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Orientational autolocalization of electrons in multivalley or 
anisotropic ferromagnetic semiconductors 
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We consider ferromagnetic semiconductors having a multivalley or essentially anisotropic electron spectrum, 
in which the energy of the bottom of the band depends, owing to the spin-orbit interaction (Sol), on the 
direction of the magnetization. It is shown that autolocalized states (AS) of the conduction electrons, due to 
local changes of the magnetization orientation, can be produced in such crystals. Favorable conditions for the 
production of these AS obtain in crystals with low magnetic anisotropy, low Curie points, strong SOX, and 
small distance between the bands. The produced quasiparticles have a large radius and a large effective mass. 
Their formation leads to a substantial change of the electric and magnetic properties of the crystal and can be 
regulated by a relatively weak external field and by the temperature. 

PACS numbers: 7 1.25.Tn, 7 1.50. + t, 75.30. - m 

A sufficiently strong exchange s-f (or s-d) interac- 
tion of the conduction electrons in a ferromagnetic 
semiconductor with the electrons of magnetic atoms 
should lead to autolocalization of the conduction elec- 
trons a t  finite temperatures. An electron that happens 
to be near a fluctuation change of the magnetization is 
then localized and stabilizes this change by i t s  field.'+ 
The produced autolocalized states (AS) of large radius 
(fluctuons) a r e  thermodynamically favored if the low- 
ering of the average potential energy of the electron by 
the localization exceeds the increase of i t s  kinetic en- 
ergy and of the thermodynamic potential of the spin of 
the atoms. At T = 0 the potential energy is minimal 
even for a band electron a t  the bottom of the conduction 
band, and no autolocalization takes place, so that fluc- 
tuons are produced in ferromagnets only a t  not too low 
temperatures: T > T:. In this respect fluctuons differ 

from polarons in ionic crystalse and other AS in or- 
dered systems (with which they have conceptually much 
in common). 

In ferromagnetic semiconductors with anisotropic 
dispersion law (e. g . ,  in multivalley o r  uniaxial semi- 
conductors) and with strong spin-orbit interaction 
(SOI), there can be produced AS of another type, which 
a r e  stable a t  low temperatures. When account is taken 
of the SO1 in such semiconductors, the energy of the 
bottom of the conduction band Eo(n) depends on the ori- 
entation of the magnetization vector M = Mn relative to 
the crystallographic axes. The equilibrium direction 

of M in the absence of electrons is determined by 
the magnetic anisotropy of the crystal and does not 
necessarily correspond to the minimum of Eo(n). Then 
the average potential energy of the electron can be low- 
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ered by rotating, in some region of the crystal, the 
direction n of the magnetization and by localizing the 
electron in that region. Obviously, such a rotation of 
the spins increases the energy of the magnetic aniso- 
tropy and the energy of the direct exchange [on account 
of the produced inhomogeneous distribution of M(r)], 
and leads also to the appearance of a positive kinetic 
energy of the electron. However, in weakly anisotropic 
crystals with low Curie temperatures Tc and with suffi- 
ciently large SO1 constants the lowering of the electron 
energy can be larger than the increase of the indicated 
contribution of the atom spins to the energy, and then 
the AS near the region of the altered direction of the 
magnetization (electronic ferromagnetic domain) turns 
out to be energywise favored and stable. In contrast 
to fluctuons, the localization here is connected with the 
local change of the orientation of the vector M, rather 
than i t s  length, and the region favorable for such an 
autolocalization can be that of low temperatures T40. 
The corresponding AS can be called orientons. Obvi- 
ously, in crystals with isotropic dispersion law the de- 
pendence of Eo on n vanishes and the indicated AS 
should not be produced. 

We investigate below the conditions for the formation 
of such AS and examine their characteristics (the size 
of the localization region, the energies of the autolo- 
calized states, etc.). To this end we determine first  
in Sec. 1 the energy Eo(n) of the bottom of the band a s  
a function of the magnetization direction. Analysis 
shows that the features of the AS differ substantially in 
cases when Eo(n) depends linearly or  quadratically on 
n - no. The second case takes place if no is perpendi- 
cular to the direction n=n,,,,, for which Eo(n) is mini- 
mal. It can be realized, for example, in uniaxial crys- 
tals. The first  case takes place if is not perpendi- 
cular (and not parallel) to n,,,,,. It is more general and 
is realized, for example, in cubic crystals. The con- 
sidered AS a r e  much easier to produce in the first  
case, even for weak SOI, i f  the magnetic anisotropy is 
small a t  the same time. Then the rotations 6€'(r) of 
the spins of the atoms in the AS region, turn out to be 
small (68 << 1). This case will be considered below in 
Sec. 3 with cubic crystals a s  the example. In the sec- 
ond case, the AS a r e  produced only for a sufficiently 
strong SOI, and in them 68 -1. Such AS with large spin 
rotations will be considered in Sec. 4. In Sec. 5 we 
discuss qualitatively the influence of the temperature 
and of the external field on orientons, a s  well a s  effects 
connected with defects and with high carr ier  density. 

1. DEPENDENCE OF THE ENERGY OF THE BOTTOM 
OF THE CONDUCTION BAND ON THE ORIENTATION 
OF THE MAGNETIZATION 

We consider a conduction electron with a wave vector 
k close to the point kj  of the energy minimum in thej -th 
valley of a multivalley semiconductor. The exchange 
interaction of this electron with the electrons of the un- 
filled shells of the magnetic atoms H* will be described 
with the aid of the s-f (s-d) model of a ferromagnetic 
semic~nductor .~  We take into account also the SO1 H a  
of the spin of the conduction electron with i ts  orbital 
momentum. Then the Hamiltonian of the system can be 

written in the form 

H=H,  ( r )  +H.,+H.,+H,, 
ha 

H , ( r ) = - - A + V ( r ) ;  11,,=2C A (r-R,)s ,S. ,  
2mo (1) 

ii" H,,=s.h; h=-i .-  
2m2cZ 

Here mo is the mass of the free electron, V(r) is that 
part of the periodic potential of the electron which does 
not depend on the spins of the atoms, s, and S, a r e  the 
spin operators of the conduction electron and of the n-th 
magnetic atom (with radius-vector %), the 6-like 
pseudopotential A(r - R,,) characterizes the magnitude of 
the s-f interaction, and the operator H, describes the 
direct interaction of the magnetic atoms. We assume 
for  simplicity that they form a Bravais lattice. 

The motion of the electron can be considered in the 
adiabatic approximation, by taking the operators S, in 
(1) to be c-vectors. Then the electron Hamiltonian He 
can be written in the form 

The index k designates here the aggregate of the re- 
duced wave vector k and the number p of the band, a 
is the spin quantum number, Ek is the energy of the 
electron in the Irp state in the absence of s-f and S-L 
interactions, d,, and Q, a r e  the electron creation and 
annihilation operators: N is the number of magnetic 
atoms, and IV-lAkk, is the matrix element of A(Y)  on the 
wave functions 1 k) and / k t ) .  For  simplicity we confine 
ourselves hereafter to the case of wide bands, when the 
band width AE s /A,. I (but a t  low temperatures the re- 
sults can be used also for the case AE 5 IAkk. I by car- 
rying out in the final formulas a certain renormaliza- 
tion of the constants without changing their order of 
magnitude). We assume also that the SO1 energy is 
small compared with the S JA,,. I and with the energy 
differences between the different bands. 

We regard the last term H ,  in (2), which describes 
the SOI, a s  a small perturbation. At T = O  the spins of 
the atoms S, = Sn a r e  identical and produce a periodic 
s-f exchange potential, while a t  T + 0 such a potential 
is produced by the average spins S, =Sn. In the field of 
this exchange potential, the spin of the electron in one of 
of the state a =*l is parallel or  antiparallel to n, and 
i ts  energy in the zeroth order in H ,  and in first  order 
in H* is equal to Ek + &Akk. The first-order correc- 
tion to the energy in H,,  is knownl0 to be zero for a 
ferromagnetic crystal with an inversion center and with 
a nondegenerate bottom of the band. We consider 
henceforth crystals with inversion centers, in which 
the vectors k, lie on threefold or  fourfold symmetry 
axes o r  on the intersection of two symmetry planes. 
We assume also for simplicity that A,, < 0. 

In the second approximation in H ,  we obtain an ener- 
gy correction that depends on the orientation n relative 
to the crystal axes. At k=kj,  according to (2), it is 
determined by the expression 
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All the quantities (pol hi 1 p'* o), E, ,A, a r e  taken here 
at  k=k,. 

The dependence on n is determined by the second term 
of (3), i. e., by the tensor Q,,. . If the centers of the 
valleys lie on three-, four-, o r  sixfold symmetry axes, 
then in the coordinate frame in which z is chosen to be 
a symmetry axis the tensor Q,,, turns out to be reduced 
to the principal axes, with Q,, = Qyy # Q,,. Equation (3) 
then takes the simple form 

E'=EO1+2QII-2Q cosZ 0, Q=Q=-Q,.. (6) 

Here 0 is the angle between kj and n. The quantity Q 
is determined by Eq. (5). In particular, if 3 I A , ,  1 are  
small compared with the characteristic difference of the 
electron energies Ee = I E, - E, I of the different bands 
(at k =$I, then Q is of second order of smallness in 
EsL and of first order of smallness in A, where ESL 
and A a re  the characteristic SO1 and s-f exchange en- 
ergies, respectively. Expanding (5) (including also 
the matrix elements) in powers of A, we obtain 

f i ~ ( ~ ?  P', P " ) = ( P  Ihil~'>Ap.p,.fp" Jhjlp) .  

If S [A, I a r e  large compared with Eo (e. g., for 4f 
levels), then, according to (5), I Q 1 =gSL /E,, where 
now Ee is the distance between E, and the nearest sub- 
band p'. If the bottom of the band lies a t  a spectrum- 
degeneracy point, then Eqs. (3)-(7) a r e  not directly 
applicable, but E' should depend a s  before on n, and 
the change of E' is of order SAEsL/Ee larger than in 
Eq. (7). We note that Eqs. (31, (61, and (7) a r e  valid 
not only for multivalley but also for single-valley non- 
cubic crystals (at a certain symmetry of the wave func- 
tions). In particular, in uniaxial crystals 0 designates 
in this case the angle between n and the symmetry axis. 

To realize the AS of the type considered below, I Q 1 
must be large enough ( 1 Q 1 2 0.01 eV). According to 
(7), favorable substances for this purpose a r e  those 
with high SO1 energies ESL and low E,. It is known that 
the SO1 increases rapidly with the atomic number of the 
element, so that E ,  is large enough (-0.1-0.3 eV) in 
compounds of r a r e  earths (and actinides), whereas in 
compounds of the iron-group elements they a r e  not 
small if the compounds contain also heavy nonmagnetic 
atoms at which the amplitude of the wave function is of 
the same order a s  at  the magnetic atoms. The ener- 
gies of the direct interband transitions E, a r e  usually 
small enough (E, 2 1 eV) in crystals with several atoms 
per cell and in compounds in which the f-levels a r e  
close to the conduction band or to the valence band. 
For AS -0.3 eV and EsL/Ee - 1/3 the estimate (7) yields 
Q-0.03 eV. In the aforementioned case of degenerate 
minimum points such values of Q can be realized at  

larger E,. We note that Q can be determined experi- 
mentally by investigating the dependence of the posi- 
tion of the edge of the interband absorption of light for 
the corresponding direct transition one the orientation 
of the magnetization (provided that the smearing of the 
edge does not exceed Q appreciably). 

The dependence of the energy of the bottom of the band 
on the magnetization can be due not only to the "intrin- 
sic" SO1 (I), but also to the SO1 of the conduction elec- 
tron with the electrons of the magnetic atoms. In rare- 
earth compounds the dependence of E' on n can be due 
also to Coulomb interaction between the conduction 
electrons and the 4f electrons. Since the S-L interac- 
tion is stronger than the crystal field, the external 
magnetic field earily orients the orbital functions of the 
4f electrons. This should lead to a substantial depen- 
dence of the s-f exchange integral A on n, and hence 
also to a dependence of the term SA in the electron en- 
ergy, particularly strong (-O.1SA at n f=6  or  n,=8), if 
the number of 4f electrons is close to 7 o r  14 (but is not 
equal to 7 or 14). According to Ref. 11 the E(n) depen- 
dence can be due also to Coulomb interaction with the 
quadrupole moments of the 4f shells. These interac- 
tions can make a substantial contribution to Q, which 
in some cases can exceed (7). We do not present ex- 
plicit expressions for the corresponding terms in Q 
(for the last interaction mechanism they a r e  in effect 
contained in the formulas of Ref. l l ) ,  nor the more 
complicated relations for E1(n), and regard hereafter 
the total value of Q a s  a parameter of the theory. We 
confine ourselves hereafter to systems in which the 
corresponding Landau energy is much lower than Q. 

2. CHANGE OF THE THERMODYNAMIC POTENTIAL 
OF THE SYSTEM UPON AUTOLOCALIZATION OF 
AN ELECTRON 

The characteristic radius of the AS, a s  will be shown 
below, is considerably larger than the lattice constant, 
i. e., we can use the macroscopic approximation. The 
state of the electron is then described in the effective- 
mass approximation. The electron wave function, gen- 
erally speaking, is a superposition of wave packets per- 
taining to different valleys. Usually, however, the 
matrix element A,. of A(r - R,) on wave functions of 
different valleys should not exceed in absolute value the 
matrix element A =A,, on the wave functions of one val- 
ley. In this case, which will be considered later on, 
it is easy to show (see Ref. 12) that when account is 
taken of the direct-exchange energy, the state corre- 
sponding to a superposition of wave functions from non- 
parallel valleys is thermodynamically less favored than 
a state corresponding to a wave packet of functions 
from one valley or from two parallel valleys. In the 
last two cases the thermodynamic potential is the same, 
and for the sake of argument we assume hereafter that 
the electronic state is made up from wave functions of 
one valley with wave vector $ . 

To obtain a maximum lowering of the electron energy, 
the spins of the atoms must be rotated in the xz plane, 
which contains the vectors and &, and such a com- 
planar disposition of the spins in the AS in the consider- 
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ed cases [with U, given by (11) and (12)] turns out to be 
thermodynamically most favored. Accordingly, the 
mean value of the electron spin, becoming attuned to the 
spins of the atoms, l ies in the same plane, and the 
spinor wave function of the state produced by superposi- 
tion of waves from the j-th valley can be written in the 
form 

Here % j ,  is the periodic part of the wave function of a 
band electron with k = k ,  (normalized to the volume of 
the cell), and #(r) and B,(r) determine the smooth parts 
of the spinor wave function of the localized electron. 

In the considered systems, for which the typical in- 
equality I A  I S  >> Q is satisfied, the direction of the elec- 
tron spin aligns itself locally with the direction of the 
magnetization, and a t  A < 0 we have B,(r) = Oh), where 
B(r) is the angle between the direction n(r) of the aver- 
age spins of the atoms at  the point r and the vector kj llz 
[at A > 0 we have 0,(r) = B(r) - a]. In addition, we con- 
fine ourselves f i rs t  to the case of low temperatures, 
when only the direction of the magnetization vector 
changes, but not i t s  modulus ( I ~ ( r )  1 = const). 

With the indicated simplifications, the change A 9  of 
the thermodynamic potential of the system following the 
autolocalization can be represented in the form 

The first  two terms in the formula determine the kinetic 
energy of the electron, and the third term the potential 
energy of the SOI, the electron energy level being mea- 
sured from the bottom of the band a t  n=no. The fourth 
term in I determines in the macroscopic approximation 
the change of the energy of direct exchange of the atom 
spins. The quantities aii a r e  connected with the ex- 
change integrals. For  example, in crystals with cubic 
lattices, in the nearest neighbor approximation, 

where a is the length of the edge of the cubic cell, 
-151 -Sz is the exchange energy, v is the volume of the 
unit cell, and z is the coordination number. The last 
term in (9) determines the change of the magnetic-anis- 
otopy energy. Retaining for simplicity the lowest har- 
monics, we can write for U, in a uniaxial crystal 

and in a cubic crystal 

K 
U,= - 4 j  (~z,.'-na4.,)dr, M 2 < K ,  , (12) 

2 ?  
where Ki and Kl a re  the corresponding anisotropy con- 
stants, and x ' ,  y', z' a r e  directed along the cubic axes. 
It is assumed here that M2 <<K1 and M2 <<Ki. For  sim- 
plicity, the magnetostatic contribution to U ,  is disre- 

garded. If M2 2Kl and M2 2Ki ,  it is necessary to re- 
place Kl o r  Ki in the result by a quantity -M2. AS a r e  
more easily produced in crystals with small M', for 
example those containing several nonmagnetic atoms in 
the cell. 

Expression (9) defines A 9  a s  the minimum of the 
functional I[B(r), Jl(r)]. The functions B(r) and $(r), 
which minimize this functional, specify the stationary 
distributions of the atom-spin rotation angle B(r) and 
the distribution of the electron density I #(r) 1'. If A@ 
= min I is negative, then the autolocalization is certain- 
ly thermodynamically favored. 

The functional (9) can be minimized by solving the 
corresponding Euler equations for B(r) and #(r), or  with 
the aid of a direct variational method for any concrete 
value of the parameters (e. g., by numerical methods). 
To present the result in a lucid compact form and to be 
able to investigate the conditions for the production of 
the AS and their characteristics in analytic forkn, we 
shall carry out the analysis in several typical particu- 
lar cases in which the solution has a simple approxi- 
mate form. These examples will be considered in Secs. 
3 and 4 below. 

3. AUTOLOCALIZED STATES WITH SMALL 
ROTATION OF THE ATOM SPINS 

We consider a crystal whose easy magnetization,axis 
is not parallel or  perpendicular to the k, direction. An 
example of such a crystal is a cubic multivalley mag- 
net in which the valleys a r e  oriented along the (100) 
directions and n is parallel to one of the (111) axes, or 
conversely, 1 k, [[III] and n,11 [loo]. For simplicity we 
confine ourselves to the case when the difference be- 
tween the components mi of the effective-mass tensor 
is small, and, neglecting terms quadratic in mi- m3, 
we replace mi by m = ( ~ ~ m ~ m , ) ~ ' ~  (in noncubic crystals, 
we shall assume the difference of the quantities f f i tmi  
to  be small and replace also f f l i  by ff =C fftimi/m). 
We assume that the constants of the SO1 Q and of the 
magnetic anisotropy a r e  small, a s  a result of which AS 
a r e  produced with small rotation of the atom spins. 
This allows us  to discard the second term in (9) and re- 
duce 40, #] to a quadratic form of B(r) - @,. Minimiza- 
tion with respect to B(r) leads then to the Euler equa- 
tion 

aA0-2QqZ sin 20,-2Kit(O-0,) =0, (13) 

where 5 1  a t  % 1 1  [loo], C=-gat no 11 [ I l l ] ,  and 5 -1  for 
noncubic crystals. i t  is easy to solve this equation and 
express @(r) in terms of $(r), for example with the aid 
of a Fourier transformation. 

To determine the minimum of the functional I[$], 
which is obtained after substituting the solution (13) in 
(9), we use a direct variational method and use for 
the usual simple approximation 

+ (r) = (2pln) " exp (-pr2). (14) 

Then the functional a $ ]  = min,l[Q, $1 reduces to the func- 
tion 
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After determining the value 6 =Po  corresponding to the 
minimum of (1 5) we can obtain the change A@ =I(&) of 
the thermodynamic potential following autolocalization, 
the energy E of the localized electron, a s  well a s  the 
number n =u-'$-~(o) of the magnetic atoms in the elec- 
tron localization region and the maximum atom spin 
rotation 68 = 8(0) - 8,. The analysis becomes much 
simpler if the magnetic anisotropy constant K1 is small 
enough (as is frequently the case in cubic crystals). If 
the anisotropy can be neglected, then I(6) is described 
schematically by curve a of Fig. 1, i. e., the AS a r e  
produced without overcoming an energy barrier,  and 
A+ is always negative, i. e. , the AS is energy- 
wise favored. I ts  equilibrium characteristics a r e  de- 
termined by the formulas 

where 
5h3 

AE= -, , g= sin 20,, ~=a; '~ .  
nivl- 

We have introduced here in lieu of m the energy con- 
stant AE (which is close to the width of the conduction 
band in single-valley crystals), and in lieu of ff the 
energy constant I-(1 - 3)1& -(0.3 - 0.6)kTc. In cubic 
crystals cos8,= 3"' and g2 =#. 

When the magnetic anisotropy is taken into account, 
the I@) curves (curves b and c of Fig. 1) pass through 
a maximum of height 

this height characterizes the energy barr ier  for the 
transition into the AS. With increasing Kl, Aih in- 
creases, and at Kl > Kt (Kt corresponds to curve c on 
Fig. I), Aih becomes positive, the formation of the AS 
a s  T-0 becomes energywise unprofitable. It follows 
from (15) that 

K,'=0.1g'Q'/I(AE)2v. (17) 

According to (17), crystals suitable for the realization 
of the AS of the considered type a r e  those with small 
anisotropy, low Curie points, large effective masses, 
and not too small Q. For  example a t  6=1, Q=0.03 eV, 
1=2.10-~ eV, u = 3 . 1 0 - ~ ~  cm3 (z =6; S=2, Tc=70 K), 
and AE = 1.4 eV (m = 3mo) the AS a r e  produced if Kl < K? 
=9.105 erg/cm3. At K l < < a  and a t  the cited values of 
the parameters, according to (16), we have ~ih=-3.10-~ 
eV, 68=-0.3, n=3.103. In this case - E = 9 x l o B  eV 
> kT, >>kT. 

At sufficiently large Q and small I and AE, the con- 

FIG. 1. 

dition 68 << 1 no longer holds. The characteristics of 
the AS a t  large 68 will be considered in the next sec- 
tion. So long a s  68 << 1, the quantity n is large (usually 
AE/Z> lo3), and the condition of applicability of the 
macroscopic approximation is well satisfied. 

To satisfy also in the case AE >>AS the adiabatic ap- 
proximation used above, the electron energy I E 1 must 
be large both compared with kT (with the energy of the 
really excited magnons), and compared with the energy 
of magnons having a wave vector -P1" (of the order of 
the reciprocal dimension of the AS). At K1 << K? the 
last condition reduces to  the requirement AE >> I o r  m 
<< m, (m, is the magnon mass), which is almost always 
satisfied. 

The considered AS a r e  quasiparticles having an effec- 
tive mass M. The latter can be obtained by the method 
used to calculate the effective mass of the polaron,13'8 
by determining A@ for a quasiparticle moving with velo- 
city v and described by the functions $(r - vt), 8(r - vt). 
In the case 68 << 1, Kl << K? and v - 0, calculation a t  
&, 11 [loo] leads to the expression 

For  example, for the parameters given above and a t  
K1 = lo5 erg/cm2 we have ~ / m ~  =0.6x 10'. 

It must be borne in mind, however, that Eq. (18) was 
obtained in a continual approximation. Even the weak 
influence of the lattice periodicity on the transational 
motion of the quasiparticle leads to the appearance of 
forbidden bands in the ~ ih (p)  spectrum (p is the total 
momentum of the system), and a t  such large M the 
widths of these bands can exceed those of the allowed 
bonds, -AEm/M, corresponding to  the mass (18) cal- 
culated without allowance for the periodic potential. In 
this case Eq. (18) can no longer be used. The motion 
of quasiparticles with such large M at  all  T except the 
very lowest is apparently of the diffusion type. 

4. AUTOLOCALIZED STATES WITH LARGE ATOM 
SPIN ROTATION 

The AS considered above with 68 << 1 cannot occur a t  
all  in crystals where 1 G,,, i. e., where the energy 
of the bottom of the band a t  small 68 depends on 8 - 8, 
not linearly but quadratically. In these cases there can 
be produced only AS with almost complete alignment of 
the atom spins with the electron spin. We shall investi- 
gate such states using a s  an example uniaxial magnets 
with two minima of the electron spectrum on the z axis 
o r  with one minimum a t  k=0,  for which the easy mag- 
netization axis no Il z (Ki > 0) and Q < 0, o r  else % lies 
in the xy plane (Ki < 0) and Q > 0. The results, with 
some change in notation, a r e  applicable also to cubic 
crystals with large Q. Just  a s  above, we shall assume 
that ffl lml= ff3,m3 and, neglecting the t e rms  -(ffllml 
- %3m3)2, replace in (9) m, by m and oil  by a. 

At large 68 i t  is much more difficult to determine the 
6B(r) corresponding to a given distribution $(r) than in 
the case 68<< 1. It is therefore more convenient to 
minimize the functional 48, $1 by a direct variational 
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method, specifying the tr ial  function B(r) of the angular 
deviation from the z axis. We specify i t  by means of 
the relation 

cosz 0 ( r )  -cosa O,=tlche yr, It 1 < I .  (19) 

The chosen function contains two varied parameters and 
accounts correctly for the general course of the func- 
tion B(r), but decreases rapidly a s  Y---J. In the pa- 
rameter region where A@ = 0, this approximation leads 
to an e r ro r  -10-20%, but with increasing 1 A@ I the 
error  decreases rapidly (with the calculated value of 
A@ overestimated). 

When (9) and (19) a r e  taken into account, $(r) and the 
electron energy E can be obtained by determining the 
minimum of the functional 

It will be shown below that an equilibrium AS corres- 
pond to values of It 1 very close to unity. This  makes 
it possible to discard the third term in (20). The cor- 
responding e r ro r  does not exceed 5O/0. The definition 
of the minimum of the functional (20) without the third 
term corresponds to a solution of the SchrGdinger q u a -  
tion with a potential proportional to cosh4yr. Taking 
into account the known relation between the solutions of 
the spherically symmetrical problem with 1 = 0 and the 
antisymmetrical solutions of the one-dimensional prob- 
lem, we can write down the expression for E in the 
form (see, e. g., Ref. 14) 

E ( t ,  h)  =-2Qt (I-1/2h)', h=4mQt/9fi'yz. (21) 

Replacing the f i rs t  three t e rms  in (9) by expression (21) 
and calculating the last two terms,  in (9), and taking 
into account (11) and (19) and the definitions (16) of I 
and AE, we express A@ in the form 

h l-lt l  i--f-. + [ - (  Itl ( 3T zn 2n' ) I 

The parameter X is connected with the effective 
radius of the AS and with the effective number fi of the 
atoms in the region of the changed cos20: 

In the considered case, in contrast to the case dealt 
with in Sec. 3, the I(Y) curves (even if we neglect the 
magnetic anisotropy) always have maxima and they have 
the same shape a s  curves b-d (but not a) of Fig. 1. 
Therefore A@ =min I becomes negative and the AS a r e  
stable a s  T -0 only in a definite range of values of the 
parameters a t  sufficiently large Q. Numerical calcula- 
tions show that the stability region l ies to the left of the 
curve shownin Fig. 2. The transition to the AS involves 
in this case the surmounting of an energy barrier.  

For a more detailed investigation of the characteris- 

FIG. 2. 

t ics  of the AS let us examine limiting cases in which the 
change of the magnetic-anisotropy energy by autolocali- 
zation is either much larger o r  much smaller than the 
change of the energy of the direct exchange. In the first  
case, when C >> C1, the last t e r m  of (22) can be dis- 
carded. Then the smallest value of I is reached a t  ( t  1 
= 1, i. e., the angle of rotation a t  the center of the AS 
is 0 - B,=,tn/2 [in this case Eq. (21) determines the 
exact value of A =  Xo(C) for a potential energy in  the 
form (19)]. The stationary value of k=X0(C) is deter- 
mined by the equation 6cX5 =2X- 1, whose solution 
makes i t  possible then to obtain from Eqs. (21)-(23) 
the values of E, A@, y, and Fz a s  functions of C. The 
AS a r e  energywise favored (A* c 0) a t  C c C*, where 

Ca=0.28, h , ( e )  = 5 / , ,  E (C') =-0.321 Q 1 ,  y (C') =1.8( 1 Q 1 IAE) "u-'", 

E = ~ . B ( A E / ( Q o " ~  (c'Bc,). (2 4) 

According to (24), 5(C*) is very large, i. e . ,  the mac- 
roscopic approximation is valid. With decreasing C, 
the values of 8, A+, and E tend to the asymptotic ex- 
pressions 

For  example, at v = 3 x lo-" cm3, Q = 0.03 eV, and 
AE = 4.3 eV (m = mo) the condition C s C* is satisfied 
and the AS a r e  stable if Ki < 6.2 x lo5 erg/cm3 and n(C*) 
= 3 x 10'. Simultaneously, C* >> C1 and we can neglect 
the contribution of the direct exchange to A@ i f  I<< lo* 
eV (i.e., Tc<<35 K a t  z=6) .  

In the opposite limiting case C << Cl we can neglect 
the change of the magnetic-anisotropy energy and dis- 
card the second term of (22). In this case the minimum 
of I(t, k) is reached a t  / t 1 =to  somewhat smaller than 
unity (the spin rotation angle a t  the center of the AS 
does not reach the maximum value), and A+ c 0 a t  C1 
s C:, where a t  Q > 0 we have 

C,'=0.30, to (C,') =O.93, Lo (C,') z3/*, E (Ci s )  =-0.83Q, 
(2 6) 

y (C,') =0.96(Q/AE)'"u-'", R(C,*) =12(AE/Q)" (CaC,' ) .  

With decreasing C1, the parameter to tends to unity 
and Xo, neglecting 1 - to, is a solution of the equation 
2 ~ 1 ~ '  =2h- 1. At small C1 <<Cf and C <<C1 we have 

A @ = - ~ ( 1 - 2 ~ ) ) ~  E = - ~ ( 1 - C ?  ), E=9 

For  example, a t  v = 3X cm3, Q =0.03 eV, and 
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m =mo the AS a r e  produced (C1 < Cf) if I < 2.2 x 10" eV, 
i. e., a t  sufficiently low Tc (Tc < 75 K a t  z= 6 and S=2) 
and a t  small Ki<<8xlo4 erg/cms (so a s  to have C <<Cf). 
At C1 = C t  we obtain n = 2  x lo4. Just  a s  in Sec. 3, the 
condition for the applicability of the adiabatic approxi- 
mation reduces to the requirement I E 1 >> kT and I E 1 
>> I. 

The presented results, which describe almost a com- 
plete spin flip (to =I),  a re  valid in fact not only for uni- 
axial crystals with the considered valley geometry, but 
also to other cases of large Q[Q3>>fAE, Q5 2 A@(K~V)~] ,  
for example to cubic crystals. In the latter case, a t  a 
small magnetic anisotropy, I(t, X) can be also estimated 
(with a 20% error) from formula (22) (without the sec- 
ond term), by replacing in i t  C1 by C1(l - cos0,)4/2. 
Accordingly the AS a r e  described in this case by Eqs. 
(26) and (27), in which the indicated substitution is 
made. 

5. DISCUSSION OF RESULTS 

It follows from the cited results that the character of 
the formation of the AS is substantially different in the 
cases when the magnetization axis n,, makes an acute or  
a right angle with the direction n,,,,, corresponding to the 
minimum energy of the bottom of the band [the electron 
potential energy Q(cos20 = cos28,) is a linear or  quad- 
ratic function of 60 a t  small 601. In the second case, 
which is realized, for example, a t  the considered geo- 
metry of the valleys in a uniaxial crystal, the AS a r e  
produced, even a t  extremely small magnetic anisotropy 
Ki, only starting with certain finite values of the coup- 
ling constant Q, and after surmounting an energy bar- 
r ier .  They a r e  similar in many respects to the AS in 
liquid helium and to fluctuon states in disordered sys- 
tems. In the former case, which is realized in cubic 
crystals, in uniaxial crystals with valleys lying in the 
easy- magnetization plane x ' ,  y ', and in a number of 
low-symmetry crystals, the AS a r e  produced in the 
limit a s  Kl -0 a t  arbitrarily small I Q I and there is no 
energy barrier.  The produced AS with 60<< 1 have 
many features in common with large-radius polarons 
in ionic crystals. At the same time, the difference be- 
tween the dispersion laws of the phonon and magnon 
frequencies and between the constants of their interac- 
tion with electrons leads to substantial differences of 
the AS (as well a s  of the impurity optical spectral5). 
In particular, in magnets, unlike in polarons, the con- 
dition of applicability of the adiabatic approximation is 
satisfied even in the case of weak coupling. 

The considered AS a r e  apparently most readily real- 
ized in cubic crystals with small magnetic anisotropy, 
with low Curie points, with large effective masses and 
with appreciable I Q I (210' eV). The last condition, 
according to (17), is particularly important. 

Although the described results were obtained for the 
case T =0, they a r e  applicable also a t  finite tempera- 
tures  [when the change of the modulus of M(r) in the 
region of the AS can still be neglected], if account is 
taken of the temperature dependence of the parameters. 
According to (7), Q -3 decreases with increasing T, and 
this can lead to a transition from the AS to band states 

in a certain region T -T*. At q-n,,,,, o r  a t  appreciable 
Kl, it has the features of a smeared first-order transi- 
tion. On the other hand, I, and also in particular Ki, 
decrease with increasing T. Therefore cases a r e  pos- 
sible when no AS a re  produced a t  T = 0, and they a r e  
thermodynamically favored only in the interval 0 < T f  
< T < T* . Starting with certain temperatures, usually 
- ~ , / 3  to Tc/2, an important role can be played also by 
the change of the modulus of ~ ( r )  in the AS region, and 
mixed states of the fluctuon type can be produced, in 
which both the magnitude and direction of M a r e  chang- 
ed. A transition can then take place from states with 
very large radius, where the change of / M I  is small, 
into states of smaller radius with appreciable change of 
M(r). 

The transition of the electrons into the considered AS 
should obviously alter substantially the electric, photo- 
electric, magnetic, and other properties of the crystals 
(the carr ier  mobility, their density, kinetic character- 
istics, magnetic anisotropy, etc.). It is possible to 
alter significantly these properties by applying a rela- 
tively weak external field H, on the order of the aniso- 
tropy field. By rotating the magnetization, the field can 
easily destroy the AS (at no II q,,,,) or  lead to appearance 
of AS (when q makes an acute angle with n,,,,,). An obli- 
que field makes possible AS with 60 >> 1 in uniaxial crys- 
tals. The field can decrease effectively the anisotropy 
and facilitate the formation of the AS, inasmuch a s  in 
the presence of a field the quantity Kl_5 in the formulas 
of Sec. 3 is replaced by z/2, where K =  a2(u,- M.H)/ 
ao2. It is known that j?--0 a t  certain H, making the 
conditions for the formation of AS at  T-0 most favor- 
able. 

Even if the free electrons do not go over into the AS, 
regions of reversed magnetization in crystals with 
anisotropic spectra should appear near electronic im- 
purity center. They should lead, in particular, to an 
appreciable electronic contribution to the magnetic- 
anisotropy constant and to the broadening of the ferro- 
magnetic-resonance line. New effects should appear 
a t  considerable carr ier  densities N,. Upon increase in 
density there can occur, in particular, electronic phase 
transitions accompanied by reversal of the magnetiza- 
tion or  by formation of a heterogeneous state with a 
nonuniform distribution of M(r) and N,(r). 
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Study of two-dimensional mixed state of type-l 
superconductors 
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We describe an experimental study of the destruction of superconductivity by current in hollow indium 
samples. In particular, we determine the destruction current I,, of the two-dimensional mixed state and 
investigate the temperature dependence of the paramagnetic effect in a weak longitudinal magnetic field. In 
addition, we investigate the mixed state produced on the surface of a bulky cylindrical sample when a strong 
longitudinal magnetic field is abruptly turned off. Particular attention is paid to the study of the structure 
produced in a two-dimensional mixed-state layer in the presence of a weak transverse magnetic field. The 
velocity and the characteristic dimensions of the structure are measured at various values of the temperature 
and current density in the sample and of the transverse magnetic field. 

PACS numbers: 74.30.Gn, 74.70.Gj 

Destruction of the superconductivity of hollow type-I 
superconductors by c u r r e n t  produces on the i r  inner  
sur face  a thin l a y e r  of two- dimensional mixed (TM) 
s t a t e  (private communication f r o m  L. D. Landau t o  D, 
Shoenberg, see Refs. 1 and 2). The TM s t a t e  has  been 
the subject  of a number of e ~ p e r i m e n t a l ~ - ~  and theoreti- 
~ a l ' ~ - ' ~  studies. Nontheless, many questions connected 
with the  proper t i es  of the T M  s t a t e  remain unanswered 
to this day. 

This  paper  consis ts  of two methodologically different 
par ts .  In the f i r s t  are described experimental  study of 
the TM s t a t e  produced on the inner  sur face  of a hollow 
cylindrical sample. In part icular ,  the c u r r e n t  IC2 re- 
quired to destroy the TM s t a t e  has  been measured. In 
addition to measurements  of I,,, w e  have investigated 
the temperature dependence of the  paramagnet ic  effect 
of the T M  s t a t e  in a longitudinal magnetic field. 

In the  second p a r t  are described experimental  s tudies  
of the T M  s t a t e  produced on the sur face  of a bulky cy- 
l indrical  sample  when a n  external  magnetic field is 
turned off. This  experiment, proposed by Dolgopolov 
and ~ o r o z h k i n , ~  is methodologically somewhat s i m p l e r  
than the destruction of the superconductivity of hollow 
cylinders by a current .  On the o ther  hand, the damping 
of the vort ical  c u r r e n t s  produces in the TM-state  l a y e r  
nonstationary ex te rna l  conditions, thereby limiting 
somewhat the experimental  possibilities.  P a r t i c u l a r  at- 
tention was  paid in the described experiments  to the 
study of the s t ruc ture  produced in the TM s t a t e  l ayer  
in a t ransverse  magnetic field. 

1. DESTRUCTION OF THE SUPERCONDUCTIVITY OF 
HOLLOW INDIUM CYLINDERS BY A CURRENT 

Experimental setup 

We used  f o r  the measurements  two single-crystal  
samples1' with identical dimensions: outside d iameter  
8 mm,  inside d i a m e t e r  4 mm, and length 55 mm. The 
tetragonal ax i s  was  para l le l  to  the sample  axis. The 
res i s tance  rat io  R300 K / ~ O  was  1700 and 1300 f o r  sam-  
p l e s  1 and 2 respectively. The c u r r e n t s  through the 
s a m p l e s  (up to 1200 A) w e r e  produced by a cur ren t  
t rans former  with superconducting windings in accord 
with a previously described procedure.4 The mounting 
of the samples  is i l lustrated in Fig. 1. Two p a i r s  of 
Helmholtz coi ls  4 and a solenoid 5 ,  located in the im- 
mediate vicinity of the sample,  could produce a t  the 
sample  a magnetic field of any s trength and direction. 

The c u r r e n t  needed to destroy the TM s t a t e  w a s  de- 
termined by measuring the sur face  impedance, using 
two coi ls  L 1  and L2. The coi ls  w e r e  f la t  s p i r a l s  and 
had approximately 40 tu rns  of copper  w i r e  of 20 y m 
diameter  each. The approximate dimensions of the 
coi ls  and the i r  a r rangement  in the sample  cavity are 
shown in Fig. 1. The coi ls  w e r e  connected in the tank 
c i rcu i t  of a measur ing  rf osci l la tor ,  whose change of 
frequency w a s  measured (and w a s  proportional to the 
changes of the imaginary p a r t  of the sur face  impedance) 
as the s t a t e  of the sample  w a s  varied. The osci l la tor  
frequency in these experiments  was  -10 MHz, and the 
change of frequency f,- f, when the sample  went f r o m  
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