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We consider radiative binding of colliding atoms into a molecule, accompanied by absorption of a 
nonresonant laser photon: A ,  +A, + o+(A ,A,) + O .  An expression is obtained for the binding cross 
sections and the resonant singularities due to the existence of bound or quasibound levels of two nuclei, 
moving in the effective field, are separated with account taken of the centrifugal repulsion. The dependence of 
the cross section on the intensity of the laser radiation is investigated and it is shown that the barrier 
resonances can lead to nonlinear effects when the nonadiabaticity parameter remains much less than unity. 

PACS numbers: 32.80. - t, 34.20.Fi 

1. INTRODUCTION 

The investigation of the effect of intense electromag- 
netic radiation on atom collisions has recently attracted 
the attention of experimenters and theoreticians. Ex- 
citation and ionization of colliding atoms in a laser field 
have already been discussed in the literature both in the 
case of long-range collisions (see the review of Yakov- 
lenkoi) and in the case of short-range  collision^.^ It i s  
also of interest to investigate the simplest chemical re- 
action- radiative binding of atoms, when the excess en- 
ergy is carried away spontaneously by an emitted pho- 
ton: 

In a sufficiently rarefied gas, the radiative binding i s  
the principal mechanism of molecule formation. Laser 
radiation, a s  the catalyst of the reaction, can actively 
influence the binding process. 

in the limits of one electronic term of the quasimole- 
cule. The probability of this process is  low by virtue 
of the exponential smallness of the matrix elements of 
the free-bound transitions, and in the homonuclear case 
(collision of like atoms) the dipole transitions in a single 
electron term a r e  entirely forbidden. A delayed stay of 
the atoms in a region of the order of the molecule di- 
mensions should obviously lead to an increase in the 
binding cross section. In the quantum-mechanical anal- 
sis, the delay manifests itself a s  a cross-section reso- 
nance due to the existence of a bound o r  quasibound en- 
ergy level of the system of two nuclei moving in the ef- 
fective field of the quasimolecule, with account taken of 
the centrifugal collision. 

We note that resonant singularities should be observed 
in this case also in the elastic and inelastic collision 
cross  sections. Thus, for example, when the lower 
quasimolecule term over which the atoms approach each 
other is purely repelling, the resonance in the cross 

We a r e  interested in the case when the absorption of section for excitation of an atom with absorption of a 
a quantum of a strong electromagnetic field takes place photon i s  governed by the transition of the colliding par- 
in the course of the collision. For this purpose it i s  ticles into a quasibound-motion state in the upper term. 
necessary that the laser radiatiation not be resonant to Such an excitation of an atom with absorption of a photon 
an isolated atomic transition. in collisions was considered quantum-mechanically in 

Chemical reactions in a laser  field were experimen- 
tally investigated in a number of studies (see Ref. 1). 
We know, however, of only one experiment3 in which 
nonlinear effects were observed in radiative binding of 
alkali-metal vapor atoms in a laser field. The molecule 
formation was detected in Ref. 3 by registering the mo- 
lecular fluorescence. Nonlinear effects were observed 
a t  relatively low intensity of the laser radiation, - l o 8  
w/cm2, when the probabilities of the non-adiabatic tran- 
sitions remained much less than unity. 

Binding calls for the atoms to approach each other to 
a distance on the order of the dimensions of the 
molecule. The time of motion of the atoms in a 
region of the order of molecular dimensions (-lo-'' 
- 10-l3 sec) is short compared with the lifetime of 
the excited state of the quasimolecule (-lo-' sec). 
Therefore in the usual case the cross section of the 
radiative binding also turns out to be small. We do not 
refer here to the radiative binding that takes place with- 

Ref. 4, and in the quasiclassical approximation with al- 
lowance for the strong coupling of the two channels in 
Ref. 5. 

In theoretical investigations of the radiative binding of 
the atoms without laser action, use i s  made of the semi- 
classical impact-parameter method. In this case the 
resonant singularities of the cross  sections a r e  lost. TO 
take into account the resonances, and the effects non- 
linear in the laser-infield intensity which they produce, 
we describe in the present article the radiative binding 
in a consistent quantum-mechanical manner. In Sec. 2 
we consider the problem of collision of atoms in a laser 
field in the two-channel WKB approximation. In Sec. 3 
the spontaneous radiation that leads to binding is taken 
into account by perturbation theory, and an expression 
is obtained for the cross section, and the resonant sin- 
gularities a re  separated. The possibilities of observing 
resonances and associated nonlinear effects i s  discussed 
in Sec. 4. 
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2. WAVE FUNCTIONS OF TWO-CHANNEL 
SCATTERING PROBLEM I N  THE QUASICLASSICAL 
APPROXIMATION 

Neglecting the spontaneous radiation, we consider the 
problem of slow atomic collisions in a laser field. We 
assume that the relative velocity of the nuclei is much 
less than the characteristic velocity of the electrons in 
the quasimolecule, v ,,,<<v,. We write the schrijdinger 
equation for two atoms colliding in the field of an elec- 
tromagnetic wave in the form" 

i aV(r ,  H, t ) !a t=(A(r ,  ~ ) + ? + P ( t ) ) l P ( r ,  R, t ) ,  (1 

where r is the aggregate of the coordinate of the elec- 
trons, R are_ the coordinates of the relative motion of 
the nuclei, H i s  the Hamiltonian of the internal motion 
and determines the se t  of eigenfuncpns @,(r, R) and 
terms Un(R) of the quasimolecule, T =  (2p)-'vR2 i s  the 
operator of the kinetic energy of the _relative motion of 
the nuclei, p i s  the reduced mass, V(t)=- ~,de""'/2 
+ h.c. is the operator of the interaction of the atoms with 
the electromagnetic wave in the dipole approximation, 
and Fo and w are  the amplitudes of the electric field in- 
tensity and the frequency of the wave. 

We assume that prior to the collision the atoms were 
in states unperturbed by the laser  field. The internal 
motion of the system was consequently described by one 
of the eigenfunctions of the operator i (r ,  R- m), e.g., 
by the function R - m). The scattering problem ad- 
mits of a stationary formulation in the language of quasi- 
energy states (QES). It is known that in the case of a 
Hamiltonian that depends periodically on the time, the 
QES play a role analogous to the stationary state for a 
time-independent ~ami l ton ian .~  It i s  thus necessary to 
find a solution of Eq. (1) in the form which satisfies the 
boundary condition of the scattering. Here E is the 
quasienergy of the QES. 

Y ( t )  =e-"'U(t),  U ( t f  Bnlo) - - U ( t ) ,  

By virtue of the assumption that the nuclei move slow- 
ly, we seek the function \k(r, R,t) in the form of an ex- 
pansion in the complete set  of states of the quasimole- 
cule, forming an adiabatic base: 

Y (r, R, t )  = e - " ' z  cD,(r, R)xnI(R)  ethM1. 
"A 

Substitution of the expansion (2) in (1) leads to a system 
of equation for the functions ha: 

where Vnm(R) = - ( @ , I  d 1 @,) ~ , / 2 .  Small non-adiabatic 
terms of the type X,?n, - p-iXmr and p-'(vR),,vR x,, - v,,,~,, were omitted. 

We assume that the terms U, (R) and U2(R) of the quasi- 
molecule a r e  arranged in the manner shown in cases A 
and B of the figure. The operator V in (3) can be re- 
garded a s  a perturbation, in the absence of which the 
nuclear wave function coincides with the function 
xlo(O'(R). Therefore in the quasiclassical approximation 
the system (3) becomes simpler and reduces to two 
equations, strongly coupled in the nonadiabaticity region 
U, (R,) = U2(R,) - w ,  for the nuclear wave functions 
XI(R) = x,o(R) and xz(R) = xz-,(R): 

[-  (21L)-LVRZ+Uz(R) -a-e]y,*(R) =-V11'~i(R).  

Thus, in our approximation the total wave function of 
the system takes the form 

Y (r ,  R, t )  =e- 'bt[X1 ( R )  ( D l  ( r ,  R )  +xz (R)  (D2(rt R )  e-'Of], 

where & = Ui(m) + E, E = (2p)"-l@ is the initial energy of 
the relative motion of the nuclei. As R - .o the function 
xi should take the asymptotic form of a decreasing and 
outgoing wave, and x2 of an outgoing wave. 

To separate the angular parts in (4), we expand the 
nuclear wave functions in spherical harmonics: 

(5) 
where 77: is the quasiclassical phase shift of the partial 
wave in elastic scattering by the potential U,(R). We 
assume that the electromagnetic wave i s  linearly polar- 
ized, and write down the coupling matrix element Viz in 
the form 

vi2=Vi;=-Fodlz(R) cos 812, 

where di2(R) is the matrix element of the dipole moment 
between the states 1 and 2 of the quasimolecule, and the 
field F,. We shall show below that to find the cross  sec- 
tions of the transitions of interest to us we can put 
=X!:2fmo Assuming also 1 >> 1 in accordance with the 
quasiclassical-treatment condition and substituting ex- 
pansion (5) in (4), we arrive a t  a two-channel system of 
equations in the angular-momentum representation 

where 

0 = X is a quasiclassical parameter (a <<I), X =  (2pE)-'I2 
is the de Broglie wavelength. The coupling matrix ele- 
ment I v""] depends on the angle between the direction 
of the initial motion of the nuclei k/k and the field F,, 
and does not depend on the azimuthal angle cp'. This is 
due to the axial symmetry of the problem: in the case 
of linear polarization of the electromagnetic field, the 
total scattering cross section should be independent of 
the azimuthal angle. 

It was shown earlier7 that in the quasiclassical ap- 
proximation, far  from the turning points and from the 
non-adiabaticity region, the solution of the system of 
equations (6) can be represented in the form2' 

(7) 
where R, is the turning point closest to zero for motion 
in the adiabatic well U, 
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A connection was also found7 between the amplitudes 
a,, and a,- in the region R, < R < R', where R' is the 
turning point closest to R, in one of the terms, under 
the condition that the nuclear functions a r e  regular a t  
zero: 

aj+=Tj,a,-+Tj2a,-. (8) 

Here 

i s  the integral along a contour around the branch point of 
the function (1 + q 2 ) i / 2  in the complex R plane, 

u=L,(R, ,  R.) -Lt(Rz, Ru) ,  
@ = n / 4 - 6 / n t l n ( 6 / n )  6/n-arg r ( l + i 6 / n ) .  

(11) 
(12) . . 

The elements of the matrix Ti ,  were written out for 
the case Pli(-) > PZ2(-), and in the transition to the com- 
p l e ~  R plane the function PI, (R), P,,(R) and ( P,,(R) ( a r e  
analytically continued. The sign of the rea l  function 
(1 + q 2 ) i / 2  is chosen such that A, =Pi,, A, = P,, fa r  from 
Rw . 

The incident partial wave in the second channel must 
be sought in the form 

K)Im ( R )  =A:' exp[- i (L, ' (x , ,  R ) + n / 4 ) ]  

where x ,  is the largest turning point, 

qll= lim [L,' ( x i ,  R)-L," (x,', R )  1 ,  
R+(D 

LlO'(xiO, R) i s  the quasiclassical phase of the wave func- 
tion of the f ree  motion [U,(R)=O]. In fact, substitution 
of the function (13) in the expansion (5) shows that the 
terms of the obtained se r i e s  coincide with the incident 
partial waves in the expansion of the plane wave 

(D I In 1 
exp ( ikR) = 4n i' sin ( X R  - Z) X R  Y . ~ '  (;) 1.'. (z) . 

This ensures satisfaction of the scattering boundary 
condition. 

We now obtain the explicit form of the functions X, (7) 
for  various arrangements of the terms of the quasi- 
molecule, and correspondingly for  various positions of 
the potential barr iers  in the effective fields U,,(R). 

A. Inelastic channel closed 

We consider the situation when the upper term has a 
deeper potential well, i.e., the term difference AU(R) 
5 I UZ(R)- UI(R) 1 increases monotonically. The inelastic 
channel may then turn out to be closed if c 4-o < Uz(m) 
(see case A in the figure). 

To determine the form of the nuclear functions it is 
necessary to postulate a s  R - - a boundary condition 
that corresponds to exponential damping of the function 
x2(R) inside the classically forbidden region. The f i rs t  

1099 Sov. Phys. JETP 51(6), June 1980 

te rm of the incident wave i s  determined by the Eq. (13). 
Thus, the nuclear wave functions should take the fol- 
lowing form: 

We denote the amplitudes that determine the nuclear 
functions xi and x2 (7) in the classically allowed regions 
R, < R < Ri and R, < R <Ri by a, and a&, respectively, 
and in the classically allowed regions R <R, by b ,  and 
b,. With the aid of the methods of single-channel quasi- 
classical approximationa we can obtain the following 
conjugation formulas: 

-a,+ exp[iL2(R,, R,') I =a2- exp[-iL2(R2, Rz') 1 -Az, 

a,- exp[- iL,  (R,, R,') I =A,+(R/T)'h+T-'" exp[l(n/2-cp) I ,  
(14) 

-a,+ exp[iL,(R, ,  R , ' ) ]=  (~/T)"'+A,+T-'" exp[-i(n/2-cp) I ,  
where the reflection coefficients I? and the coefficients 
of transmission through the ba r r i e r  T are defined in the 
f i rs t  te rm by the relations 

in the case  of an impenetrable barr ier  and 
R'+fR" 

K- R~ ( 2ia-I AlnA (x) dx C 0, L (R'+iR1') =O 
R' 

in the case  of a penetrable barrier .  

The phase cp can be determined by joining together the 
quasiclassical solution with the exact solution in the 
case  of a parabolic barrier:  

cp=n/2-K/n+ln 1 Kln  1 Wn+arg I'('/,-iK/n) . 

The system of equations (8) and (14) determines all 
the unknown amplitudes. We write dawn the amplitudes 
needed for the determination of the function X2(~)s ' :  

The amplitudes a2, a r e  determined from the f i rs t  pair 
of equations in (14), while b,, a r e  connected with a,, 
(Ref. 7): 

b,,=a,_e-d+ie'(u-e' (l-e-'4)'"a,-, (17) 

b *t- ---a- 0 -  e-d-ic-""-O' (1-e-2b) )'Aa,-. 

B. Deeper upper potential well. Open inelastic channel. 

In this case, if a ba r r i e r  exists in the upper term, the 
motion in the lower term, depending on the orbital angu- 
l a r  momentum of the relative motion of the nuclei, can 
be either below o r  above the barrier .  

To find the nuclear functions we formulate a bounda- 
ry  condition corresponding to a single incident wave in 
the input channel (13) and to the absence of an incident 
wave in the inelastic channel. Just a s  in the preceding 
case, we write down the conjugation formulas 

M. Ya. Agre and L. P. Rapoport 1099 



a,- exp ( - i ~ , )  -A,+ {R,/T,)"+T;" erp[i (n/2-cp,) 1, 
-a,+ esp(iL,)  = (H,/T,)"+A,+T;' exp[-i(nl2-9,) I ,  (1 8) 

a,- exp (-iL,) =AZ+ ( R z / T z )  ', 
-a2+ exp ( i ~ ? )  = A ~ + T ; "  exp[-i(n12-cpp) 1, 

where the reflection and the transmission coefficients 
Rj and T, for the barrier in the j-th term a r e  defined in 
analogy with (15). 

The solutions of the system (8), (18) of interest to us 
a re  of the form 

A,+=-TI,(T,T2)'" exp[i(L,+Lz+n-q,-cp2) ] ( [ I - ~ R ~ T ~ ,  exp[i(2Lt 

+n/2-cp,) I ]  [ l i -PI:  T, ,  exp[i(2L,+n/2-9,)  I ]  
- T , , T ~ , ( P I , R ~ ) "  exp[2(2L1+2L,+n-qi-rp-) I)-', (19) 

a,-=-A,+T;'!'T,' [I+R1T,,exp[i(2L2+n/2-cp,) ] ]exp[- i (Lz+ nl2-92) 1. 

The amplitudes bj,, which determine the form of the 
nuclear functions in the classically allowed regions 
R <R,, a r e  determined a s  before by the formulas (17). 

The square of the modulus of the amplitude Az+, at  the 
chosen normalization, determines the probability of ex- 
citation of the atoms upon collision. In the absence of 
barriers (T, - 1,2, - 0, cp, - 1r/2) we obtain from (19) 
and (9) the following relation: 

which coincides, in the linear-term approximation, with 
the Landau- Zener formula with quantum-oscillations in- 
cluded. consequently, expression (19) actually gener- 
alizes the formula for the probability of the nonadiabatic 
transitions, taking the resonant barr ier  effects into ac- 
count. The generalization of the Landau- Zener formula 
to the case of a barr ier  in an inelastic channel, when 
the lower term is pure repelling, was obtained in Ref. 5. 

C. Deeper lower potential well. 

This is the most common case for quasimolecules. 
The difference between the terms AU(R) decreases 
monotonically, so  that the inelastic channel is always 
open. 

We introduce first  some changes in notation. We take 
U2(R) to be the lower term of the molecule, a t  which the 
approach of the atoms takes place. The diagonal ele- 
ments of the matrix P in the system of equations (6) then 
take the form 

P,t(R)=I-[U,,(R)-Uzl(-)-o]E- ' ,  
P22(R) = I - [ U , , ( R ) - U z l ( - )  ]E-', 

and the total energy of the system is given by c = E 
+ U2(-). In the new notation, the condition Pii(r*)) > PZ2(-) 
is satisfied, so  that we can use the coupling matrix Ti, 
(9) between the amplitudes a,. 

We impose a boundary condition that corresponds to a 
single incident wave in the input channel 2 and the ab- 
sence of an incident wave in channel 1. The system of 
equations for the amplitudes that determine the form of 
the nuclear functions differs from Eqs. (8) and (18) of 
the preceding case in that the indices 1 and 2 a re  inter- 
changed. The nuclear wave function in the inelastic 
channel xi turns out to be proportional to T:/~. This is 

physically due to the fact that to land in the non-adia- 
baticity region the nuclei must tunnel through the poten- 
tial barr ier  in term 2, and the probability of tunneling 
is determined by the transmission coefficient TI. In the 
considered case, when the orbital angular momentum of 
the relative motion of the nuclei increases, the barr ier  
ar ises  initially in the term 2. At larger angular mo- 
mentum when the barrier appears in term 1, the trans- 
mission coefficient T2 becomes a sufficiently small ex- 
ponential quantity. We can confine ourselves therefore 
to finding the amplitudes that determine the form of the 
nuclear function xi(R) in the case when the barr ier  exists 
only in the lower term (see case C in the figure). 

Rearranging the indices in the corresponding formulas 
of the preceding section and putting Ti = I ,& =0, cpi = T/ 

2, we obtain the following formulas for the sought am- 
plitudes : 

~ 1 %  exp [ i  (L,+n/2-9,) ] ---- 
It-R:TZ2 exp[i f2Lz+n/2-p2) ] 

FIG. 1. Possible postions of the barriers in the effective 
fields Uj,(R) a s  functions of the relative arrangement of the 
terms of the quasimolecule, the values of the total initial 
energy &, of the colliding atoms and the orbital momentum of 
the relative motion of the nuclei, corresponding to the cases 
A, B, and C in the text. 
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The probability of excitation of the atoms upon collision 
is determined by the square of the modulus a,,. The 
amplitudes b,, can be obtained from Eqs. (17). 

In concluding this section let us estimate the accuracy 
with which the angular parts a r e  separated in the system 
of equations (4). We shall be interested below in the 
cases of weak (6 << 1) and strong (6 >>I) coupling, in 
which, a s  follows from the explicit form of the ampli- 
tude, resonant effects a r e  observed. In these cases one 
of the functions XI turns out to be small, - 6'j2 o r  -e-', 
relative to the other. Of the same order of smallness 
a r e  the corrections to the other function when I i s  re- 
placed by * 1 on account of the change of 0. Therefore 
to separate the angles it is necessary that the phases of 
the functions X: and be close in the non-adiabaticity 
region: 

I L , I ( H ,  H' ) -L~*'  (R ,  R') I C ~ ,  (21) 

where R'- R-1. Recognizing that I > >  1, we can write 
the condition (21) in the form 

1< [Zy. ( e -Uj l (R , ) )  l'"R,'. 

Putting by way of estimate c - U,,(R,) -0.1, R, -2, we 
obtain in the most unfavorable case of hydrogen atoms 
1 << 100. 

3. RADIATIVE-BINDING CROSS SECTION 

We proceed not to calculate the cross section for radi- 
ative binding of the atoms. We assume that the binding 
i s  due to direct spontaneous transition of the system to 
the electronic ground state, with respect to the term of 
which the approach of the atoms took place. The ampli- 
tude of the transition (the corresponding element of the 
S matrix) is  represented in the form 

* 

s,o=-i J ( q r , ( t )  ~ G ( ~ ) + W I Y : + '  ( t ) ) d t .  
-m 

(22) 

Here\kg) is the solution of the Schrcdinger equation for 
atoms colliding in the presence of a strong and quantized 
weak electromagnetic field, which satisfy the scattering 
condition, thejunctlpn \kt describes the final state of the 
system, and W=- Ed is the operator of the interaction 
of the atoms with the quantized electromagnetic field in 
the dipole approximation 

where Ei, is the operator of production of a photon with 
momentum q and polarization a, 51 = q is the frequency of 
the photon, and e:) is the polarization unit vector. 

We take the perturbation @ into account in first  order, 
and therefore the function !I!$+) must be represented in 
the form of the product of a vector vacuum state of the 
field and a function describing the collision of the atoms 
in the presence of a strong field: 

In the two-channel approximation considered in Sec. 2, 
the function 9 takes the form 

Y (r, R, t )  = e - I z f [ ~ , ( R )  cD,(r, R )  + n ( R )  (4,(r, H )  e-'*'I, (24) 

where & = U,(m) + E is the total energy of the colliding 

atoms, i = 1 and j = 2 in the case of a deeper upper well, 
and i = 2 and j = 1 in the opposite case. The function @, 
i s  expressed in terms of the product of the state vector 
of the field with a photon having a momentum q and a 
polarization a, Iq, ~ ) e - " ~ ,  by the wave function of a 
molecule, which is factorized in the adiabatic approxi- 
mation : 

where cf is the energy of the corresponding bound state 
of the molecule, and 

is the nuclear wave function, 

Substituting the functions (23)- (25) in the general 
formula (22) for the transition amplitude, and per- 
forming standard transformations, we obtain an ex- 
pression for  the number of transitions per unit time. 
The ratio of the number of transitions per unit time to 
the flux density of the incident atoms, which i s  numeri- 
cally equal to their relative velocity v =kpCL-' if the ini- 
tial velocity is  suitably normalized, yields the differen- 
tial cross  sect'ion of the process. Summing the differen- 
tial cross section over the directions of the emission 
and polarization of the photon, just a s  in the usual case 
of spontaneous emission,$ and also over all the values of 
the projection m of the orbital angular momentum of the 
nuclei in the final state, we obtain the cross section for 
binding with emission of a photon of frequency O(51'): 

0,~'=4(3~)- '62' '  c I ( @ , X f l d / @ , X . )  1'. ~ ' = E - E , .  

It was already noted in the introduction that the cross 
sections of the transitions a r e  exponentially small within 
the limits of a single electronic term, and in the case of 
the collision of identical atoms the dipole transitions 
a r e  a t  all forbidden. We shall therefore investigate in 
greater detail the cross section for binding with emis- 
sion of a photon a t  a frequency 51 = c - &, + w of Raman 
scattering of laser radiation, accompanied by a free- 
bound transition. We calculate the matrix element of the 
dipole moment from the nuclear functions (5) and (26): 

We have taken into account explicitly here the selection 
rules for the matrix elements of the unit vector n = R/ 
R, and introduced the notation 

Far  from the point R,, which determines the non- 
adiabaticity region, the function xjrn i s  represented in 
the form [see  (7)] 

1101 Sov..Phys. JETP 51(6), June 1980 M. Ya. Agre and L. P. Rapoport 1101 



where 
p{ (R)=[Zp(e+o-Uj , (R) )  ] I h .  

The function Xb will also be regarded as quasiclassical: 

X; ( R )  =A (y,i) -' eoa ( 1 pl1dR -nl4)  i 

Rf 

here 

RI'  -% 

( R )  =[Zp(e , - t i , ,  (H)) ]'I2, A- [ I ( P P ~ ' ) - ~ ~ R ]  i 

Rl 

Rf and R; are  classical turning points. 

We calculate the integral M:""", which contains two 
rapidly oscillating functions, by the stationary-phase 
method: 

The stationary point R,, which we assume not to coin- 
cide with the cIassical turning points, is determined by 
the condition 

p:' ( R ~ )  = p : ( ~ ~ ) .  (31) 
If it is recognized that in our case I' =I*  1 [ see (28)], 
1>>1, and 

(1-t11,)"2pR" )-'Gu,. j (R) ,  

then we can approximately put Uj,. (R) - Ui, (R) Uj (R) 
- Ui(R) and represent the condition (31) in the form 

Q=U,(Rn)-Ui(Rn). 

Summing a,, (27) over the final state of the nuclei, we 
obtain the total binding cross section 

The binding cross section depends on the parameters 
of the intense electromagnetic radiation in terms of the 
amplitudes a : y ,  which determine the form of the nu- 
clear wave function in the inelastic channel [see (30)]. 
A s  follows from the results of the preceding section 
[formulas (16), (19), and (20)], these amplitudes have 
resonant singularities. Obviously, barrier effects can 
lead to resonance in the cross section only in the case of 
a low tunneling probability (TI = e-% << 1, - 1, cp, - n/ 
2 , j  = 1,2). Let us analyze in greater detail the cases of 
weak (6 << 1) and strong (6 >>I) coupling of the channels, 

In the case of weak coupling, the elements of the mar 
trix (9) satisfy the relations Ti, - 1, Ti ,  - 0, and the 
resonances are determined by the condition 

L,'. (Ri, Rt') =n (n+'l,), (33) 

where n>> 1 is a positive integer and i =  1 or  2. The 
condition (33) coincides with the quasiclassical quan- 
tization rule for a particle moving in a field U,,,(R) or 
U,,,(R) - w, so that we can state that ,the resonances are  
determined by the positions of the quasibound levels in 
the diabatic wells. 

In the case of strong coupling we can obtain for the 
matrix elements Tij (9) the following estimates: 

with @ - 0, a s  follows from (12). The resonances a r e  
determined by the condition 

LII.(Rlr R,') -ol*=nn 

LZ10(Rz, RZ1) +olo=nn. 

From the last relations and from the explicit form of 
the phase ~ ( 1 1 )  it follows that in the case of strong 
channel coupling the resonances a r e  determined in fact 
by the position of the quasibound levels in the adiabatic 
wells. 

To find the resonant value of the total binding cross 
section it  suffices to retain in (32) the terms with I 
=I,*l. 

4. DISCUSSION OF RESULTS 

Let us examine the effects that can be made observ- 
able by resonances produced in the binding cross sec- 
tion by the existence of quasistationary levels of nuclei 
moving in a potential field with an effective barrier. 

The frequency S2 of the photon emitted in the course 
of the binding of the atoms should be higher than the 
frequency w of the laser radiation. Therefore, ac- 
cording to (30) and (31), the dependence of the cross 
section on the parameters of the intense electromagnetic 
radiation i s  determined in cases A and B considered in 
Sec. 2, by the amplitudes a%, and in case C by the am- 
plitudes b,,. 

We analyze now in greater detail the cases of a bar- 
rier in the lower term (cases A and C, Sec. 2). Under 
resonance conditions the cross section is proportional 
in case A, when the upper channel is closed, to (az, 1 
= ( A ,  ( 2, and in case C to (b,, 1 2 .  In the linear- term ap- 
proximation, the parameter 6 (lo), which characterizes 
the coupling of the channels, is of the form 

where v(R,) is the radial velocity of the relative motion 
of the nuclei at the point R,, and depends linearly on 
the intensity of the laser field. If we put v(R,) -lo- '  
- lom3, diz- 1, I ~ A u / ~ R  1 -  lo-', then we obtain the esti- 
mate 6 - ( lo3 - ~ O ~ ) F , ~ .  The coefficient T of transmis- 
sion through the barrier (15) varies in a wide range, 
depending on the shape of the barrier and on the energy 
of the relative motion of the colliding atoms. To esti- 
mate the cross section and its dependence on the laser 
intensity, we use the explicit forms of the amplitudes 
(16), (17), and (20) and analyze the various cases. 

In the case of weak coupling (6 << 1) we obtain under 
resonance conditions ( ~ = e - ~  << 1) the following esti- 
mates : 

Outside the resonance region we have I A ~  1'-  6T. Simi- 
lar estimates a r e  obtained for I b,, {'. 

Thus, the dependence of the binding cross section on 
the laser-field intensity becomes nonlinear on account 
of the resonances, when the non-adiabaticity parameter 
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reaches a value of the order of e-ZX << 1, i.e., the width 
of the quasi-bound level, due to the transition to the 
other electronic state, becomes comparable in order of 
magnitude with the tunnel width. The probability of non- 
adiabatic transition remains in this case much less than 
unity. The nonlinear effects observed in the experiment 
of Bonch-Bruevich et  aL3 in the case of a closed upper 
channel are,  in our opinion, of the same character. 
They cannot be attributed to competition between spon- 
taneous transitions that lead to binding, or  spontaneous 
transitions in the free-motion state, as  is done in Ref. 
3, since the corresponding widths, which a r e  governed 
by the action of the laser radiation, greatly exceed the 
spontaneous widths. 

In the case of strong coupling of the channels (6 >> 1) 
it is possible to obtain the following estimates in the 
resonant case: 

1 ~ ~ 1 ~ , ~ : ( 1 - 6 )  , I b,+ 12-eZK, 
If e-6 s e-K, and I A, I '.-ea(d-K) 1 b,+ 1 z-ez(zb-x) 

if e-' >> e-'. In the nonresonant case 

As follows from the presented estimates, in the reso- 
nant case the binding cross section can increase strong- 
ly, and this corresponds to the concept of prolonged 
motion of the nuclei in the non-adiabaticity region. The 
widths A of these resonances a re  quite small, and a re  
determined in the considered cases of weak and strong 
coupling of the channels by the relation 

A-v max [e-ZX, e-Zd(l-e-26) 1, 

where v is the characteristic distance between the 
quasiclassical energy levels in the effective potential 
field U,,(R). Therefore averaging over the energy inter- 
val 72 v>> A smoothes out the sharp energy dependence 
of the cross section. In the regime linear in the laser 
intensity, the resonant part of the cross section o, ex- 
ceeds the nonresonant on, by a factor ew, a s  follows 
from our estimates. 

If we assume that T/V resonances a r e  spanned by the 
interval 7, then the averaging can be estimated in the 
following manner: 

@-t-'[o,tf o~Az/v] =(~~~~+o,e-~~=2o, 

Thus, in the linear regime, after averaging, the reso- 
nances increase the cross section by a factor of 2. Con- 
sequently, the effect nonlinear in the laser-radiation in- 
tensity, which we analyzed above, should take place 
even when account is taken of a Maxwellian energy dis- 
tribution in a real gas. 

')The atomic system of units i s  used in this paper. 
2 ) ~ n  the analysis of the system of Eqs. (6) we shall not write 

out the indices Em of the matrix elements o r  of the functions 
if no misunderstanding results. 

3 ) ~ e r e  and below we do not write out, for the sake of brevity, 
the arguments of the functions Li(RI,R;l andL2@l2,R$. 
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