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The evolution of a two-level system in a multifrequency resonant field with random phased mode. is 
investigated. A method is developed that takes automatic account of the periodicity of such a noise field in 
time. It is shown that in the case of a broad emission spectrum and sufficiently high intensity a "shift" of the 
probabilities is observed for the density matrix of the system at instants nT, (n 2 2, T o  is the period of the 
complex amplitude of the field). At these instants, the averaged density-matrix elements assume values that 
differ substantially from zero. Also investigated are cases of a weak field and the case of amplitude 
fluctuations with a periodic correlation function. The results yield the correlation function for the population 
difference of the system when it is acted upon by a structureless Gaussian noise. The possibility of observing 
the probability shii are discussed. 

PACS numbers: 03.50. - z 

1. INTRODUCTION relation function. Usual values for a pulsed laser  a r e  

Experimental observation of a large number of new 
interesting phenomena that take place in atomic and 
molecular systems acted upon by powerful electro- 
magnetic fields (it suffices to mention, e.g., multi- 
phonon ionization of atomsi o r  radiative dissociation 
of polyatomic molecules213) has stimulated many theo- 
retical investigations in recent years. In particular, 
great interest i s  shown in the study of the behavior of 
quantum systems in a nonmonochromatic external field, 
inasmuch a s  in the description of the quantum processes 
that occur in the field of real laser radiation one cannot 
ignore the essentially nonmonochromatic character of 
the emission of a powerful pulsed multimode laser, 
which is usually employed in the  experiment^.^'^ By 
nonmonochromatic field is  mean in this paper a field 
with randomly fluctuating parameters (amplitude, 
phase). Ordinarily one considers the interaction of 
radiation of this kind with quantum systems that reduce 
in one sense o r  another to a two-level system.6 

The present paper i s  also devoted to the study of the 
evolution of the density matrix of a two-level system in 
a nonmonochromatic external field. We a r e  interested 
in the density matrix averaged over all the possible 
realizations of the field. The difference between this 
paper and the preceding one is the following. The radia- 
tion with which the quantum system interacts i s  usually 
regarded a s  a structureless noise with a correlation 
function that attenuates monotonically a t  infinity (see, 
e.g., Refs. 7-15). However, the radiation intensity of 
a Q-switched multimode laser is periodic with a so- 
called axial period To = l /av0 = 2L/c, where L i s  the 
resonator length. If the phases of the modes a r e  ran- 
dom, the intensity of the radiation in the axial period i s  
also a random function of the time.4 The correlation 
function of the radiation field 

is in this case periodic in time, accurate to within slow 
damping at infinity because of the finite widths of the 
modes and other weak fluctuations. We shall disregard 
hereafter this slow damping and assume the duration of 
the radiation pulse to be much shorter than the charac- 
teristic times of violation of the periodicity of the cor- 

tpu,=200 msec., Av,=10-' cm-' , N L 3 0  

(N is the number of longitudinal modes). During the 
pulse time tpUl the structure of the noise repeats itself 
about several hundred times. In this paper we take into 
account this feature of the radiation field and show that 
it leads to nontrivial consequences. Up to now, no ac- 
count was taken in the study of the evolution of a two- 
level system outside the framework of perturbation 
theory, of the time periodicity of the noise field (with 
the exception of the case N=2; see,  e.g., Refs. 16 and 
17). 

The radiation field g ( t )  of a multimode Q-switched 
laser is very well described by the mode14*18 

Here o, i s  the radiation carr ier  frequency, Eo is the 
amplitude of one mode, and cp, a r e  the phases and a r e  
randomly distributed in the interval (0,277). The quantity 
E ( t )  constitutes complex noise whose structure repeats 
in time with a period T, with T =  To at  N= 2k + 1 and 
T=2T, a t  N=2k. 

We shall assume henceforth that 

where 0 = ~ ~ ~ d ~ ~ ~ ~ ~ ~ / 2 f i ~ ,  dOl i s  the matrix of the transi- 
tion 10) - 11). The condition (2) is usually called the 
case of a broad radiation spectrum, for in this case the 
width Av= NAv, of the laser-radiation spectrum i s  much 
larger than that of the frequencies characterizing the 
rates of the quantum processes in a two-level system. 
At the usual value of the intensity of a powerful laser,  
1 = 3  X lo6 w/cm2 a t  do, = 0.3 D we obtain CT = 10. Thus, 
the proposed model describes the interaction of a real 
laser radiation with a real  two-level system. For a 
multimode laser,  Eq. (2) is a good approximation. It i s  
easy to show that if the phases cp, a r e  independent of 
one another, then, if condition (3) is  satisfied, E(t) can 
be simulated with a high degree of accuracy by a com- 
plex Gaussian noise. 
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ReE(t) and ImE(t) can be regarded in this case as sta- 
tionary normal and mutually independent p roce~ses . ' ~  

In the present paper we develop a method of describing 
the evolution of a two-level system; this method takes 
automatically into account the periodicity of the noise 
(1) in time. We shall demonstrate the direct connection 
between this method and the quasi-energy description at 
TuI =P, where P>> N is an integer. 

It is well known (see, e.g., Ref. 20, 040) that in the 
case of a monochromatic field the population difference 
po = poo - poi varies periodically in time at poo(0) = 1 (the 
Rabi precession): 

On the other hand, for a structureless Gaussian noise 
we obtain (see, e.g., Ref. 17) 

In the well-investigated case of small and fast fluctua- 
tion of the radiation phase (see, e.g., Ref. 9), the tran- 
sition from the excitation regime (3) to (4) proceeds with 
decreasing intensity I at fixed spectrum width Au, 

It will be shown in the present paper that for a two- 
level system interacting with the radiation (I), if condi- 
tion (2) i s  satisfied, the situation i s  in a certain sense 
reversed. Namely, in the case of a strong field (a >> 1) 
the regime of excitation of the system coincides with (4) 
up to the instant t = To. Next, at  t > To, substantial dif- 
ferences due to the periodicity of the noise (1) appear. 
Namely, at the instants t=nTo, with n 2  2, a "shift" of 
the probability for the population difference and polar- 
ization takes place (see Fig. 2 below). At these instants 
they take on values substantially different from zero 
[cf. (4)]. In aweakfield a < 1 at N=2k+1 there will 
be observed a slowly damped Rabi precession in the 
field of one radiation mode: 

<p,)=cos - - t exp ---tZ , " I  r ,,, a2 PcN I 
which is reminiscent of (3). 

The strong-field case is considered in Sec. 4, where a 
diagram technique is used to obtain exact solutions for 
the averaged density matrix at 0 c t G 2T0. Amplitude 
fluctuations of the radiation a r e  also considered (Sec. 
5). In Sec. 6 is analyzed the case of a weak field. The 
conclusion deals with the possibility of observing the 
"shift" of the probability for the level-population dif- 
f erence. 

2. ROTATIONAL REPRESEN,TATlON OF THE 
EVOLUTION OF A TWO-LEVEL SYSTEM 

We consider the interaction of a two-level system with 
the radiation field (1). We use the rotating wave (reso- 
nant) approximation (see, e.g., Refs. 6 and 20). In the 
absence of relaxation at resonance of = w o l ( h o l  =El  
- E,) the system of equations for the population level 
amplitudes is of the form 

In the absence of relaxation, description of a quantum 
system in a pure state in terms of a density matrix is 
exactly equivalent to a description in terms of ampli- 
tudes. On the other hand, the system of equations for 
pij contains one more equation than (5). This notwith- 
standing, the analysis will be continued for the density- 
matrix elements 

This is due to two circumstances. First, all the ob- 
servable physical quantities (absorbed energy, polar- 
ization, and others) a r e  expressed directly in terms of 
pu. Therefore direct interest attaches to averaging of 
precisely the biquadratic combinations of the amplitudes 
(6) over all possible realizations of the external field. 

Second, for  the density matrix there is a very lucid 
vector model of the energetic which we shall 
use henceforth to obtain concrete results. 

From (5) we obtain a system of equations for the ele- 
ments of the density matrix: 

where 

(Y = f 2 ~ 0 2 / 2 ,  f =dolEo/R is the field broadening, and do, 
is the dipole moment of the transition (0) - ( I ) .  

An essential feature of (7) is that i t  is a system of 
linear differential equations with periodic coefficients 
(8). Such systems have special properties22 which we 
shall in fact use later on. To this end, we represent the 
solutions of the system (7) in the form 

P(T) = M ( T ) P ( ~ ) .  (9) 
The matrix M= [ m , , ]  (i,j = l ,2 ,3)  satisfies the equation 

d M / d z = A M ,  M ( O ) = E = [ 6 , 1 ,  (10) 

A =  (' 0 0  " ) ,  d e t [ M ( ~ ) ] - l .  

Y -X 

It i s  clear from (9) that M(T) contains complete informa- 
tion on the evolution of the density matrix at arbitrary 
initial conditions. M(T) is an orthogonal real matrix that 
describes the proper rotations in a three-dimensional 
Euclidean space (the space of the energetic spin). The 
rotation matrix M ( T )  is completely specified by the 
angle of rotation about an axis with direction cosines2s 
C1(7), C2(7), C2(7). 
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If we regard the rotation of the three orthogonal unit 
vectors ml, m,, mS a s  the rotation of a rigid body with a 
fixed point, then 

m,$(-c) - (mi  (0) ma(%) 1. 
It is convenient to express mi,  in terms of the Euler 
angles 

mi,-os g cos 5 cos q-sin E sin 5,  
m,,=- (COS 5 cos q sin g+ sin f cos E) , mia=cos f sin q, 

mzi=sin t, cos g cos qt-cos 5 sin e, (11) 
ma,=-sin 5 cos q sin E+ cos 5 cos f, m,,-sin 5 sin q ,  

m,,=-sin q cos g, m,,=sin q sin E, m,,-ws q. 

The instantaneous-velocity vector H lies a t  all time 
in the plane of the vectors ml(0) and m2(0), and 

d 
-mi - - [E  X m i l .  
d-c 

If the period of the coefficients X and Y is equal to T, 
then M(T) has the remarkable property 

M(-c+Tn) = M ( t ) M n ( T ) ,  n=O, 1,.  . . . (1 2) 

Relation (12) reflects the fact that if the instantaneous 
angular velocity of a body with a fixed point is a peri- 
odic function of the time with period T, then the rotation 
of the body is a sequence of rotations through an angle 
e(T) about a certain fixed axis within a time T. 

The vector interpretation of the evolution of a two- 
level system is well known. In principle, by constantly 
following the precession of the vector p we would obtain 
in the present problem complete information on the 
evolution of the density matrix. It would be sufficient 
here to know the time variation of the two angles that 
specify the position of the vector p. 

The description of the evolution in terms of a rotation 
matrix calls for knowledge of the three Euler angles 
and in the ordinary case yields unnecessary extra in- 
formation. If, however, the instantaneous angular 
velocity i s  periodic in time, then knowledge of M(T) 
only on the segment (0, T) makes it possible, because 
of the property (12), to obtain complete information of 
the evolution of the two-level system for  any instant of 
time T > T. It is this way we use a description in terms 
of M(T) in the present paper, We shall henceforth call 
this representation of the evolution of a two-level sys- 
tem rotational. It is easy to show that23 

I f  2 cos nO(T) =mi,  (nT)  +m,,(nT) +m,,(nT),  

m,,(nT) =CI1(T) + (1-C, ' (T) )  cos n0 ( T ) .  
(13) 

We use these relations to average M(T) over the real- 
izations of the external field (1). 

At w, ,  = w ,  there exist two wave functions, \kl and \k2 
having in the rotating-wave approximation (5) the form 

Y , = [ a . ( t )  IO)+a,(t)exp{-iort) I l ) ] exp{ iQt ) ,  

Y z = [ a , ' ( t )  10)-a;(t)exp{-tort) I l ) ] exp{ - iQt ) ,  (14) 

where 
la , lz+(al l '=l ,  a , ( t+T)=a , ( t ) ,  a , ( t+T) = a , ( t ) .  

It i s  easy to show that 

C,(T)  =aa:-a,:, C , (T)  =2ao0a,, sin($,-P,), 

C 8 ( T )  =2aooato cos (PI -$~) ,  (1 5) 
Q='/,O(T), or n-'/zO(T) (O<O(T)<Zn, OGPGn) 

ao(0)  =aoo e ~ p ( i $ ~ l ,  al (0) =a,, exp{i$,). 

Which of the two possible values of W is realized de- 
pends on the details of the system dynamics on the seg- 
ment (0, T). If Tv, =p, where P is an integer, then the 
field $(b) is periodic with a period T. Then *, and 9, 
coincide with two quasi-energy  function^,^^'^^ and W co- 
incides with the quasienergy. The rotational representa- 
tion i s  thus directly connected with the quasienergy de- 
scription of a two-level system in a periodic external 
field. 

We present the solutions (11) in explicit form 

Here 
Rmn=Rn(-cm) =(XmXm+,+YmYm+,). . .(xm+zn-2xm+zm-t+~m+zn-a~m+z~-~)7 

Xh=X(r,) ,  Y h = Y ( r A ) ,  Ro=l ,  m = l , 2 .  

The interchange Y = X  yields 
mii*mzz, m,,*m,,, mls*--mz3, m , , t - m s z .  

3. AMPLITUDE PHASE FLUCTUATIONS OF THE 
RADIATION. THE CORRELATION FUNCTION 

It is easy to ascertain from (8) that if the phases a r e  
mutually independent, then X(T) and Y(T) a r e  a t  N>> 1 
normal, stationary, and mutually independent processes 
with a correlation function 

This is  the case of amplitude-phase fluctuations (APF) 
of the radiation. In the rotational representation the 
instantaneous rotation axis changes i ts  direction ran- 
domly in  the plane of the vectors ml(0) and m2(0). The 
angular velocity is also random. The correlation func- 
tion k12 i s  periodic in time, with T = To at N = 2k + 1 and 
T =  2To at  N=2k. The function X i s  characterized by 
two times, = 1/N and T, = 1, with T >> r2. Since 
X12(~1 - r2) does not attenuate at infinity ( 1  r1 - r21- a), 
the quantum system "remembers" the noise structure, 
generally speaking, for an arbitrarily long time (we re- 
call that we consider no fluctuations other than those 
due to the random distribution of the mode phases). 

We shall be interested hereafter in the rotation ma- 
tr ix averaged over all  possible realizations of the ex- 
ternal field. Let the characteristic time r0 of the varia- 
tion of (M(7)) be much longer than 71. Then Xf; ' can be 
represented in the form - 

6 ( I ~ , - t z I - n )  at N=2k+l, 
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It will be shown later that if A,, i s  used in the form (19) 
the following inequality i s  valid: 

TO> l/a. 

Thus, the condition of validity of (19) i s  satisfaction of 
the inequality 

a t N .  (20) 
The parameter (a/$ + 1) has a clear-cut physical 
meaning. This is the number of radiation modes that 
act resonantly on the quantum system. Thus, (20) 
means that the "effective" number of modes i s  much 
smaller than their real number. 

We shall consider hereafter only the case (20), which 
we name the case of a broad radiation spectrum. In 
this case cu can be larger a s  well a s  smaller than unity. 
We shall consider both cases. We note that in the limit 
(Y - 0o(To -a, f * T ~  =const) we obtain the case of a struc- 
tureless Gaussian noise. 

4. CASE OF STRONG FIELD (a >> 1) 

We consider first  the evolution of the system in the 
rotating-wave approximation at cu >> 1. On the basis of 
the relations (13) above we obtain concrete results for 
the instants of time T=n. If we know the probability 
densities of @(T) and Ci(T), then we can determine the 
diagonal elements (mi,(nT)). From (16), taking (18) 
into account, it i s  obvious that only the diagonal ele- 
ments do not vanish upon averaging over the field 
realizations. 

For the Euler angles g, 5, and 5 we obtain from (10) 
and (11) 

The integral in (22) i s  taken along the trajectory of the 
representative point [the end point of the vector m,(:)]. 
The initial conditions a r e  chosen such that k(0) and {(O) 
a re  finite. 

We consider the motion of some vector, say m,. 
Since (21) contains two random unknown parameters 
X and Y, it follows that g and will also vary randomly, 
and the motion of the vector m3 will be random. During 
the time si = ( 1 / ~ ) ,  the vector m, deviates from its 
initial position by some angle 6(s1), with ( 6 2 ( ~ 1 ) )  - o / N .  
The representative point then "fills" with i ts  trajectory 
an a reaea /N on the unit sphere, and during the time 
r2 = 1 it  fills an area  -cr. The condition a >> 1 means that 
the trajectory of the representative point will cover the 
unit sphere many times, and by the instant r2 the motion 
of the vector m, becomes ergodic.27 The angles g(1) and 
g(1) a r e  independent a t  that instant both of each other 
and of their initial values. Mathematically this i s  ex- 
pressed by stating that the probability finding the vec- 
tor m, in the solid-angle element d o  becomes constant: 

We a re  interested however, in the motion of not only the 
vector m, but of the entire system of vectors {mi). The 

third Euler angle is not independent, but is a functional 
of the angles g and 5 [ see  (22)]. It depends, for any 
concrete realization of the random process (8), on the 
values of g and 5 along the entire trajectory. The con- 
dition cu >> 1 means also that a large number of tra- 
jectories, having the same realization probabiliy, lead 
to the same point (q, 5). Since the successive rotations 
about the different axes do not commute, the angle {(g) 
can have, a t  fixed q(s) and t(?), different values that 
depend on the concrete trajectory, and by the instant 
T= 1 it is already a random quantity independent of 5,  
and gl, and the equipartition law 

PIE; r = l I = d g , / b  

is valid for it, too. Thus, the total probability density 
is 

From (23) we can also obtain the probability distribu- 
tions for O(1) and Ci(l): 

P ( 0 ,  C, ,  C,, Cs; r=1)  =n-"(1-C,'-C,'-C,") ( I-cos 8) dC1dC,dC,d8. (24) 

Thus, a t  a >> 1 the axis about which the body must be 
rotated from the initial position (s=O) to the final one 
(T= 1) is quite randomly directed, and the rotation 
angle does not depend on i ts  direction. 

We consider now the case of an odd number of modes 
N=2k + 1, with T= 1. We then obtain from (13) with the 
aid of (24) 

<mi i (0 )  ) = I ,  < m i i ( l )  )=0; <mii(n)  )='la, n>2. (2 5) 
It i s  easy to show, using the properties of an orthogonal 
matrix, that 

and in general 

( m i : ( i )  

This result, incidentally, follows directly from the 
qualitative reasoning presented above. From (13) and 
(24) we can obtain the values of the variances of the 
quantities of interest to us  a t  the instants r=n.  For ex- 
ample, 

We see  thus that the rotation-matrix elements fluctuate 
strongly. 

If the number of modes i s  even, then T = 2. All the 
results, however, remain in force also in this case, 
since a t  0 >> 1 a change in the number of the modes by 
unity cannot change the physical picture of the phenom- 
enon. The same applies to all cases 

Am= 1 o.,-m,l <2nN/To. 

It is important that all  the foregoing results a r e  inde- 
pendent of the details of the statistics of X and Y. It 
suffices that X and Y be independent random quantities 
with sufficiently broad spectra and with zero mean 
values. 

At a, s 1, a s  well a s  for T+ n a t  a >> 1, relations (25) 
do not hold and exact averaging of Eqs. (16) i s  necessary 
to obtain information on the evolution. It i s  possible, 
however, to obtain the result for r = n  - directly. 
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Since at any a # 0 the probability density for B(T), owing (p3)/4(01 

to the chatter of the instantaneous rotation axis, has a 
finite width, it follows that 

lim < (1-C.L( l ) )cos  n0(1)>=O, 
a = I0 

n-w 

( m , , ( - ) ) = < C : ( l ) ) .  

The result (26) demonstrate the principal feature of the 0 -..--. 
case of periodic fluctuations. Equation (26) means that T 

at a # 0 ihe density matrix averaged over the realiza- 
tions does not tend to zero as  7- w, a s  in the usually 
considered case of a purely random noise. 

- 1 

We now obtain exact averaged solutions for the diag- 
onal elements of M(r) at 22  r> 0. The correlation func- 
tion is given by (19). To be specific, we consider 

- r - 1  Z L  

(27) < m 3 s ( t ) ) =  ( - i l k  j .. . j (RF> n d t i .  
I-0 0 0 1 

~t is convenient to analyze the series (27) by a diagram 
technique (see, e.g., Refs. 12 and 13). We introduce the 
graphic notation 

at T I ~ T ~  - a comer,  

at T > T ~  - a loop 

A diagram of k-th order is an aggregate of k corners 
and loops. A diagram i s  called irreducible if it contains 
no pairs of neighboring points not connected o r  not 
bracketed by a loop 

The expansion (28) can be written in the form of Dyson's 
equation : 

The cross after the last vertex diagram in the expansion 
(29) means inclusion of the factor ( m,,(r&)) in the 
integral with respect to 7,. A detailed calculation of 
(29) is contained in Ref. 28. We present here the end 
results (see Fig. 1). 

At 0 7 6  1 we obtain the well known result 
< m 3 ~ = e x p  ( - a t ) .  (30) 

This result is obtained with the aid of the decoupling 
operation,12 16'21'29 which i s  valid in this case. 

At 7 > 1, however, the decoupling operation no longer 

FIG. 1. Dependence of the population difference on the time 
in the segment 0  < r G2, { m 3 3 ( r ) ) =  {4(r)) / p 3 ( 0 ) .  Solid line- 
exact solution in the Gaussian approximation for N = 2k + 1. 
Dashed line-exact solution in the Gaussian approximation for 
N = 2k. Dash-dot-solution in the decoupling approximation for 
N = 2k. Double-dot-dash-solution in the decoupling approxi- 
mation for N = 2k +l. 

yields correct results, since an important role i s  as- 
sumed by the field correlations (E(?)E*(r- I)), which 
a re  expressed in terms of diagrams with loops that 
bracket corners. At 1 c r s 2 we obtain 

( m , , )  ='/, exp{a -2ar )+ ' / ,  exp ( a ( t - 2 ) )  
+(-I)"-' e x p { - a / 2 )  [ e s p { - 2 a ( ~ - 1 ) ) - 1 1 .  (31 

At a>> 1 it i s  seen from (31) that (m,,(Z)) * 1/3. For 
comparison we present the result obtained in the de- 
coupling approximation (the loops in the diagrams do 
not bracket corners): 

The results (30)- (32) a r e  shown in Fig. 1. 

In analogy with (m,,) we can obtain 
(m, , )=<m, , )=exp { - a z / 2 ] ,  O G t G l ,  

<mzr>=<ml l> - l / s  exp {a ( r -2 ) /2 )+ ' / .  e x p { - a ( 5 ~ + 1 ) / 2 }  
(33) 

+ ( - 1 )  "-' '1, exp { - a )  [exp ( -3a  (7- 1 ) / 2 )  

- e x p { a ( r - 1 ) / 2 }  I+ ' /?  e x p ( - a r / 2 ) ,  l < t < 2 .  

For r > 2 we can also obtain in principle, by intro- 
ducing new diagrams, exact relations assuming that the 
noise is Gaussian. To be sure, the ensuing mathemati- 
cal difficulties increase greatly. Such a detailed cal- 
culation, however, i s  unnecessary. At a, >> l, knowing 
(m,,) on the segment (0,2) and (mii(n)) , we can under- 
stand the evolution of the two-level system. In fact, at 
a, >> 1 the quantities (mi,(?)) a r e  exponentially small 
everywhere except in the vicinities of the points 7 =n, 
since the rotations corresponding to the matrices M(n) 
= Mn(l) and M(rP)(O c 7' s 1, T =n + rr,l/a << 1/2 
- (7'- 1/2 1 )  a re  practically independent. Therefore at 
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FIG. 2. Dependence of the population difference on the time 
(in the APF case) at cr >> 1 .. A probability shift takes place. 

On the other hand in the vicinities of the points T =n, 
n 2 2, a shift of the probability takes place (see Fig. 2). 
Using (30), (311, and (32) we obtain a t  CY>> 1 

(CsZ)='/3(1-i3 exp(-a/')). 

(C1'>=(C1Z)='/3(l+'/a~ exp (-a/2) ), p- 1. 

This makes clear the limits of applicability of the pre- 
viously obtained results. The "ergodic" approximation 
corresponding to the distributions (23) and (24) is valid 
if 

These inequalities determine also the region of appli- 
cability of the results (31)- (33) obtained under the as- 
sumption that the noise is Gaussian. At a, < 5 the num- 
ber of radiation modes resonantly acting on the system 
becomes small and almost unnoticeable deviations of 
the probability density of the noise from the normal law 
[ see  (3)] begin to play a substantial role. We shall 
dwell on this in detail in Sec. 6. 

On the basis of (31)- (33) we can, in particular, obtain 
additional information on Gaussian complex noise with 
a broad spectrum and with a correlation function that 
falls off a t  infinity. By only slightly modifying the dia- 
grams, we obtain 

fZ/, exp 

~mIl(z , )m,l(z2)  )=(m2~(r1)mz,(zz) 

We put X12 = CY6(T1 - T~) .  We change to dimensional time 
and to the limit 

where I is the average radiation intensity and Av is  the 
width of its spectrum. We then obtain for the population 
difference p3 under the standard initial conditions p3(0) 
= 1 , ~ 2 ( 0 ) = ~ 1 ( 0 ) = 0  
(ps(t,)p3(t,))='/.exp{-2yAvIt,-t21)+2/, exp{-yAvl3jt,+t,l -It,-t,l]) 

at 

To our knowledge, correlators of this type have here- 
tofore not been calculated because of the mathematical 
difficulties." 

5. AMPLITUDE FLUCTUATIONS OF THE RADIATION 

We compare now the results obtained for the ampli- 
tude-phase fluctuations (APF) with the results for the 
amplitude fluctuations. If we connect the phases {cp,} 
by the condition (pn + 6p, = 0, we obtain Y = 0, 

(34) 
(X)=O. h I Z x = 2 o ~  (-1) "6 ( l r , - d - n )  at N-ZL. 

"-0 

This is the case of amplitude fluctuations (AF) of the 
radiation, 

The remaining elements of the rotation matrix a r e  
zero. Next, 

B(T) is in this case not a random quantity (cf. the APF 
case). This singularity i s  a direct manifestation of the 
commutativity of rotations about a fixed axis, 

The case of AF with Xi, falling off at infinity has been 
well studied (see, e.g., Ref. 16). If x12 = ((X, - (x))(X2 
- (x))) = 2 a 6 ( ~ ,  - r2), then 

<m,,)=(rn,,)=cos [(X)z]  exp (-ar), 

(m,,)=-(m,,)=sin [<X)T] exp {-ar). 
(36) 

For a nonperiodic correlation function we have from (34) 

'PJ' = 'PZ' 
p, lo, p,lO) 

I 

FIG. 3. Time dependences of the population difference and of 
the polarization (in the AF  case), (mzz(r))= ( & ( T ) )  /()2 (0). 
Solid line-N = 2k + 1. Dash-dot line-N = 2k. 
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and (35) (see Fig. 3) 
tm,,)=<m,,)=cos ( ( 2 a )  " z )  exp {-at ' (1-r ' )} ,  

at N=2k+l, 
<ma.>=-tm.,)=-sin ( (2a)  "'T) exp { - a r l ( l - T ' ) }  

z=n+r', o < T ~ < I ,  n=0, 1 , 2 , .  . . , (37) 
(m,,)=<m,,)=exp { - ~ F ( T ) } ,  <m,,)=-<m,,)=O at N=2k, 

As To -a and a t  constant f * ~ ~ ,  Eq. (37) goes over into 
(36). We see  that allowance for the periodicity of Xi2 
leads also in the AF case to a substantial change of the 
character of the evolution. In addition, even a t  a>> 1 
the results for even and odd numbers of modes differ 
substantially. This is one more difference between the 
AF and the APF cases. It is a manifestation of the com- 
mutativity of rotations about a fixed axis and noncom- 
mutativity of two successive rotations about two dif- 
ferent axes. 

6. CASE OF WEAK FIELD (a < 1) 

Let the field broadening f be so small that not more 
than one mode can act resonantly on the system. This 
is the case a < 1. Inasmuch as in this case the rotation 
matrix changes little after a time T= 1, knowledge of 
the averaged quantities a t  the instants T = n  yields prac- 
tically all  the information on the evolution of the sys- 
tem. Since the field is weak, it follows that SZ = 8(1)/2 
and 

tm,,(n)>=tCi'(l))+<(l-Ccl(1)) )tcos(261n)). 

Using perturbation theory with respect to the parameter 
E = f / 2 ~ w ~ =  (20)~ /~4n<< 1, we can find the functions SZ, 
a,(?), and at(?) [ see  (14)] directly from the ~chr6dinger 
equation (see Ref. 28). 

From (15) at N >> 1 we obtain 

+- ( 1 + -  ) cos [ (  I t  I & -  : 4 ) I e x p { - & f t 2 1 .  

It is easy to ascertain from (38) that a t  a * 5 the results 
obtained for a 5 1 "join up" with the results for a >> 1. 

. Let us see  now what the solution is if we use the de- 
coupling operation. For (m,,) we get 

r s. 

At a << 1 we have for the poles s, =ip, 

t g  s/2=als, so=* (2a) '"( i -a /12) ,  

s.=f ( n n f  al2nn),  n=1 ,2 , .  . . . 
Thus 

<mJ,)dee =cog ( 2 a )  %+O ( a ) .  

The decoupling operation yields therefore a solution 
that is not damped a s  T - m. The damping of the true 
solution is due to the non-decoupling correlations that 

FIG. 4. Time dependence of the population difference (in the 
APF case) at a, < 1 for N = 2k + 1. Solid line-perturbation- 
theory approximation in E =f /SAW,,. Dashed line-approdma- 
tion of complex Gaussian noise with zero mean values. 

a r e  not accounted for in (39). In this section we have 
not used so fa r  the assumption that the noise is Gaus- 
sian. If the noise is assumed Gaussian also at a << 1, 
then an analysis of the diagrams of k-th order shows 
that 

and, fo r  example, 
<m3,(n))*F (1 ,  I / , ;  - an2 /2 ) ,  

where F( l ,  1/2, - an2/2) is a confluent hypergeometric 
function. The results (38) and (40) a r e  shown for com- 
parison in Fig. 4. 

The solution (40) attenuates much more rapidly than 
the exact solution (38). The e r r o r  is due to the fact that 
in the derivation of (40) no account was taken of the 
deviation of the noise distribution from a normal dis- 
tribution. Consider, for example, the term 

<R:>=< (X ,X ,+Y,Y , )  (X,X,+Y,F,.) )=4hl,l.3i+21,shz,+ 2h,,?b2, 
- 2 ~ ) .  ( ~ , - t : f  T , - T ~ )  - ~ c L ) . ( z ~ - T ~ - T ~ + T ~ ) .  (4l) 

The last two terms of (41) a r e  not Gaussian. If a >> 1, 
then upon integration in (27) the total contribution of 
the non-Gaussian terms is small and inessential. If, 
however, a < 1, it  can be shown that the contribution of 
the last two terms in (41) compensates for the contribu- 
tions of the second and third terms, which correspond 
to nondecoupled correlations. Thus, over a sufficiently 
long time interval the decoupling operation is applicable 
and the results obtained with i t  can be used a t  a 5 1 for 
not too long times (see Fig. 5). In terms of higher order  
than (41), the non- Gaussian correlations no longer can- 
cel completely the Gaussian nondecoupled correlations, 

FIG. 5. Time dependence of the population difference, ob- 
tained with the aid of the decoupling operation. Solid line- 

= 1, dashed-a = 0.5. 
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and it is this which causes the solution to attenuate a s  
t-=J, 

7. CONCLUSION 

Thus, in the approximation of a broad radiation spec- 
trum we have two essentially different regimes, a, >> 1 
and a, < 1. As already indicated, the parameter a has 
a clear-cut physical meaning. Namely, (1 +a/$) is the 
number of radiation modes that act resonantly on the 
two-level system. 

In the case of a strong field, a >> 1, the number of 
resonant radiation modes is large and we can use the 
approximation of a complex Gaussian noise with zero 
mean values. At the instant of time t =nT,, n >r 2, a 
shift of the probability takes place in the system for 
the density- matrix elements p,, p2, p,. At these instants 
they taken on values substantially different from zero. 
The probability shift is a direct manifestation that the 
system "remembers" the periodic structure of the 
noise (1). We discuss now some possibilities of ob- 
serving the probability shift. 

Assume that noise radiation from a powerful laser  
and radiation from a weak laser  a r e  incident from two 
different directions on a cell with gas. If the carr ier  
frequencies of both lasers  a r e  equal to the frequency of 
the transition (0 )  - 11) of the particles of the irradiated 
gas, then the noise field causes a shift of the probability 
for the populations, which could be revealed by the ab- 
sorption of the radiation of the weak laser operating in 
the spike regime. If the spike repetition time coincides 
with the time To and the two lasers  a r e  turned on syn- 
chronously, then absorption of the weak radiation is ob- 
served, and if they a r e  not turned on synchronously, 
the average weak radiation will be zero, since 

(W), -($I%), 

where W, is the average absorbed power of the weak 
radiation. 

In addition, the shift of the probability should lead to 
a strong modulation of the contour of the absorption line 
of the weak signal that acts near the resonance of the 
10) - 11) transition (10) is the ground state) of a three- 
level system in the presence of the strong noise radia- 
tion (1) that is a t  resonance with the frequency of the 
transition between the upper level (see, e.g., Refs. 11- 
13). For weak-signal absorption line shape we have 

where X(Aw) is the linear susceptibility of the three- 
level system; it can be shown that a t  a, >> 1 a phenom- 
enon similar to the probability shift takes place for 
( G ( 7 ) ) .  This should lead to a strong modulation, with 
frequency Avo, of the absorption line shape (42). 

In the case of a weak field a, c: 1, the approximation of 
a complex Gaussian field with zero mean values is no 
longer valid, since the quantum system "perceives" the 
field acting on i t  a s  a Gaussian noise only if the number 
of resonant modes is large enough. In a weak field this 
criterion is no longer satisfied and the system is ef- 
fectively acted upon by only the mode whose frequency 

coincides with w o l .  The role of the remaining modes 
reduces only to a slow damping of the precession. As 
t - .o, the populations of the levels become equal. It is 
usually assumed that large population inversion can be 
obtained in a two-level system with a stronger field. 
This is the situation, fo r  example, in the case of fluc- 
tuations of the radiation In this case, 
however, the situation is just the reverse. At a << N, 
with decreasing radiation intensity, the "acting" field 
becomes more and more monochromatic and an ever 
increasing population of the upper level is obtained, 
albeit after a long time. This variety of possibilities 
emphasizes once more the need for  taking a detailed ac- 
count of the nonmonochromaticity of the radiation in the 
analysis of concrete experiments. 

In conclusion, the author thanks V. L. Ginzburg and 
V. N. Sazonov for helpful advice and interest, and V. A. 
Namiot and A. V. Masalov for  numerous stimulating dis- 
cussions. 
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