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An investigation was made of the influence of the kinetic coupling on the behavior of a quasione-dimensional 
electron-phonon system in the energy range E ,  <ow A diagrammatic analysis shows that the terms most 
important in the description of this system are those which govern the dependences on the kinetic coupling 
parameters. Summation of the leading terms of expansions by the renormalization group method gives 
equations which make it possible to study the gradual development of an instability in such a system. It is 
shown that the behavior of a quasionedimensional system is governed by the influence of two factors: three- 
dimensional effects and one-dimensional fluctuations. In the selected model the greatest instability 
corresponds to a structural transition which produces a superstructure with a doubled transverse period. The 
dependence Tp(cl) is determined in the range E ,  <ow A superconducting transition is discussed briefly and the 
reasons for its suppression at low values of E ,  are explained. The results obtained are compared with the 
experimental data. 

PACS numbers: 74.10. + v, 63.20.Kr 

1. INTRODUCTION Cooling tends to enhance both effects. The degree of 
growth of one-dimensional fluctuations can be regarded 

Allowance for the coupling between chains is most 
a s  dependent on the unrenormalized coupling constant 

important in the case of a quasione-dimensional sys- 
tem. We can distinguish the kinetic coupling, due to go. Thus, in the one-dimensional case, the lower the 

electron hopping from chain to chain, and the potential value of go, the lower the temperatures a t  which these 
fluctuations become significant o r  one can say also the 

coupling, due to the interaction between electrons in 
different chains. The influence of the potential coupling lower the growth rate of such fluctuations. In the tem- 

has been investigated sufficiently thoroughly in the ex- perature range T <  w0 investigated where w0 is 

ample of a four-fermion model.l*2 ~h~ influence of the a" energy of the order of the Debye value, the three- 

kinetic coupling has been investigated only within the dimensional effects can be described by 
- - - 

framework of one or  another variant of the average 
field theory using the same It has been as-  
sumed in these investigations that right up to tempera- 

where X is a normalization parameter defined below. 
tures T=  c,, where E, i s  the value of the f i rs t  trans- 

Depending on the relationship between go and yo, we can 
verse resonance integral, the behavior of a system of 

distinguish two cases. this kind does not differ from that of a one-dimensional 
system and we can use purely one-dimensional solu- In the f i rs t  case, when go> yo, the one-dimensional 
tions. In the range T<c, i t  is assumed that the system fluctuations increase a t  f i rs t  faster and there is a range 
exhibits "three-dimensional" behavior which can be of temperatures in which these fluctuations predomi- 
described by the parquet or  ladder approximations. A nate and where the behavior of the system is close to 
complete solution is found by matching the results of one-dimensional. In the second case, when go<yo, the 
these two approximations a t  the boundary T = c,. three-dimensional effects grow more rapidly and the 

The validity of this approach is limited, on the one one-dimensional fluctuations do not appear. Conse- 

hand, by the condition of the validity of the ladder of quently, throughout the temperature range T <  wo the 
system behaves as three-dimensional. At relatively 

parquet approximation in the three-dimensional range high values of E, (yo> 1/8) the region of one-dimension- 
(at low values of E, these approximations a re  clearly a1 behavior of the system cannot be isolated for any 
inapplicable). On the other hand, i t  is not quite clear 

value of go and the situation resembles the second case. 
whether i t  i s  possible to describe the behavior of a 
system at  other temperatures by purely one-dimension- 
a1 solutions. One of the tasks of the present study will 
be to settle this question in the case of an electron-pho- 
non system. We shall show that a t  relatively high tem- 
peratures the behavior of a quasione-dimensional sys- 
tem is governed by two factors: three-dimensional ef- 
fects, tending to establish correlations between elec- 
trons in different chains, and effects associated with 
one-dimensional fluctuations tending to destroy such 
correlations. 

In addition to this process, we shall consider also the 
influence of the kinetic coupling on the temperature of 
a phase transition a t  low values of c, (c, < w,) when the 
average field approximation is inapplicable. In view of 
the special nature of the selected model, we shall con- 
centrate our attention on a structural Peierls transition 
which predominates in this range of values of E, and T 
and we shall discuss only briefly a superconducting 
transition. We shall solve these problems by identify - 
ing and summing the leading (major) terms of expan- 
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sions in perturbation theory. With this in mind we 
shall carry out a diagrammatic analysis which makes 
it possible to identify the features of the quasione-di- 
mensional problem. We shall end by discussing the 
main conclusions and comparing the results obtained 
with the experimental data. 

2. FORMULATION OF THE PROBLEM 

We shall consider a quasione-dimensional electron- 
phonon system and confine our attention to the interac- 
tion of electrons with longitudinal acoustic phonons. 
We shall assume that the system i s  strongly anisotropic 
because of i ts  crystal structure: chains a r e  packed in 
a square lattice, the distance between the chains i s  b ,  
and the distance between the atoms in a chain is a, 
where b > a. In the tight-binding approximation for a 
half-filled band the electron dispersion law ~ ( k )  can be 
written in the form 

e (k) --eo cos k,a-e,(cos k,b+cos k,b) +O(ez), (1) 

where the z axis i s  directed along the chains and O(E~)  
denotes the contribution of the electron jumps to the 
second-nearest sites; cz i s  the value of the second 
transverse resonance integral. In the selected model 
the phonon spectrum w(q) is also anisotropic and has 
the form 

o z ( q )  =oO2 sinz ' / r g z a + o ~  (sin2 '12g,b+sinz '12g,b). (2) 

The Fermi energy i s  described by 
E (k) =O. (3) 

We shall assume that the following conditions a re  satis- 
fied in the quasione-dimensional case 

e 2 / e o < e , / e , ~ l ,  o l /wo<l .  (4) 

We shall postulate that I f =  k ,  = 1. The matrix element of 
the electron-phonon interaction uo(q) can be represented 
in the form 

uo (9) =PO sin '/2qza+p,l(g., q,), (5) 

where po and p, are ,  respectively, the longitudinal and 
transverse coupling constants; f (q,, q,). If we deter- 
mine the value of uo(q) in the FrBhlich approximation,' 
we find that p, is proportional to w,, but if the tight- 
binding approximation7 is used (which is more correct 
in the present case), the value of p, is  proportional to 
El. 

We shall be interested in how the kinetic coupling 
gives r ise  to an instability and a phase transition. With 
this in mind we shall investigate the behavior of the rel- 
evant Green functions depending on temperature and on 
the parameters E{ (i = 1,2). The values of the external 
electron k and phonon q momenta will be selected to be 
such that the instability is  strongest. In this model the 
electron spectrum has the property 

e (k) =-E (k+Q) +0 (6%). Q= (nla, n/b, nlb). (6) 

This is  known to have the consequence that in the analy - 
s is  of structural transitions the most singular terms 
correspond to q = Q  and the electron momenta should lie 
on the Fermi surface. In the case of a superconducting 
transition, when a study is made of an instability rela- 
tive to electron pairing near the Fermi surface, the 
most singular terms a re  associated with the transfer 
of a phonon momentum 2k,. 

In the case of both transitions we shall be interested 
in the behavior of specific Green functions: the elec- 
tron G  and the vertex r functions in the case of a struc- 
tural transition and the four-leg vertex r, in the case 
of a superconducting transition when the external elec- 
tron momenta k lie on the Fermi surface. In view of 
the strong anisotropy of the problem, the relevant ex- 
pressions depend strongly on the direction of the vector 
k,, particularly in the case of I?, for a superconducting 
transition. Therefore, it is  useful to average the ex- 
pressions in question over the Fermi surface. We can 
thus assume that instabilities investigated in this way 
give rise to insulating o r  superconduGting gaps on the 
whole Fermi surface, and the critical temperature thus 
found represents the temperature of a structural o r  a 
superconducting transition, respectively. 

An investigation of the instability for any one specific 
direction k, can be regarded a s  equivalent to the as-  
sumption of formation of a gap only near certain points 
on the Fermi surface. This situation cannot be re-  
garded a s  a transition of the system to an insulating or 
a superconducting state; a t  best, the situation repre- 
sents fluctuation-induced formation of such states. We 
shall employ the technique of the thermal Green func- 
tions. 

We shall begin by analyzing a structural transition. 
In this case it i s  sufficient to investigate the behavior 
of the phonon Green function D at zero external frequen- 
cies iv,, which again requires calculation of G  and r. 
We shall assume that k=k, and q=Q. Moreover, in the 
final analysis we can also assume that the external 
electron frequencies iw, vanish. Subject to these condi- 
tions we obtain a symmetric theory in which all  the 
quantities depend on one variable T. In the model em- 
ployed the contribution of the potential coupling is pro- 
portional to the parameter w:/~; or  E:/W;, depending on 
the selection of the constant p,.   he contribution of 
the kinetic coupling i s  proportional to the parameter 
E:/T'. In the range of temperatures T <  w, of interest 
to us we can assume that the contribution of the kinetic 
coupling predominates over the potential contribution. 
Therefore, we shall ignore the corrections due to the 
potential coupling assuming it to be small and, a s  in 
Refs. 3-5, we shall simply investigate the influence of 
the kinetic coupling. 

3. ANALYSIS OF EXPANSIONS IN PERTURBATION 
THEORY 

We shall investigate the diagrams for the functions D, 
G ,  and r in the q = Q  and k =  k, cases. All the results 
obtained below apply to the temperature range T <  w,, 
- whereas shown earliers- the logarithmic theory is ap- 
plicable. We shall also ignore corrections of the order 
of ( W ~ / C , ) ~ ,  i.e., we shall ignore the contributions of 
the processes involving small transferred momenta 
which a r e  unimportant in this case.' In the problem 
considered we shall separate, in contrast to the one- 
dimensional case, the class of ladder diagrams in which 
integration with the momenta contains only two electron 
energies. Consequently, these diagrams a r e  less sen- 
sitive to the deviation of the spectrum from the one-di- 
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mensional form than the nonladder diagrams which con- 
tain a t  least one integration with respect to more than 
two electron energies. 

We shall now consider the ladder diagram for I' in 
Fig. la. I ts  contribution can be represented in the form 

po{goz[ln' A+2QO(a,") In A+@,"(a,") ]+O(g,Z)} ,  (7 

where go= p~/rab2&,w0 denotes the dimensionless "bare" 
coupling constant, A =  nT/2woy, y = 1.78, and a,= &,/2nT. 
The function iPo appears a s  a result of integration with 
respect to the transverse momenta and it i s  given by the 
following Mellin-Barnes integralQ: 

r ( - S )  ~ ( I + s )  r 2 ( 3 / r + ~ )  5 ( 2 ~ + 3 ,  ' / r )  za+' 
n r 2 ( 2 + s )  as,  (8) 

where b(x, V )  is the generalized zeta function. The func- 
tion +o(z) plays an important role in this problem and, 
therefore, we shall give expansions for this function 

where C'(x, v )  is the derivative of the zeta function. It 
follows from Eqs. (7) and (9) that if a, >> 1, the logarith- 
mic terms a r e  "truncated" a t  the value c,. An analysis 
of the ladder diagrams in higher orders shows that the 
influence of the kinetic coupling is described in all  or-  
ders  by the function +,(a:). In this sense the diagrams 
considered here exhibit universal behavior. 

We shall now discuss the nonladder diagram for I' 
shown in Fig. lb. Its contribution canbe writtenin the form 

where a, = &,/21f ' n ~ .  The function a, again appears a s  
a result of integration with respect to transverse mo- 
menta allowing for averaging over the Fermi surface 
but in the case of a, we cannot find a representation of 
the (8) type and we can then describe this function by 

where Jo is  a Bessel function. It follows from Eq. (11) 
that 

@ , = c ~ ,  (a? )  +(P ( a ? ) ,  (12) 

where the function q ( z )  behaves a s  

z"+O(z') , z t l  .= { z-'+O ( z - ~ ) ,  z B 1 ,  

and we can assume that it describes small corrections 

FIG. 1. Diagrams for the vertex function r. 

to +,($). We shall now assume that 
~ , ( a ? ) = @ ~ ( a ? ) .  (13) 

We can see from Eqs. (7) and (10) that the behavior of 
the ladder and nonladder diagrams is different. For ex- 
example, in the diagram in Fig. l b  the influence of the 
kinetic coupling is described mainly by the function 
@,(a:), whose temperature dependence is governed by 
the parameter &,. Hence, as indicated by Eqs. (7) and 
(lo), cooling reduces the contribution of the nonladder 
compared with the ladder diagrams and in the range a, 
>> 1 there i s  a reduction in the degree of the principal 
logarithmic contribution of the nonladder diagrams. It 
should be noted that in this case the dependence on the 
direction of the vector k, is governed mainly by the 
nonladder diagrams, but this dependence is very weak. 

These examples show that, in addition to the leading 
and secondary logarithms of the usual kind, we can 
identify in the perturbation-theory expansions also sec- 
ondary logarithms with coefficients which a r e  functions 
of the parameters E;/T'. We shall call them the log- 
arithms of the second kind. All the influence of the 
kinetic coupling discussed above is due to these terms. 
Therefore, i t  is important to find the structure of log- 
arithms of the second kind. There is no need to con- 
sider the terms containing the function ao(a;), i.e., 
terms of the type go~o(a~)(golnA) etc., whose structure 
and allowance a r e  trivial matters, but it is  necessary 
to find the structure of terms of the g0+1(a3(g01nA) 
type generated by the nonladder diagrams. 

With this in mind we shall consider briefly the dia- 
grams for  l? in the fourth order. The addition of a 
"crossbarJJ to the diagram in Fig. l b  gives rise to dia- 
grams of the kind shown in Fig. l c ,  which a re  due to 
terms of the type go+l(~)(golnA)2 considered here. 
The addition of nonladder elements to Fig. l b  gives 
diagrams of the type shown in Fig. Id, which also have 
terms of the go ~ , ( a ~ ) ( g ~ l n A ) ~  type considered here, but 
the function F, is now different from a,. The function 
F,, like a,, can be approximated as follows: 

F 2 ( a i Z )  =@o(~u?). (14) 
Comparing Eqs. (13) and (l4), we can conclude that the 
higher-order diagrams generally contain, a s  the pa- 
rameters of truncation a t  &,, larger quantities than the 
lower-order diagrams. This nonuniversal dependence 
on the parameter 6, plays an important role in the prob- 
lem under discussion. 

The contribution of terms of this kind due to all  the 
fourth-order diagrams can thus be written in the form 
goa2(a,2)(golnA)2, where the function &, i s  expressed in 
terms of @, and F,. An analysis of higher order shows 
that the addition of nonladder elements gives r ise  to 
diagrams containing functions ~ ~ ( 4 )  which a r e  differ- 
ent in each order s o  that the sum of the terms of this 
kind in each order also contains different functions 
@,(a3 and these terms have the structure 

go@, (a?) (go  In A )  "I. (15) 

The diagram Id also gives r ise  to terms of the 
g~~l(a:)F,(a,2)(go 1nA) type, which behave approximately 
a s  g~+,2(a:)(g0lnA). The structure of these terms is 
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similar to the structure of the terms discussed above: 

go'Q).2(a12) (go In A )  "l. (16) 

We can easily see  that there a r e  t e rms  of the 
g:@,( a,2)(go l n ~ ) ~ z  and similar types. 

The examples given reveal the general structure of 
logarithms of the second kind. The terms containing 
the function @,(a:), including cross terms of the 
g , ,~o(a~)@n(~)(go lnA)* kind, can easily be included by 
introducing the variables 

since the dependence on @,(a:) i s  universal for all  the 
diagrams. 

The nature of the expansions for  the function Dis  sim- 
similar to r. The structure of the expansions of the 
function G depends on the ratio 1 o J/T, but since we 
a re  interested in the influence of temperature on the 
system, we shall go to the limit ( o  I / T -  0 and to the 
same limit in the expansions of G. The logarithmic 
terms in the expression for G a r e  given by the nonlad- 
der diagrams so that terms of the gigl and similar type 
appear and these should be regarded a s  nonlogarithmic. 
Since in our problem the Green function Go(iwn, k,) i s  
equal to Go= l l i w , ,  it i s  convenient to introduce the fol- 
lowing dimensionless function 

~ = G , - I G ,  (18) 

and then go to the limit I w I / T -  0. The nature of ex- 
pansions for d i s  similar to the expansions described 
above. 

We can thus see  that the general structure of the 
perturbation theory expansions in the quasione-dimen- 
sional case a t  temperatures T <  w, i s  

i.e., i t  can be represented a s  a ser ies  in powers of 
g , i n ~  including regular corrections in respect of the 
coupling constant go and also in respect of the kinetic 
coupling parameters described in terms of the function - 
@ n* 

4. DERIVATION OF MAIN EQUATIONS 

In solving the problems formulated above we shall be 
interested mainly in the range of values of &, and T 
such that a,< 1. In describing this range i t  is  sufficient 
to include the first  corrections in respect of the kinetic 
coupling, which a re  given by the terms go&n(goinA)n 
and which have to be added to the solution of the one- 
dimensional problem. In fact, in the range ol, < 1 these 
terms a r e  leading among the logarithms of the second 
kind and the other terms [see Eqs. (9) and.(19)] contain 
in each order an additional parameter which i s  small 
because of a:<< 1 or because of go< 1. We shall de- 
scribe the one-dimensional system by including the 
f i rs t  two terms in Eq. (19) which is knowns to give the 
correct solution for this system but strictly speaking 
the approach is then approximate. 

Bearing in mind these points, we shall now sum the 
following terms: 

We can see  from Eqs. (9) and (19) that the approxima- 
tion (20) is valid also in the range al > 1 but it 1:s incor- 
rect  in the range cu, >> 1, where terms go&n(golnA)~ 
have to compete with terms of the (16) type, and where 
the nonlogarithmic terms become important. The con- 
dition of smallness of the terms subjected in each or- 
der,  compared with those included, gives rise to the 
following restriction on T: 

which determines the temperature range of the validity 
of the approximation (20). In the derivation of (21) we 
have omitted terms of the order of ( E , / & ~ ) ~  << 1 and have 
imposed a stringent condition. The approximation (20) 
allows us to calculate the critical temperature T, of a 
structural transition. The temperature T, should sat- 
isfy the condition (21), which i s  true only for certain 
small values of E,. We shall show that the approxima- 
tion (20) allows us to describe practically the whole 
range c1 < w,. In the summation of terms in Eq. (20) 
we shall use the renormalization group method follow- 
ing the general approach employed by the present auth- 
o r  in an earlier paper.' 

In the case under consideration we a re  dealing with 
a theory with four dimensional constants: E,, w,, E, ,  
and E,. The values of E, then act a s  the parameters of 
the "infrared truncation" and, in cor~trast to the one- 
dimensional case, all  the quantities in the theory de- 
pend on the dimensional constants of the problem in the 
range T <  w,. Consequently, we have here a theory with 
"masses" represented by the parameters w, and &,. 

The general procedure for the derivation of the renor- 
malization group equations1° used earliers allows us to 
sum all the terms, including logarithms of the second 
kind, by considering in the latter the functions 6, to be 
some functions of the mass variables. 

We shall consider the renormalized Green functions 
d,, D,, and r, related to the unrenormalized functions 
d, D, and r by the usual renormalization group trans- 
formation. We shall assume that the renormalized 
functions depend not only on T but also on the dimen- 
sionless renormalized coupling constant g, and the di- 
mensional constants w,, E,, and c,. Instead of the 
"bare" quantities w,, E,, and E,  we can introduce re-  
normalization in the usual way1' assuming that these 
quantities a re  equal to the values observed in the range 
under consideration. 

Prigodin and Firsov5 introduced multiplicative re -  
normalization of &,. It should be noted that this pro- 
cedure i s  possible and meaningful only if we can re-  
normalize all  the other quantities and functions in the 
theory independently of E,, but-as indicated by the 
above analysis-this is not possible in the problem 
under discussion. We shall consider the range of val- 
ues of cl and T of interest to us by selecting a normal- 
ization parameter A satisfying the conditions 
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which a re  selected so a s  to remain within the logarith- 
mic theory framework. Repeating all the procedures 
of the earlier investigation,' we obtain the following 
relationship between the constants g, and go correct to 
within terms of the order of &: 

g,=g,(l-2g, 1; v+4g011+4g,' 2 u+4g,' 1;; u 

+16g,lq2-16go'q l"n v-3g,E&, 1;; v ) ,  

where 

The last term in Eq. (23) is due to  logarithms of the 
second kind, and the functions a, and a, depend on the 
mass variables 4 and 6,. 

In the symmetric theory under discussion the behav- 
ior of the Green functions is governed by the behavior 
of the invariant coupling constant zR. The equation for 
&(t, E , /A, w,/A), where t = ln (X/~)  is of the form (see 
Ref. 8) 

dgR/dt=p(gn, ~ ( t ) / ; l ,  a o ( t ) / a )  (25) 

subject to the boundary condition zR(0) =gR. The func- 
tion B(gR, &,/A,  w,/x) is1) 

where 

In Eq. (271, we have introduced 
a - 6"-A - Q,. 
ah 

The effective parameters of the problem ~ , ( t )  and Q(t) 
are8 

t t ( t )  =eiet ,  ao(t) =oae l .  (29) 

The influence of the kinetic coupling in Eq. (25) i s  de- 
scribed by the function f (t) = f [S ,(t)/A, ij,(t)/h]. Equa- 
tion (25) shows how an instability develops in a system. 
Cooling increases the parameters 'Ei and 0, and reduces 
the function f(t), which vanishes a s  some temperature 
T =  To and then changes sign. The change of sign of the 
coefficient in front of gl means that gR begins to grow 
rapidly and becomes singular a t  some temperature T 
= T,. The occurrence of this singularity can be re -  
garded a s  an indication of an instability in the system 
and of a phase transition at T,= T. Since an analytic 
solution of Eq. (25) is not generally possible, we shall 
give the results of the solution of Eq. (25) and supple- 
ment them whenever possible by analytic reasoning. It 
i s  convenient to divide the whole investigated tempera- 
ture range into two intervals: T 2 To and T s To. 

We shall first  consider the interval T z  To, which al-  
lows us to study the influence of the three-dimensional 
effects and of the one-dimensional fluctuations. 

5. INTERVAL T >  To 

In an investigation of a structural transition we can 
simplify Eq. (27) by dropping the function ~ ~ ( 6 : )  because 
of i t s  smallness throughout this interval; the resultant 

e r ro r  is then of the order of (&,/c,)~ << 1. It is not con- 
venient to use expansions (9) in numerical solution of 
Eq. (25) because such expansions diverge a t  z = 1. An 
analysis of these expansions shows that the function 
ao(z) can be approximated as follows: 

@, (2) ln (1+4z) .  (30) 

The formula (30) describes well the behavior of 9,(z) 
in the z < 1 case, since for z = 1/4 i t  follows from Eq. 
(9) that @,(1/4)= 0.355 and it  is clear from Eq. (30) that 
ip0(1/4) = 0.346. In the range z >> 1, the asymptotes of 
Eqs. (9) and (30) a r e  practically identical, s o  that the 
approximation (30) i s  sufficiently good in the interval of 
interest to us. 

When Eq. (30) i s  used, the function f (t) becomes 

It follows from Eq. (31) that the temperature To is 

In Eq. (32) and later we shall use the notation B 
= 21/2nwo/~l. 

In the investigation of Eq. (25) i t  is convenient to re-  
place zR(t) with a function u(t) defined by 

The function u(t) obeys 

f ( t )  du/dt=2u2-4us+f' ( t )  u,  
(34) 

u(O) =uo=gnf (O) ,  

where f '=  8f/8t. The point t =  to= ln(~/T,) is a zero of 
the function u(t). According to the general theory," the 
behavior of the solutions of Eq. (34) depends on the re-  
lationship between u, and I f '(0) ( = 2y0. 

If yo< 1/8, we have to distinguish two cases: 

In the former case the integral curves (34) r ise  in the 
interval 0 6 t s t,, where the value of tl i s  defined a s  
that t for which the right-hand side of (34) has no real 
zeros. The value of t, corresponds to the temperature 

Then, in the interval t, < t c to the integral curves de- 
crease to zero. In the second case, we find that 
throughout the interval 0 c t s to the integral curves (34) 
decrease from uo to zero. 

In the interval 0 Q t s tl the function f (t) varies slight- 
ly from f (0) to f (0) - 1/8, which allows us to find the 
approximate solution of Eq. (34) by linearization of f(t)  
with respect to t: f (t)= f (0) - 2y0t. 

In this approximation (assuming that uo> u,), we find 
that, to within terms of the order of (u,/u,)~ << 1, Eq. 
(34) yields 
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The first  expression in Eq. (37) resembles the one-di- 
mensional solution and, according to Eq. (33), the be- 
havior of g, in the interval T 3 T, is practically the 
same a s  in the one-dimensional case. This is  illus- 
trated by the curves in Fig. 2 obtained by numerical 
solution of Eq. (25) for various values of 1nB; the con- 
tinuous curves correspond to the case g,= 0.1 and the 
dashed curves to gR= 0.3. 

We shall assume that ln(wo/X)= 2, s o  that the condi- 
tions (22) a r e  satisfied with the necessary rigor. The 
values of 1nB and the positions of the points to and t, of 
the curves a re  shown in Fig. 2. We can see  that in the 
limit of small values of E,  the influence of the one-di- 
mensional fluctuations is s o  strong that the low-temper- 
aturebehavior of the system is almost independent of the 
value of gR and, since the latter i s  related to go by Eq. 
(23), we can speak of a weak dependence on the unre- 
normalized coupling constant (Fig. 2a). On increase in 
&, the influence of these fluctuations and the size of the 
region where they predominate decrease and the behav- 
ior of t h e  s v s t ~ m  denenrls i n ~ r e n s i n ~ l v  on g_ (see Fig. 
2b). Thus, only in the case of a sufficiently strong 
interaction (and when yo < 1/8) can we identify a region 
of one-dimensional behavior of the system whose limit 
is  the temperature T,. For t, < t to, the function u(t) 
decreases but more slowly than f (t) s o  that gR begins 
to rise significantly (Fig. 2). This behavior can natu- 
rally be attributed to the fact that the three-dimensional 
effects begin to predominate in this region. 

If uo < u,, the application of the same approximation 
yields the following expression from Eq. (34) 

U-U 21. 
=uo(l--t) f(0) 

It is clear from Eqs. (33) and (38) that in the range O <  t 
< t, the function u(t) decreases and zR changes slightly 
relative to its limiting value. This means that for a 
weak interaction the three-dimensional effects begin to 
rise faster. In this case the system behaves right from 
the beginning a s  three-dimensional and it i s  greatly af- 
fected by the value of go. This case i s  of no physical 
interest when E,  i s  small since the constant g, should 
be exponentially small. 

In the case of c ,  satisfying the condition 

the function u(t) decreases in the interval 0 Q t 9 to ir-  
respective of the value of u,. In other words, if yo> 1/8, 
the three-dimensional effects predominate in the sys- 
tem. For the selected parameters of the problem we 
can assume that this situation appears when lnB=4, and 
t, = 0.015. 

6. INTERVAL T G To 

The value of gR r ises  rapidly a t  temperatures T <  To 
and it  has a singularity at T =  T,. We can assume that 
an instability appears in the system a t  these tempera- 
tures. The growth of this instability is demonstrated in 
Fig. 2 for various values of E,. 

Numerical solution of Eq. (25) allows us to determine 
the value of T, a s  a function of the parameters s,, w,, 
gR or  go. As mentioned earlier,  the approximation (20) 
allows us to calculate T, only in the case of small val- 
ues of c,. Such calculations indicate that for lnB= 4 and 
gR= 0.3 the condition T, governing the limit of validity 
of Eq. (21) i s  not satisfied sufficiently rigorously and i t  
i s  disobeyed for 1nB = 4 and gR = 0.1. We can thus as-  
sume that the approximation (20) makes it possible to 
determine T, in the case 

In B>4. (40) 

The value of c, = A corresponds to lnB= 3.5 so  that the 
approximation (20) allows us to calculate T, throughout 
the range of values of E, set  by the conditions (22). 

The results of such calculations a re  plotted in Fig. 3. 
We can see  that in the limit of small E,  (lnB>> 1) the fi- 
nite renormalization of gR makes the temperature T, 
weakly dependent on the "bare" coupling coqstant go and 
the values of T, lie in the range a, < 1. The shift of the 
values of T, in the range a, < 1 in the 1nB >> 1 case i s  
due to the fact that the total contribution of all the 
terms i s  then important and the contributions of differ- 
ent diagrams a re  known to depend in a different way on 
the parameter c,. On increase in E,  the behavior of 
T, shows an increasingly strong dependence of go and 
the values of T, approach the limit of the region a, = 1 
and go aver to a, > 1. 

An analytic expression for T, can be found in the lim- 
it of small values of E, if 1nB >> 1. It then follows from 
Eq. (31) that the function f (t) r i ses  almost exponential- 
ly in the range t>  to and we have zR(to)> 1/2 (Fig. 2a). 
This means that throughout most of the range consid- 
ered, with the exception of a small region near to, the 
second term on the right of the right-hand side of Eq. 

FIG. 2. Behavior of the function &(t) for various values of InB 
and g,. 

I n 8  

FIG. 3. Dependence of the critical temperature T,, on the pa- 
rameter &, for gR=0.3 and g R = O . l .  
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(25) is  greater than the first. Therefore, in this limit 
we can describe the range t> to by the equation 

dgR/dt=-4f ( t )  gnJ. (41) 

Solution of Eq. (41) gives the following equation for the 
determination of T,: 

If InB >> 1, the values of T, lie in the range defined by 
2&,2/r2T; << 1 and we can find T, by expanding ln(1 + 
n2T2,).s a ser ies  in powers of 2c,2/r2T;. We shall con- 
sider only the f i rs t  term of the expansion, which i s  val- 
id in the adopted limit and which gives 

We can obtain zR(to) using the curves in Fig.. 2. The 
formula (43) is in good agreement with the results of 
calculations for the range LnB> 12. 

It is clear from Fig. 2a that in the limit 1nBX 1 an 
instability grows very rapidly in the system. This is 
due to the rapid growth of the effects of the kinetic cou- 
pling and also due to the effective renormalization of 
the coupling constant in the interval T> To. These two 
factors can be regarded as reflecting the influence of 
the one-dimensional approximation and they enhance the 
critical fluctuations. The approach employed, like any 
other method based on perturbation theory, is inapplic- 
able in a certain range AT, near T,, where the critical 
fluctuations a r e  strong. We can assume that if this re- 
gion is narrow, AT,/T, << 1, the e r ro r  is small. In the 
limit of small values of E, the region To - T, where an 
instability appears is narrow: (To - T,)/T,= 0.14 for 
lnB= 20 and, since the region where the approximation 
is invalid i s  less than To - T,, we can assume that in 
this case we have AT,/T, << 1 and Eq. (43) describes 
correctly (in the qualitative sense) the limit of small 
values of E,. 

The case of small E,, when T, lies within the range 
(Y, < 1, is discussed in Ref. 3. The problem is solved 
in Ref. 3 in the first  approximation of the renormaliza- 
tion group, which naturally results in a strong depen- 
dence of T, on the "bare" coupling constants. It should 
be noted that this approximation is generally inapplic- 
able in the case of small E, and this accounts for the 
result obtained in Ref. 3. 

An analytic expression for T, can also be obtained in 
the range 1nB 2 4. It follows from Eq. (31) that in this 
case the function f (t) varies quite slowly for t >  to; when 
c, increases, the law of variation of f(t) in this region 
approaches linearity. Then, in the range t >  to we can 
use the expansion off (t) in powers of t -to, and it can 
be limited to the first  term, i.e., we can assume that 

f ( t ) = - 2 ( t - t o ) .  (44) 

Solving Eq. (34) subject to Eq. (44), we obtain the fol- 
lowing expression for T,: 

where x = exp(7-'I2 tan''7' 1 2 ) =  1.58. The formula (45) 
i s  in good agreement with the results of calculations in 
the range 1nB 2 4. 

7. SUPERCONDUCTING TRANSITION 

As mentioned earlier, we shall discuss only briefly 
a superconducting transition. With this in mind we 
shall consider the behavior of the vertex r,. This ver-  
tex is a function of three four-momenta &+ p2, p1 - ps, 
p1 - p,, where p=  (k, iw,,), and it  describes two channels: 
Cooper p, + p, (S channel) and Peierls p, - p, ( P  channel). 
In the quasione-dimensional case the instabilities cor- 
respond to different transferred momenta 2k, and Q and 
in analyzing them (for example the analysis based on 
the behavior of the vertex r,) we need to investigate the 
vertex for various external momenta (kk, and @/2). 

We shall now see how a superconducting transition is 
suppressed a t  low values of c,. We snall do this by 
considering the behavior of r, in the k, = k, = -k, = k, 
case. The transferred momentum k, - k, in the P chan- 
nel i s  then equal to 2kF and the behavior of r, depends 
strongly on the direction of the vector kF' Since the 
vector 2k, generally does not satisfy the condition (6) 
(in the selected model this condition corresponds to a 
specific value of Q )  and we a r e  interested in the vertex 
r, averaged over the Fermi surface, we find that the 
averaging truncates strongly the contributions of the 
ladder diagrams to the P channel and the temperature 
dependence i s  now governed by the parameter E,; how- 
ever, there i s  no truncation of the contributions of the 
ladder diagrams to the S channel. Consequently, the 
mutual renormalization of the P and S channels be- 
comes considerably weakened and this suppresses a 
superconducting transition compared with a structural 
one. 

We shall estimate the temperature of a superconduct- 
ing transition T, by considering the behavior of I?, in 
terms of the symmetric theory which we can assume to 
be approximately valid in the limit of small values of 
c, when T, lies in the range cu, < 1. In this limit the de- 
viation from the one-dimensional problem i s  slight and 
we can assume that in the case under consideration the 
processes with large transferred momenta play the 
decisive role. Assuming that iw, + i on, = iw, - iw 

5 
= iv,= 0, we obtain the following equation for r,, = r,,/ 
rab2c0 (see Ref. 8): 

where the quantity y,  is  defined in Ref. 8. 

In analyzing a superconducting transition we have to 
know the renormalized coupling constant defined a t  the 
normalization point q=  2kF, A =  T which can be done eas- 
ily by investigating the diagrams for r,. The value of 
this constant is denoted by gRl in Eq. (46). The con- 
stant gRl corresponds to the invariant coupling constant 
gR . The limiting value of can'be taken to be the 
vafue calculated from perturbation theory. 

It should be noted that Eq. (46) is valid for the part  
symmetric in respect of spins and for the antisymmet- 
r ic  part. It follows from Eq. (46) that the positions of 
the singularities f,, and zRl coincide in the symmetric 
theory. The equation for gRL is  the same a s  Eq. (25) 
subject to the substitutions 
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Allowing for the approximation (30), we find that the 
equation for g and the expression f (t) retain their 

Rr original form d we make the substitution t - t 
= ln[lr~/(2&f + r2~2)112]. An investigation of the latter 
can give the value of T,. A comparison of the equations 
for zR and zR1 shows that T,> T,. Thus, in the limit of 
low values of E,, we obtain 

where gRl(t,) can be determined with the aid of the 
curves in Fig. 2. 

The above conditions a r e  valid if InB>> 1, but on in- 
crease in &, we have to use the asymmetric theory re-  
garding the quantities i w 3  + iwn2 and iw, -iwn2 a s  inde- 
pendent variables; moreover, we have to allow for the 
contributions of the processes in which the transferred 
momentum i s  small. 

8. CONCLUSIONS 

Our analysis shows that in describing a quasione-di- 
mensional system it i s  most important to allow for the 
terms governing the dependence on the kinetic coupling 
parameters. These a re  the terms responsible for the 
change in the behavior of the system from one- to 
three-dimensional a t  low temperatures. In contrast to 
other  investigation^,^-^ the problem is solved above by 
identifying and summing (within the logarithmic theory 
framework) of the leading terms of this type. The 
equations obtained in this way describe the behavior of 
the system in the range defined by T < w, and E,  < w,. 
An investigation of these equations shows that the 
matching procedure used in Refs. 3-5 is not quite cor- 
rect. 

In the adopted model a one-electron spectrum has the 
property described by Eq. (6) in the case of a finite 
number of the vectors Q. This i s  true of a number of 
crystals when the one-electron spectrum can be de- 
scribed in the tight-binding approximation. In this case 
a structural transition i s  suppressed by the hopping of 
electrons to the second-nearest sites, which a r e  char- 
acterized by the parameter &,<&,. For this reason the 
strongest instability of systems of this kind corresponds 
to a structural transition which produces a superstruc- 
ture with a doubled transverse period. We can assume 
that in such systems the nature of three-dimensional 
ordering of charge density waves is goverend primarily 
by the kinetic coupling processes. The critical temper- 
ature T, in the region E, < W, increases on increase in 
E,,  but Fig. 3 shows that T, has a tendency to approach 
a maximum which we can assume to lie in the region 
El > W,. 

In an analysis of a superconducting transition we have 
to allow for the fact that the possibility of the appear- 
ance of a Cooper instability i s  goverened by the whole 
three-dimensional Fermi surface s o  that in the quasi- 
one-dimensional case we have to average over this sur-  
face. The result of averaging is generally a reduction 
in the effects of mutual influence of the Cooper and 
Peierls channels in a superconducting transition com- 

pared with, for example, a structural transition in the 
range of small values of E,. This i s  one of the reasons 
for the suppression of a superconducting transition in 
quasione-dimensional systems with a strong anisotropy. 
The nature of the selected model is such that a- super- 
conductivity is not expected even for relatively high 
values of E,. 

In this sense a more favorable situation is encoun- 
tered in those systems whose one-electron spectrum 
does not have the property described by Eq. (6). The 
results of the present work a r e  sufficient to conclude 
that a structuraltransition in such systems is suppressed, 
for  example, for 1nB- 5ifgR =0.3 andfor lnB-8if GR = 0.1 
so  that a superconducting state becomes possible. In the 
earlier investigations3-'it has been established, withinthe 
framework of the adopted approximations, that in this case 
the dependence T,(cl) should have a maximum at &, - w,. It should be noted than an increase in T, in a 
quasione-dimensional system, compared with the 
three-dimensional case, is possible only because of the 
more effective renormalization of the coupling con- 
stants, but the influence of this factor is ignored in 
Refs. 3-5 and this i s  why the effects of the mutual in- 
fluence of the S and P c h a ~ e l s  have been overesti- 
mated. On the whole, an analysis of the dependence 
T,(&,) for the electron-hole system in this case and 
also outside the range limited by the conditions (22) 
requires separate study. 

Among the large number of quasione-dimensional 
compounds the most suitable materials for comparison 
a r e  planar square complexes of transition metals among 
which the salt designated a s  KCP has been in- 
vestigated most thoroughly: i t s  formula is 
K,Pt(CN),Br,,. 3H,O (Refs. 12,13). The structure of 
such compounds agrees with the adopted model and 
their one-electron spectra can be assumed to have the 
form (1) with predominance of the electron-phonon 
in te ra~ t ion . ' .~~ '~  In these compounds the band population 
differs from 1/2 but the results can be applied if the 
vector Q of Eq. (6) is replaced with the vector 2k,,r/ 
b,r/b) without a significant change in the other param- 
eters. As pointed out above, crystals of this kind 
should exhibit a superstructure with a doubled trans- 
verse period. In fact, below 120 '% the salt  KCP exhib- 
i ts  a tendency to form such a superstructure but below 
40 "K a stabilization takes place and further three-di- 
mensional order is not e s t a b l i ~ h e d . ' ~ ~ ' ~  This is  due to 
an internal disorder of KCP crystals associated with 
the random distribution of the Br ions.13 

This approach allows us to determine T, for KCP- 
type crystals. The degree of anisotropy of KCP i s  
known from the measurements of o along chains a,, and 
a t  right-angles to the chains a,: u,/a,,-4' lo-, at T 
=20 '% and o,/u,, - 2- a t  T =  300 % (Ref. 13). Using 
the KCP parameters &,-1.5 eV, ~ , - 1 0 - ~  eV, g,-0.5 
(Ref. 13) and assuming that q/o,, - (&,/E,)~, we find 1nB 
= 0.4 and lnB= 1.9 for the Duo values of the anisotropy 
quoted above. For these values of E, the conditions (22) 
a re  not obeyed and, strictly speaking, the nonlogarith- 
mic terms should be used in the determination of T,. 
However, in a qualitative estimate we can calculate T, 
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in the adopted logarithmic approximation if we assume 
that X =  w,. Such a calculation gives T,= 78 % for InB 
= 0.4 and T,= 33 "K for lnB= 1.9. Allowance for the in- 
ternal disorder suggests that a t  temperatures 33-78 % 
there should be no phase transition in KCP but the com- 
pounds should exhibit maximum (antiphase) correlation 
between charge density waves in different chains. 
These estimates a re  in good agreement with the exper- 
imental results. The selected model i s  inapplicable to 
compounds of the TTF-TCNQ type which also exhibit a 
structural instability because these compounds have 
a complex structure: there a r e  two kinds of conducting 
chain and the transverse directions are  inequivalent.13 

We can thus assume that the properties of systems 
of this kind a re  related to a structural transition which 
i s  affected (as i s  true of KCP) by other factors such a s  
the internal disorder, etc. 

The author i s  grateful to L.N. Lipatov for valuable 
discussions of a number of topics and to Yu. A. Firsov 
for comments on the work reported above, and also to 
G.I. Podol'skaya for her help in numerical calcula- 
tions. 

')1t should be noted that in the ear l ier  investigationB the con- 
tribution of the diagram l c  was not doubled. The second co- 
efficient of the function /3 in the normalization Ref. 8 should 
be 16. 
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The effect of high hydrostatic pressure on the phase transitions in the (TSeT),Cl complex is studied at 
temperatures ranging from room to helium. The first-order phase transition which occurs under a pressure of 
5 kbar at room temperature continues to exist at all temperatures down to helium temperature. The 
temperature of the metal-semimetal phase transition decreases with pressure. However it is not possible to 
suppress this transition completely since the initial metallic phase goes over either to the semimetal state (at 
P < 4 kbar) or to the high-pressure phase (at P > 4 kbar). The T-P state diagram of the complex is plotted. 

PACS numbers: 64.70.Kb, 71.30. + h 

Among all the presently known organic compounds of 
the quasi-one-dimensional type which a re  metallic at 
high temperatures, perhaps one of the most interesting 
is the tetraselenotetracene chloride complex (TSeT),Cl, 
the structure and basic properties of which were de- 
scribed earlier.ls2 This complex, having metallic con- 
ductivity at high temperatures, undergoes in the region 
of 19 K a second order phase transition from the metal- 
lic state to a semimetal state whose conductivity is 
close to the room-temperature conductivity of the high- 
temperature phase.3 Furthermore, under a pressure of 
5 kbar and at room temperature, this compound under- 
goes a first-order phase transition to a new metallic 

state, which remains stable down to helium tempera- 
tures. The residual resistivity of the new metallic 
phase at temperatures below 10 K is 1.1 X ohm-cm 
(Ref. 4). 

To clarify the nature of this transformation the au- 
thors studied its characteristics at low temperatures. 
We were particularly interested by the possibility of 
maintaining the high-pressure phase in a metastable 
state at normal pressure. Moreover, it was of indepen- 
dent interest to investigate the possibility of sup- 
pressing the metal-semimetal phase transition and 
maintain the initial low-pressure metallic phase at 
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