 
bound on b 

In the case A>> 1 the corresponding condition is 
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If the inequality signs in (46) and (47) a re  reversed, 
then the relaxation due to the instability and inhomo- 
geneity of the field H, can be neglected. The develop- 
ment of the instability leads to a state with a compli- 
cated inhomogeneous distribution of the magnetization. 
The characteristic dimension of the measurement 
volume is usually large compared with the scale of the 
inhomogeneity produced in this manner, and to describe 
the relaxation in this case it is necessary to average 
Eqs. (7) and (35) over the magnetization fluctuations 

The spectrum of the fluctuations is unknown and it is 
C. 

impossible to calculate the mean values explicitly. 
Some conclusions concerning the dependence of the re- 
laxation time on the quanities that enter in the problem 
can be drawn on the basis of dimensionality analysis. 
It is useful to consider together with the time also the 
procession-dephasing time T,*, which is determined in 
this case by instability-development time. The dimen- 
sionless relaxation time w, T, should be a function of 
the parameters A and (51,/wL)' as well a s ,  generally 
speaking, of the amplitudes a:') of the increasing per- 
turbations. Since (51,/wL)' is small, we can expand 
wLrl in powers of this parameter. In accordance with 
the statements made a t  the beginning of the section, the 
expansion should s tar t  with (SZA/wL)', i. e., 

In the limit A >> 1 the characteristic scale of the inho- 
mogeneity is 1, and the diffusion term in (48) is of the 
order of A/wL rl ,,, << (av/a+),,. As a result, 
(aV/a@) can be constructed in such a way that the right- 
hand side of (48) vanishes. The spin varies in this 
case about the resonant value S -1. 

Obtaining (aV/a@) from (48) and substituting i t  in (49), 
we obtain as,/at -A/rlmi, and T, - rlmi,fJA. In this 
case T,* - rl i. e. , T,* << rl, therefore f, can 
be regarded a s  a constant independent of the initial 
conditions. In estimates, the dependence of r*, on 
a:') can be regarded a s  logarithmic, # - ln ( l / a r ) ) .  In 
the opposite limiting case similar reasoning leads to the 
estimate r1 - A ~ ~ ~ , ~ f ~ ( o ! ~ ~ ) )  - r2*. In this case we cannot 
neglect the dependence of r, on the initial conditions. 
The characteristic scale of the inhomogeneities a t  large 
A is - Al, -l,wLr0/(1- TIT,). As T - T, the parame- 
t e r  X can become large and the instability is suppressed 
by the geometrical dimensions of the vessel.. For  ex- 
ample, X -0.1 cm on the melting curve a t  H, = 100 Oe 
and (1 - T/T,) - lo-'. 

According to e x p e r i m e n t ~ l * ~  performed mainly in the 
region A - 1, the dependence of 7, on the magnetic field 
and on the temperature is of the form Ho/(l - T/T,). 
This indicates that the function f i n  (50) depends little 
on A in this region, which is natural. The numerical 
value off turns out to be -20 to 30. The cause of such 
an increase of the relaxation time can be the smallness 
of the initial perturbations, a s  well a s  the fact that the 

outflow of the magnetization is due to the value of 
(aV/a@) averaged over the fluctuations, which is cer- 
tainly lower than the maximum value. The linear or  
near-linear time dependence of S, observedin these ex- 
periments means that the rate of energy dissipation de- 
pends little on the angle p.  Estimates based on dimen- 
sionality cannot predict the time dependence of the re- 
laxation. It is clear, however, that if the relaxation is 
due to instability development the rate of energy dissi- 
pation should not depend strongly on P ,  and the relaxa- 
tion picture considered here does not contradict the ex- 
isting experiments. 

6. SPIN WAVES IN THE B PHASE 

In the 3 phase the equilibrium form of the order 
parameter A$) is a matrix of rotation about the di- 
rection of n through an angle 8, = arccos(i). Far  from 
the walls of the vessel we have a t  equilibrium n II H,, 
the so-called Leggett configuration, which is in fact in- 
vestigated in most experiments. The effect of the walls 
on the orientation of the vector n can, however, extend 
over distances -1 mm, and using a system of plane- 
parallel plates i t  is possible to orient n a t  various an- 
gles relative to H,. l5 It makes sense therefore to re- 
gard in the analysis the angle J ,  between n and H, a s  
arbitrary, and assume J,=O for the transition to the 
Leggett configuration. 

From symmetry considerations the condensate inho- 
mogeneity energy in the B phase is expressed in the 
following form in terms of A:!) and the angular velo- 
cities G,,: 

Here c,, and c, are  the velocities of the ordinary spin 
waves propagating respectively along and across the 
magnetic field H, in the Leggett configuration. 

Near T, we have 

Substitution of (4) in (51) and averaging over the fast 
variable lead to the following expression for G = F / x H , ~  
in the B phase: 

Here u= cosp, = a+ Y + 8,, a,( = adax,,  etc. 

2 is a unit vector in the direction of the z axis. In the 
Leggett configuration n II i?, and a,, = o! ,,. 

The energy of the spin-orbit interaction in the B phase 
a t  arbitrary J ,  is of the formlo 

where 
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Substitution of expressions (53) and (54) in (12) leads 
to the following dispersion law for the large-amplitude 
spin waves in the B phase: 

An investigation of the stability of the spin waves is 
complicated in this case," since the expressions for 
V and G a re  more complicated than in the A phase, and 
we confine ourselves therefore to a thermodynamic 
analysis, which makes it possible to establish the sta- 
bility of the considered states with respect to perturba- 
tions with k - 0. As  seen from a comparison with the 
A phase, such an analysis i s  sufficient for  the investiga- 
tion of the stability of uniform precession. At h # 0, the 
thermodynamic analysis yields only the necessary cri-  
teria for the stability of the spin-wave solutions. 

Since the variable o! is cyclic, i t s  canonically conju- 
gate momentum P is conserved, i. e . ,  the variation of 
P in a certain region of space can be due only to i t s  
influx from neighboring regions. This allows us to re- 
gard P a s  an additive thermodynamic variable. In ac- 
cordance with the general procedure,'' in the stable 
stationary state the quantity 

should have a minimum, where &Pis described by for 
mula (5), and w, is the precession angular velocity de- 
fined by Eq. (55). 

The conditions that the second differential of #'be 
positive with respect to the variables S, u, and @ are  
readily seen to be 

To calculate R i t  is convenient to use the fact that 

In fact 

where is regarded a s  a function of u, defined by the 
stationarity condition av/ai~ =0, i. e . ,  aa/au= -v,,,/ 
V,,,,, from which we in fact obtain (59). 

The equation aV/a@ = O  has several roots, from which 
we must choose those satisfying the condition (57). The 
change of the character of the stationary values of 
takes place on the lines V,,,, =0: 

which break up the physical region of the values of p 
and u, 0 c p cq and -1 c u  c 1, into three regions (see 
Fig. 1) with different dependences3' of w, on u. Sub- 
stituting Eqs. (55) and (59) in (58) we obtain the neces- 
sary stability conditions fo r  the spin-wave solutions. 

In region 1 

- l / z ~ B z p z +  ( C , , ~ - C , ~ )  [ v - ~ ( M J ~ ' ) ~ I  >o, (60) 

in region 2: 

and in region 3: 

The homogeneous precession is unstable in region 1 and 
stable in regions 2 and 3. The Leggett configuration 
corresponds to  the line p =  0. At u>-i  this line is 
the homogeneous-precession stability boundary, 
since R = 0 onit. The stability of the homogeneous preces- 
sion on this segment is ensured by the terms of higher 
order in the wave vector k in the dispersion equation 
for the small perturbations. Depending on the direction 
of h, i t  can stabilize a s  well a s  destabilize the preces- 
sion. In particular, in the Leggett configuration the 
unstable solutions a r e  those with h ll k. 

In the nonresonant case the spin waves a re  charac- 
terized by two wave vectors h = V a  and g = V@. Ac- 
cordingly, the spin-wave frequency i s  then determined 
by the expression 

The necessary condition for the stability of the spin- 
wave solutions in this case is the inequality 

The uniform precession is stable a t  p < 1 - 1 / ~ 3 .  

7. MAGNETIZATION RELAXATION IN THE B PHASE 

Magnetization relaxation in the B phase was experi- 
mentally investigated only in the Leggett configuration. 
According to Corruccini and Osheroff2 the longitudinal 
component of the magnetization relaxes exponentially in 
this case, and the reciprocal relaxation time is a linear 
function of the magnetic fieldgradient. Even a t  not very 
large gradients, VwL/wL -10% to cm-', the relaxa- 
tion due to the field inhomogeneity plays the principal 
role. 

The system of equations describing the motion of the 
magnetization in the B phase in a weakly inhomogeneous 
magnetic field a t  long times (t >> l/AwL) differs from the 
corresponding system (37)-(40) for the A phase only in 
that aV,/aa in the right-hand side of (38) should be re- 
placed by aV,,/aiP, s o  that this equation takes the form 

i as 4saBz 
--=- 

Dh2 
a (*+a) -+) +(u+i)coa Q, sin - -(i-uZ). 

OL at 150~ 1 a. 
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We have also taken here into account the fact that the 
spin-diffusion coefficient in the B phase should be iso- 
tropic and that (h 1 D ( h) = Dh2, while the remaining equa- 
tions remain unchanged. 

Arguments similar to those advanced for the A phase 
show that in a weakly inhomogeneous field the relaxa- 
tion should follow the law 

where ?= 3/D(Vw,)'. In the A phase, owing to the 
competition with the instability development, this law 
can be observed only if the Vw, satisfy the condition 
(46). In the B phase, the uniform precession is stable 
and the indicated lower bound of the field gradient does 
not occur. The instability a t  finite h takes place a t  not 
all  the directions of h, and is furthermore suppressed 
by the diffusion a t  A 2 1. Inasmuch a s  all  the existing 
experiments were performed at  just such values of A, 
we shall disregard hereafter this instability. At u >-i 
the B phase is also not acted upon by the "intrinsic" re-  
laxation mechanism. 4*13 AS a result, the applicability 
of the law (66) in the B phase is restricted only by the 
uncontrollable field gradient and by the inhomogeneity 
of the initial texture. 

Neither the time dependence of the relaxation nor the 
dependence of T on Vw,, predicted by Eq. (66), agrees 
with the observations of Corruccini and Osheroff. It 
should be noted that their results a re  presented in a 
form already analysed in accord with an exponential law. 
Bearing i t  in mind that a t  t - T a cubic parabola can be 
approximated in a certain interval by a straight line, i t  
seems possible that the law (66) is not in direct contra- 
diction with experiment. ' 

In Webb's experimentS the relaxation was slower on 
the initial section, in qualitative agreement with (66). 
Here, too, i t  is impossible to make a quantitative com- 
parison, since the field gradient was not controlled in 
this experiment. An argument favoring the relaxation 
mechanism considered here is Webb's observation3 
that in those cases when the relaxation had an "expo- 
nential" character in both superfluid phases the relax- 
ation time remained practically unchanged on going 
from one phase to the other. This is to be expected i f  
the relaxation is due to the diffusion mechanism, since 
the spin-diffusion coefficeint, which determines the re- 
laxation time in this case, should not change greatly on 
going from the A to the B phase. 

Observation of a relaxation that follows the law (66) 
can serve a s  a method of measuring the spin-diffusion 
coefficient in the superfluid phases of 3He. An attempt 
to use for this purpose a spin-echo method of the type 
90" - T - 180 "- 2T - 180" encountered difficulties2 
due apparently to the influence of the spin-orbit inter- 
action on the motion of the magnetization. Less sensi- 
tive to such an influence is another type of echo, due to 
the change of the magnetic-field gradient. l8 Observa- 
tion of this echo can also be used to measure the spin- 
diffusion coefficient. 

If b i s  varied periodically in (37) in such a way that 

bdt=0, then h will vanish with a period T, and in- 
duction signals will be produced. The relaxation of the 
angle P is determined by h2dt and is monotonic. For  
example, if 

I b 1 =bo sin (2xt/T+cpo), 

then a t  the instant of the m-th echo we have 

The period of variation of b should satisfy the adiabati- 
cally condition S1,T >> 1. The induction signal is pro- 
portional to sine. The situation is analogous in many 
respects to that in ordinary magnets. lg There is, how- 
ever, a substantial difference, namely, the decrease 
of the induction signal in superfluid 3He is due to lon- 
gitudinal relaxation. 

In the B phase, aV/aa is also bounded. By the same 
token, the maximum possible outflow of the longitudinal 
component of the magnetization is limited. If the field 
is sufficiently strongly inhomogeneous, the second 
term in the right-hand side of (65) can become larger 
than the maximum value of the first  term in the course 
of the relaxation, and the stationary condition aS/at=O 
cannot be satisfied. Then the character of the relaxa- 
tion will change in the same manner a s  in the one con- 
sidered for the A phase. 

It is convenient to express the condition that the right- 
hand side of (65) vanish in the form 

This is the equation for the determination of a, and its  
left-hand side, when (66) i s  taken into account, has a 
maximum at  t = t,, = 7/31f 3. Equation (68) first  ceases 
to have solutions a t  a certain t close to t,,. Substitut- 
ing in the right-hand side of (6.20) the value of tan(P/2) 
corresponding to t,, we obtain an approximate equation 
that determines, for angles that a re  not too close to 
180°, the smallest initial deviation angle Po at  which the 
relaxation changes i ts  character: 

Here F is the maximum value (with respect to a )  of the 
right-hand side of (6.20). F - 1 and varies slowly a t  
not too large tan(P,/2). Its plot is shown in Fig. 2. For 
the conditions of the experiment of Corruccini and 
Osheroff,' the left-hand side of (22) is of the order of 
lo2, i. e . ,  no changes were to be expected in the char- 
acter of the relaxation in these experiments, whereas 
for the conditions of Webb's experiment, ' where such a 
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change was observed, the left-hand side of (22) was of 
the order of unity. We used for the estimates the ex- 
perimentally observed values of 7. 

We have considered so f a r  only the situation in the 
Leggett configuration. We now make a few remarks 
concerning the relaxation a t  arbitrary F .  By virtue of 
the stability of the uniform precession in regions 2 and 
3 of Fig. 1, the magnetization inhomogeneity is due 
here to the inhomogeneity of the magnetic field, and the 
relaxation should obey the law (66). In region 1, the 
uniform precession is unstable and one should expect 
the relaxation to be of the same type a s  in the A phase. 

It must be borne in mind, however, that to obtain 
states with p $0 the helium is placed in a gap with a 
width of only several tenths of a millimeter and the ef- 
fect of the walls on the relaxation process can become 
significant. This effect increases with decreasing gap, 
f i rs t  because of the larger role of the surface relaxa- 
tion, and second, a s  noted in the article of Corruccini 
and Osheroff (1978), the texture effects become more 
substantial. 

CONCLUSIONS 

We see thus that the dephasing of the magnetization 
precession does indeed exert a substantial influence 
on the magnetic relaxation in the superfluid phases of 
3He. This influence i s  effected via spin diffusion. The 
diffusion tends to equalize the gradients of the trans- 
verse component of the magnetization, which a r e  due to 
the dephasing, but the spin-orbit interaction maintains 
the spin near the resonant value S z 1. Equalization of 
the transverse gradients with conservation of the value 
of S leads inevitably to relaxation of the longitudinal 
component of S. 

The cause of the dephasing can be the instability of the 
uniform precession of the magnetization, o r  the dif- 
ference between the Larmor frequencies a t  different 
points, and accordingly the character of the relaxa- 
tion will also be different. In particular, the relaxation 
should proceed differently in the A and B phases in the 
Leggett configuration. In the A phase, the dephasing is 
due to the instability of the uniform precession, where- 
a s  in the B phase there is no instability and the inhomo- 
geneity of the magnetic field is essential. 

The considered diffusion mechanism of the relaxation 
appears even in first order in ( S ~ / U , ) ~  and is generally 
speaking more effective than the intrinsic mechanism 
that leads to longitudinal relaxation only in second order 
in the indicated parameter. Conditions a re  possible, 
however, in which the diffusion mechanism does not 
operate. Such, e. g., is the case with relaxation when 
the magnetization remains a t  all time parallel to the 
external homogeneous field. The relaxation due to the 
intrinsic mechanism can be observed also immediately 
after the initial deflection of the magnetization within 
times shorter than the dephasing time. The existence 
of two precession regimes, resonant and nonresonant, 
and the possibility of the transition from one regime to 
another, make the picture of the relaxation in the su- 
perfluid phases of 'He even more varied. As a result, 

the combination of the two relaxation mechanisms, dif- 
fusion and internal, explains, a t  least qualitatively, the 
experimentally observed variety of the laws of mag- 
netization relaxation to equilibrium in the superfluid 
phases of 'He. 

Unfortunately, the available experimental data cannot 
be quantitatively compared with the theoretical predic- 
tions for the diffusion mechanism, s o  that the question 
whether these two mechanisms a re  sufficient to explain 
the experimentally observed relaxation remains unan- 
swered. To answer this question, further experimental 
studies must be made of magnetic relaxation in super- 
fluid He. s These studies will yield also additional in- 
formation on the properties of the superfluid phases, 
and will make i t  possible in particular to measure the 
spin-diffusion coefficient in these phases. 

The author thanks Yu. D. Anufriev and G. E. Volovik 
for stimulating discussions and R.  A. Webb for helpful 
correspondence. 

')The critical angle determined by formula (43) differs from 
that previously obtained: since the criterion stipulated there 
for the change in the relaxation time was that sin2d, become 
equal to unity a t  the very end of the tipping process. This is 
too strong a requirement and does not conform to the experi- 
mental conditions of Ref. 3. 

2 )~uch  an investigation was carried out earlieri7 for uniform 
precession. 

3'~xpressions for av,/auin various regions of the ( u , ~ )  plane 
were obtained earlier.'' In formula (B.11) of this paper there 
is an error. The last term in the square brackets should be 
half as large, i.e., take the form % & ~ i n ~ ~ ) ~ ( l +  7cosS). 
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